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Abstract

Advancements in machine learning and deep learning have the potential to

revolutionize the diagnosis of melanocytic choroidal tumors, including uveal

melanoma, a potentially life-threatening eye cancer. Traditional machine

learning methods rely heavily on manually selected image features, which

can limit diagnostic accuracy and lead to variability in results. In contrast,

deep learning models, particularly convolutional neural networks (CNNs), are

capable of automatically analyzing medical images, identifying complex

patterns, and enhancing diagnostic precision. This review evaluates recent

studies that apply machine learning and deep learning approaches to classify

uveal melanoma using imaging modalities such as fundus photography, optical

coherence tomography (OCT), and ultrasound. The review critically examines

each study’s research design,methodology, and reported performancemetrics,

discussing strengths as well as limitations. While fundus photography is the

predominant imaging modality being used in current research, integrating

multiple imaging techniques, such as OCT and ultrasound, may enhance

diagnostic accuracy by combining surface and structural information about

the tumor. Key limitations across studies include small dataset sizes, limited

external validation, and a reliance on single imaging modalities, all of which

restrict model generalizability in clinical settings. Metrics such as accuracy,

sensitivity, and area under the curve (AUC) indicate that deep learning

models have the potential to outperform traditional methods, supporting

their further development for integration into clinical workflows. Future

research should aim to address current limitations by developing

multimodal models that leverage larger, diverse datasets and rigorous

validation, thereby paving the way for more comprehensive, reliable

diagnostic tools in ocular oncology.
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Impact statement

Machine learning and deep learning are reshaping oncology

diagnostics, yet applications in uveal melanoma remain

underexplored, particularly in using multimodal imaging to

improve accuracy. This review highlights significant gaps in

current research, such as the over-reliance on single imaging

modalities and limited datasets, which restrict diagnostic

precision, generalizability, and clinical utility. By identifying

these limitations and proposing multimodal integration as a

viable solution, this work advances the understanding of how

diverse imaging data can be effectively leveraged for ocular tumor

detection. This new perspective provides a foundation for

developing robust, cross-validated models that could

transform diagnostic practices, enabling early and reliable

identification of uveal melanoma. The insights presented here

set a clear direction for future research to refine and implement

comprehensive, automated diagnostic tools in ocular oncology,

enhancing clinical decision-making and patient outcomes.

Introduction

Melanocytic choroidal tumors encompass a spectrum of

intraocular lesions that range from benign choroidal nevi to

malignant melanomas. While choroidal nevi are common and

typically asymptomatic, choroidal melanoma, though rare, are

associated with a significant risk of metastasis and poor outcomes

[1–5]. Early detection and accurate differentiation between these

lesions are critical for management decisions and improving

patient outcomes [6].

The diagnosis of melanocytic choroidal tumors is based on

clinical examination and imaging techniques such as fundus

photography, optical coherence tomography (OCT), and

ultrasonography. Ophthalmologists assess features such as

tumor size, thickness, and the presence of risk factors like

subretinal fluid, orange pigment, and drusen to estimate the

likelihood of malignancy [7, 8]. However, these diagnostic

techniques are subject to inter-observer variability, and their

sensitivity in detecting small melanomas, which can closely

resemble benign nevi, is limited. In some cases, intraocular

biopsies may be necessary to confirm the diagnosis, but these

procedures carry some risks. This creates an unmet need for

more objective, reproducible, and accurate diagnostic tools.

In recent years, artificial intelligence has emerged as a

transformative technology in medical imaging. Machine learning,

a subset of artificial intelligence, has shown great potential in

automating diagnostic tasks that previously required expert

interpretation. Deep learning, a further subset of machine

learning, utilizes neural networks that can automatically learn

and extract features from large datasets without the need for

manual feature engineering. Convolutional neural networks

(CNNs), in particular, have demonstrated impressive performance

in image classification tasks across various medical fields,

including ophthalmology [9–12].

This review aims to provide an overview of the current

applications of artificial intelligence in the diagnosis of

melanocytic choroidal tumors. It will discuss recent

developments in artificial intelligence-based diagnostic models,

the integration of multimodal imaging techniques, and the

potential of these technologies to improve diagnostic accuracy

and patient management. Furthermore, the review will address

the limitations and challenges faced by machine learning

applications in this field, as well as future directions for

research and clinical translation.

Overview of melanocytic
choroidal tumors

Melanocytic choroidal tumors represent a spectrum of similar

appearing lesions located in the choroid, a vascular layer beneath

the retina. These tumors can be broadly classified into benign

choroidal nevi and malignant melanoma. The accurate

differentiation between these two forms is crucial, as their

management and prognosis differ dramatically.

Choroidal nevi

Choroidal nevi (Figures 1A1–3) are benign lesions that are

more commonly found in the White population compared to

other ethnic groups [13–15]. These nevi are typically

asymptomatic and remain stable over time, often being

discovered incidentally during routine eye exams [16].

However, while most nevi remain benign, a small percentage

can undergo malignant transformation into melanoma [17]. The

risk factors that suggest potential malignancy include greater

lesion thickness, subretinal fluid, orange pigment, and the

absence of overlying drusen [17–19].

Choroidal melanoma

Choroidal melanoma, the most common primary intraocular

malignancy in adults, is a rare but aggressive disease with high

metastatic potential (Figures 1B1–3) [20–22]. Approximately

50% of patients diagnosed with choroidal melanoma develop

metastatic disease, with a high mortality rate once metastasis

occurs [23, 24].

Choroidal melanomas are generally larger and thicker than

nevi, and they often exhibit clinical features such as orange

pigment, subretinal fluid, and low internal echogenicity.

Advanced melanomas may also show a “mushroom” shape

due to the tumor breaking through Bruch’s membrane [25].

Traditional diagnostic methods rely on clinical examinations,
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imaging modalities, and tools like the MOLES algorithm [2] to

identify these features, but distinguishing between benign and

malignant lesions, especially in cases with overlapping features of

nevi and melanoma, can be challenging [26]. However, patients

referred to specialist ocular oncology centers may benefit from

higher diagnostic accuracy due to the expertise and advanced

diagnostic resources available. Figure 1 shows how visually

similar benign and malignant lesions can be.

The need for improved diagnostic tools

One clinical challenge lies in identifying small choroidal

melanomas that may closely resemble benign nevi in terms of

clinical and imaging features. Misclassification can lead to either

overtreatment or delayed treatment. Overtreatment exposes

patients to unnecessary procedures such as radiation therapy,

which carries risks of vision loss and other complications, while

delayed treatment increases the risk of metastasis [27–29]. In

some cases, intraocular biopsies may be necessary to confirm the

diagnosis; however, these procedures carry risks such as

hemorrhage, retinal detachment, and endophthalmitis [30, 31].

Given the clinical and imaging challenges, there is a critical

need for more objective and precise diagnostic tools. This is

where machine learning offers great promise. These advanced

algorithms can process large datasets of imaging data to detect

subtle features that may not be easily discernible by human

experts, potentially revolutionizing the accuracy and efficiency of

diagnosing melanocytic choroidal tumors.

Overview of artificial intelligence

Artificial intelligence refers to the ability of machines to mimic

human intelligence, enabling them to perform tasks such as learning,

problem-solving, and decision-making. Machine learning is a subset

of artificial intelligence that enables computers to learn from data

and make predictions or decisions without being explicitly

programmed for every possible scenario. Machine learning

algorithms build models based on patterns identified in training

data, which can then be applied to new, unseen data for predictions.

The key advantage of machine learning lies in its ability to adapt and

improve over time as it processes more data, making it highly

valuable for complex tasks like medical diagnosis. Over time,

machine learning has evolved to include deep learning, a subfield

of machine learning that leverages neural networks to model

intricate relationships in data, particularly in fields like computer

vision and natural language processing. Figure 2 illustrates the

hierarchical relationship between artificial intelligence, machine

learning, and deep learning. It highlights the key differences in

processing workflows, showing that machine learning involves a

manual feature extraction step, whereas deep learning integrates

both feature extraction and classification within a single,

automated framework.

FIGURE 1
Images showing choroidal nevi and choroidal melanoma. (A1–A3) Choroidal nevi. (B1–B3) Choroidal melanoma.
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Machine learning

Machine learning models can generally be classified into four

primary categories: supervised learning, unsupervised learning,

semi-supervised, and reinforcement learning. Supervised

learning, the most common type, involves training models on

labeled datasets, where each data point is associated with the

correct output. Algorithms like support vector machines

(SVMs), random forest, and K-nearest neighbors (KNNs) are

widely used in supervised learning to perform tasks such as

classification and regression. In contrast, unsupervised learning

deals with unlabeled data, and the goal is to uncover hidden

patterns within the data. Techniques like K-means clustering,

and principal component analysis (PCA) are examples of

unsupervised learning, which are useful for tasks like clustering

and dimensionality reduction. Semi-supervised learning is a mix of

supervised and unsupervised learning. It uses a small amount of

labeled data along with a large amount of unlabeled data. This

method is helpful when labeling data is difficult or expensive, like in

healthcare. Finally, reinforcement learning is a method where a

model learns by trial and error. It interacts with an environment,

gets feedback through rewards or penalties, and uses this feedback

to improve its actions over time. While these traditional machine

learning approaches have shown significant success [32–35], they

require manual feature extraction, as shown in Figure 2. This is

where deep learning distinguishes itself.

Deep learning

Deep learning uses artificial neural networks with multiple

layers to automatically extract and learn high-level features

directly from raw data, such as images or signals, without

requiring human intervention in the feature selection process

(Figure 2). This makes deep learning particularly well-suited for

tasks involving image recognition, speech processing, and natural

language understanding. In the medical field, deep learning has

revolutionized diagnostic applications by providing outstanding

accuracy in analyzing medical images, such as MRI scans [36,

37], X-rays [38, 39], and retinal images [9, 40].

Deep learning networks, such as CNNs and recurrent neural

networks (RNNs), have specific strengths tailored to different types

of data. CNNs, for instance, are optimized for image data, employing

layers that can automatically detect features such as edges, textures,

and shapes in medical images. CNNs are extensively used in tasks

like identifying tumors in medical scans [41–43] or detecting retinal

abnormalities in ophthalmology [44–46]. On the other hand, RNNs

excel at processing sequential data, making them useful for time-

series data, such as monitoring disease progression or analyzing

electrocardiogram (ECG) signals [47, 48].

Transfer Learning is an essential technique in deep learning that

allowsmodels to leverage knowledge gained fromone task and apply

it to a different but related task. This is particularly useful in medical

imaging because large, labeled datasets are often difficult to obtain. A

model pre-trained on a large dataset, such as ImageNet [49], learns

general image features like edges and shapes. This pre-trainedmodel

can then be adapted to a new task, such as detecting tumors in retinal

images, by fine-tuning its layers with a smaller dataset specific to the

medical application. Transfer learning greatly reduces the amount of

labeled data and training time needed while improving model

performance in fields like ophthalmology, where data scarcity is

a common challenge.

Evaluation metrics

To assess the performance of both machine learning and

deep learning models, several evaluation metrics are commonly

FIGURE 2
Relationship and differences between machine learning and deep learning.
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used in medical diagnostics. These metrics include accuracy,

sensitivity, specificity, F-1 score, and area under the curve (AUC).

Explanations of these metrics are given below.

Accuracy: Accuracy measures the proportion of correctly

predicted instances (both positive and negative) out of the total

instances. It provides an overall measure of how often the model

is correct.

Accuracy � TP + TN

TP + TN + FP + FN

Where TP = True Positives, TN = True Negatives, FP = False

Positives, FN = False Negatives.

Sensitivity (Recall or True Positive Rate): Sensitivity

measures the model’s ability to correctly identify positive cases

(correctly diagnosing a condition when it is present). It indicates

how well the model captures actual positives in the dataset.

Sensitivity � TP

TP + FN

Specificity (True Negative Rate): Specificity measures the

model’s ability to correctly identify negative cases (correctly

identifying when a condition is not present). Specificity

focuses on correctly classifying the negatives and avoiding

false positives.

Specificity � TN

TN + FP

Precision: Precision, also known as Positive Predictive Value,

measures the proportion of true positive predictions out of all

positive predictions made by the model. It’s important when the

cost of false positives is high.

Precision � TP

TP + FP

F-1 Score: The F-1 score is the harmonic mean of precision

and sensitivity. It balances both false positives and false negatives

and is particularly useful for imbalanced datasets.

F − 1 Score � 2 ×
Precision × Sensitivity

Precision + Sensitivity

AUC: AUC is derived from the receiver operating

characteristic (ROC) curve, which plots sensitivity against 1 -

specificity. AUC gives an aggregate measure of model

performance across all classification thresholds. A higher AUC

indicates a better-performing model, with an AUC of

1.0 representing perfect classification.

Applications of artificial intelligence
in choroidal tumor diagnosis

Machine learning and deep learning have recently been

studied in the diagnosis of melanocytic choroidal tumors,

particularly in differentiating between choroidal nevi and

melanomas. These techniques have been applied to clinical

datasets [50], pathologic specimens [51], and various imaging

modalities, including fundus photography [52–56], OCT [50],

and ultrasound imaging [57, 58], to enhance the accuracy and

efficiency of diagnosing these tumors. Below, we discuss the use

of both machine learning and deep learning models in the

context of choroidal tumor diagnosis using ophthalmic imaging.

Machine learning

Machine learning models have been applied to manually

extracted features from a variety of imaging modalities for the

diagnosis of melanocytic choroidal tumors. Machine learning

models typically rely on the manual extraction of key features,

such as tumor thickness, subretinal fluid, orange pigment, the

presence of drusen, ultrasonographic hollowness, and

morphology of the tumor. These features are recognized as

important risk factors for the potential malignant

transformation of choroidal nevi into melanoma [18].

For example, Zabor et al. utilized logistic regression models

to predict the malignancy of choroidal nevi based on features

manually extracted from fundus photographs, OCT, and

ultrasound [50]. Their model, which was developed using

123 patients and externally validated on a separate cohort of

240 patients, achieved an AUC of 0.861 in predicting small

choroidal melanomas. From their study, their model identified

tumor thickness, subretinal fluid, and orange pigmentation as

significant risk factors associated with increased odds of

malignancy. While these findings align with prior research

emphasizing the importance of these features in distinguishing

benign nevi from malignant melanomas [17, 19, 59], the

performance of machine learning models is inherently limited

by the quality and selection of features. The inclusion of external

validation in this study is a notable strength, ensuring that the

model can generalize to different clinical settings. Additionally,

the authors created an online prediction tool to facilitate the real-

world application of their machine learning model in

clinical practice.

In another study, Jegelevicius et al. employed a decision tree

model using features extracted from ultrasound imaging for the

differential diagnosis of intraocular tumors [58]. Their results

indicated that features such as tumor thickness, base width, and

tumor shape were considered important for tumor classification.

The decision tree model achieved a diagnostic error rate of 6.7%,

demonstrating its potential as a decision-support tool for

clinicians. However, as with other machine learning

approaches, the reliance on manually extracted features and

the inherent limitation of focusing only on predefined criteria

restricts its scalability and generalizability.

One of the primary limitations of traditional machine

learning in this context is its dependence on human-driven
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feature extraction. While features like tumor size or subretinal

fluid are easily identifiable and quantifiable, these models struggle

to detect more complex patterns that may be key to

differentiating between benign and malignant lesions. As a

result, machine learning models can be less effective for

tumor diagnosis compared to deep learning models, which

can automatically learn and extract intricate hierarchical

features from raw imaging data.

Deep learning

Deep learning has made substantial progress in diagnosing

choroidal tumors, primarily through the use of CNNs. The power

of CNNs lies in their ability to automatically learn features from

raw images without the need for manual feature extraction,

making them ideal for analyzing medical images, particularly

in diagnosing ocular conditions such as uveal melanoma.

Shakeri et al. demonstrated the efficacy of CNNs in the

detection of uveal melanoma using fundus images [60]. They

employed pre-trained models like DenseNet121, DenseNet169,

Inception-V3, and Xception, using transfer learning to fine-tune

the models on the fundus images. Their best-performing model,

DenseNet169, achieved an accuracy of 89%.

Similarly, Ganguly et al. achieved similar results using a

custom CNN model trained on fundus images. Their model

achieved an accuracy of 92%, an F1-score of 0.93, and a precision

of 0.97 [54]. However, the relatively small dataset of 170 images

used in the study presents concerns about overfitting, where the

model may perform well on training data but struggle to

generalize to new, unseen data.

Additionally, Hoffmann et al. utilized ResNet50 to

distinguish choroidal melanoma from choroidal nevi using

fundus images [55]. They reported an accuracy of 90.9% and

F1 score of 0.91, and an AUC of 0.99, showcasing the high

potential of deep learning models in automating tumor

differentiation tasks. Furthermore, they showed that deep

learning models can be used to estimate the likelihood of

malignancy in melanocytic choroidal tumors.

In another study, Dadzie et al. focused on enhancing deep

learning performance through color fusion strategies [56]. By

employing the DenseNet121 architecture on ultra-widefield

retinal images, they examined how combining color channels

(red, green, and blue) affect tumor classification accuracy. Their

results showed that the intermediate fusion provided the best

classification accuracy, outperforming early and late fusion

strategies with an accuracy of 92.2%, an F1 score of 0.88, and

an AUC of 0.98. This study highlighted the importance of

leveraging different color channels in fundus images to

maximize the potential of deep learning models in tumor

classification. The integration of multiple color channels

enables these models to exploit more detailed color and

texture information, further refining their classification

capabilities. While color fusion is a novel approach, the study

did not address the computational cost of using different fusion

strategies which is an important consideration for clinical

deployment.

In a recent study by Sabazade et al, they tackled a critical

challenge in deep learning for choroidal melanoma diagnosis by

ensuring model generalizability through a multicenter approach

[52]. They used a custom U-Net architecture that achieved an

average F1- score of 0.77 and an average AUC of 0.89 for the test

dataset. On external validation dataset, the model achieved an

F1-score of 0.71 and an AUC of 0.88. Notably, accuracy was not

reported in this study. By incorporating datasets from various

centers and imaging devices, they reduced the risk of bias often

seen in single-center studies and improved the model’s

robustness. The inclusion of external validation was a crucial

step toward real-world applicability, as it demonstrated the

model’s ability to generalize beyond the original training

dataset. However, despite addressing generalizability, the study

relied on relatively smaller datasets, which can still pose a risk of

overfitting.

Addressing the issue of small datasets, another recent study

by Jackson et. al employed over 25,000 ultra-widefield retinal

images for deep learning classification of choroidal melanoma

and nevus [53]. Using a transfer learning approach, they

employed the RETFound, a foundation self-supervised deep

learning model [61]. Their model achieved an accuracy of

83%, an F1 score of 0.84, and an AUC of 0.90. While the

study demonstrates a promising solution to data scarcity, the

lack of external validation limits its immediate clinical

applicability, as model performance across different populations

and imaging devices remains uncertain.

The studies reported above collectively demonstrate the

powerful role that deep learning models play in the detection

and classification of choroidal melanoma using fundus images.

However, several limitations remain across the studies, such

as the use of small datasets, the lack of external validation, and

the reliance on a single imaging modality. However, recent

studies have made progress in addressing these issues [52, 53],

but further research is needed to explore the integration of

multimodal imaging, which could offer a more comprehensive

diagnostic approach. Table 1 offers a detailed comparison of

the methodologies and results across these studies, providing a

clear overview of how different architectures and approaches

enhance tumor differentiation. The models presented in

Table 1 represent the best-performing models reported in

each study.

While fundus photography has been extensively used in deep

learning applications for classifying melanocytic choroidal

tumors, other imaging modalities, such as OCT and

ultrasound, have not been widely employed for this purpose.

This gap presents an opportunity for future research to explore

the application of deep learning to these imaging modalities,

which could enhance early detection and diagnosis of uveal

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine06

Dadzie et al. 10.3389/ebm.2025.10444

https://doi.org/10.3389/ebm.2025.10444


melanoma by integrating structural information from OCT and

ultrasound with surface-level data from fundus photography.

Challenges and limitations

The application of artificial intelligence in diagnosing

choroidal melanoma has shown considerable promise,

demonstrating the potential for enhanced diagnostic accuracy

and efficiency. However, translating these advancements from

research settings into routine clinical practice is accompanied by

significant challenges and limitations. As machine learning and

deep learning models evolve, understanding and addressing the

obstacles that limit their clinical integration becomes critical,

particularly for supporting downstream diagnosis and aiding

non-specialists. These challenges encompass a range of issues,

from the quality and availability of data to the interpretability of

model outputs and the adaptability of machine learning systems

within clinical workflows.

Effective implementation of artificial intelligence tools in

healthcare requires not only technological advancements but

also a nuanced understanding of clinical requirements and

patient variability. Machine learning and deep learning models

must be rigorously validated, reliable across diverse patient

populations and imaging techniques, and transparent in their

decision-making processes. Given the known differences in the

incidence of choroidal nevi and choroidal melanoma across racial

and ethnic groups, datasets used to train these models are often

disproportionately composed of images from populations with

higher disease prevalence, primarily White individuals. This

imbalance can introduce bias, potentially limiting the model’s

applicability to underrepresented populations. Addressing these

aspects is essential to achieving widespread clinical adoption and

ensuring that artificial intelligence technologies fulfill their

potential to improve patient outcomes. The following sections

outline key challenges and limitations, providing insights into

areas that require further research and refinement to support the

successful deployment of machine learning in ocular oncology.

Table 2 summarizes the main challenges and limitations in

applying machine learning to uveal melanoma diagnosis,

along with potential solutions to address each issue.

Data availability and quality

One of the most significant challenges in developing effective

machine learning and deep learning models for the diagnosis of

melanocytic choroidal tumors is the availability and quality of

data. Uveal melanoma is a rare condition, making it difficult to

acquire large, diverse datasets that are essential for training

robust machine learning models. The rarity of the condition

results in relatively small datasets, which can lead to overfitting in

models. This issue is especially problematic in deep learning,

where large-scale datasets are crucial for capturing complex

patterns in medical images and achieving high performance.

A recent study by Jackson et al. has begun addressing this issue by

utilizing large datasets with over 25,000 images [53].

Another issue related to data limitations is the lack of

diversity in the available datasets. Often times, datasets are

collected from a single institution or geographic region,

limiting the model’s exposure to different patient

demographics, imaging conditions, and equipment variations.

A model trained on data from a specific population may not

perform well when applied to a different demographic, leading to

bias in predictions and unequal outcomes across patient

populations. Potential solutions to these limitations include

TABLE 1 Comparison between studies that used deep learning for the classification of Choroidal Nevus and Melanoma.

Study Model
used

Imaging
modality

Number of Images Performance metrics

Control Melanoma Nevus Accuracy Sensitivity Specificity Precision F1-
Score

AUC

Ganguly
et al. [54]

Custom
model

Standard
images

NA 110 60 0.92 0.90 0.95 0.97 0.93 NA

Hoffman
et al. [55]

ResNet50 UWF and
standard
images

NA 422 340 0.91 0.90 0.91 0.91 0.91 0.99

Dadzie
et al. [56]

DenseNet121 UWF images 360 157 281 0.92 0.81 0.98 0.96 0.88 0.95

Sabazade
et al. [52]

Custom
model

UWF and
standard
images

NA 219 583 NA 1.00 0.74 NA 0.77 0.89

Jackson
et al. [53]

RETFound UWF images 1,192 18,510 8,671 0.83 0.79 0.87 0.89 0.84 0.90

UWF, Ultra-widefield; NA, not available.
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data-sharing collaborations between institutions and leveraging

images being collected for the increasing number of prospective

multi-center clinical trials being conducted for uveal melanoma.

Another promising avenue for addressing the issue of data

scarcity is the use of synthetic data. Generative adversarial

networks (GANs) and diffusion models have emerged as tools

for generating synthetic medical images that mimic real-world

data [62–65]. These synthetic datasets can be used to augment

existing data, allowing deep learning models to train on larger

and more diverse datasets. However, synthetic data may raise

concerns about trust, as models trained on artificially generated

images could be perceived as less reliable for real-world clinical

applications. Therefore, proper validation on real-world data is

essential to build clinician and patient confidence in

these models.

Ground truth labeling and standardization

Another challenge regarding the dataset involves ground

truth labeling. There are no universally accepted criteria for

the definition of choroidal nevi and melanoma, which is why

some cases are called indeterminate until the tumor is observed

to be stable in size, grow during the observation period, or

occasionally biopsied. Most often, the diagnosis of choroidal

melanoma is clinical, but more careful definitions should be

chosen for the indeterminate cases. Choroidal nevi versus

melanomas can be defined by its clinical appearance, its

pathological appearance (when tissue is available), or its

metastatic potential and disease-specific mortality when long-

term follow-up is available. The labels for ground truths in

machine learning and deep learning studies should be chosen

carefully to reflect the dataset available for that study. Alternative

labels may include the tumor size, clinical characteristics, genetic

profile, tumor growth rate over time, or the management

decision chosen by the clinician. The type of machine learning

project and clinical goal of the study should determine the

ground truth labels being chosen, and care should be taken to

prevent conclusions about an artificial intelligence model that

exceeds the scope of the available data. Potential solutions to this

challenge include expert committees to standardize the

definitions and labels being used for machine learning studies

in ocular oncology. Additionally, the MOLES scoring system,

which is widely used in clinical practice for risk stratification of

choroidal nevi, could serve as a standardized framework for

developing ground truth labels in artificial intelligence studies.

Labels agnostic of management decisions, such as calling the

same lesion indeterminate when it would be observed versus a

TABLE 2 Challenges and potential solutions for integrating machine learning in uveal melanoma diagnosis.

Challenge Description Implication Potential solutions

Data Availability Uveal melanoma is rare, making it difficult to
acquire large datasets for training robust models

Limited dataset size restricts model accuracy,
leads to overfitting, and reduces model
generalizability

Data-sharing collaborations; multimodal
image training to optimize models using
available data; synthetic data generation

Dataset Diversity Many datasets are from single institutions or
regions, limiting diversity in patient
demographics and imaging conditions

Models trained on specific populations may not
perform well across different demographics,
leading to bias in predictions

Multicenter collaborations; access to data from
clinical trials; external validation to ensure
generalizability

Ground Truth
Labeling

While standardized systems like MOLES and
histopathological analysis exist, their adoption
varies globally, posing challenges for consistent
ground truth labeling

Lack of standardization in labeling can affect
model accuracy and interpretability. Model
design may not align with the intended
clinical use

Broader adoption of standardized systems and
expert consensus on defining ground truths
can improve consistency in labeling across
studies. Additionally, intraocular biopsy
results, when available, can provide more
definitive labels

Model
Interpretability

Deep learning models often have opaque
decision-making processes, making it difficult to
understand exactly which features drive
predictions. While techniques like CAMs,
including Grad-CAM highlight regions used by
the model, they do not reveal the specific features
influencing the decision

Lack of transparency limits clinician trust and
makes clinical integration difficult

Techniques such as CAMs and SHAP provide
visual and feature-level explanations. Further
improvement of these methods can enhance
model transparency, build clinician trust, and
support clinical integration

Clinical
Integration

Machine learning tools often function as stand-
alone systems, lacking integration with EHRs and
imaging platforms

Increase workload for healthcare providers, as
they may need to navigate multiple platforms to
incorporate machine learning insights with
traditional methods

Development of interoperable systems that
integrate directly with EHRs and imaging
systems for seamless workflow

Ethical
Considerations

Use of machine learning algorithms for life-
altering decisions like diagnosis and treatment
raises ethical concerns

High-stakes medical decisions by machine
learning must meet rigorous standards, as errors
can seriously impact patient health

Rigorous validation of machine learning
outputs with clinical ground truths and use as a
decision support tool rather than for sole
decision-making

GAN, generative adversarial network; CAM, class activation mapping; Grad-CAM, Gradient-weighted Class Activation Mapping; SHAP, Shapely Additive exPlanations; EHR, electronic

health records.
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small melanoma when it would be treated, can also improve the

generalizability of the study when opinions on

management differ.

Model interpretability

Another significant challenge in the adoption of machine

learning and deep learning models in the diagnosis of

melanocytic choroidal tumors is the lack of interpretability.

While deep learning models have shown exceptional

performance in classifying uveal melanoma and other ocular

conditions, their decision-making process remains largely

opaque. This is often referred to as the black box nature of

deep learning. This lack of transparency often makes these

models difficult to trust and integrate into clinical practice, as

clinicians typically need to understand the reasoning behind a

model’s prediction to confidently use it for patient care.

To address the black-box issue in deep learning, researchers

have developed several techniques to enhance the interpretability

of these models in medical imaging. These methods provide

insights into how the model makes predictions and identifies

which parts of the image are most influential in the decision-

making process. A commonly used method is Gradient-weighted

Class Activation Mapping (Grad-CAM), which generates

heatmaps overlaid on the original image to show which

regions contributed the most to the model’s classification [66].

Grad-CAM works by leveraging the gradients of a target class

flowing into the final convolutional layer of a neural network,

which produces a localization map highlighting the important

regions in the image [66]. Clinicians can cross-reference the

model’s focus areas with their own knowledge of disease markers,

ensuring that the model is not relying on irrelevant features.

Another advantage of improved interpretability is the potential

for clinicians to learn new insights into image evaluation. Experts

can potentially learn new clinical or imaging features from

machine learning models, to improve our understanding of

how best to interpret imaging to diagnose melanocytic

tumors. Figure 3 illustrates an example of Grad-CAM

heatmap overlaid on different color channels of ultra-widefield

retinal images to show regions considered most relevant for

classification of choroidal nevus and melanoma. Figure 4 also

shows the areas in ultrasound images that are considered crucial

for deep learning models to make a classification decision.

Integration into clinical workflow

Another key challenge in the adoption of deep learning and

machine learning models for the diagnosis of melanocytic

FIGURE 3
Grad-CAM showing regions relevant for classification. (A1–A4) Control, (B1–B4) Choroidal melanoma, (C1–C4) Choroidal nevus. Column 1
represents the original images, column 2 represents the red channels, column 3 represents the green channels and column 4 represents the blue
channels. Adapted from [67].
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choroidal is their integration into existing clinical workflows.

While these models have demonstrated impressive accuracy in

research settings, translating them into real-world clinical

practice remains difficult. Many machine learning tools

function as stand-alone systems that do not seamlessly

integrate with existing electronic health records (EHRs) or

imaging systems, causing potential disruptions in established

processes. This lack of interoperability can increase the workload

for healthcare providers, who may need to navigate between

multiple platforms to interpret machine learning results

alongside traditional diagnostic methods. However, tools like

the online calculator developed by Zabor et al. demonstrate how

these models could be applied in practice [50]. Although the

current version requires manual input, future versions could be

integrated directly into clinical workflows, automatically

extracting data from existing databases and providing

instant results.

Ethical considerations

Another challenge in the clinical application of artificial

intelligence in the diagnosis of uveal melanoma is the degree

to which physicians will rely on machine learning algorithms. In

cases of indeterminate choroidal tumors, diagnosis using

histopathologic examination has been reported to be upwards

of 90% accuracy [68, 69]. This level of accuracy will likely be

surpassed by machine learning algorithms using multimodal

data, depending on the quality of labels and choice of ground

truth for the diagnosis of uveal melanoma. However, the ethical

implications of using a computer algorithm to make vision and

life-threatening decisions raise the standard for the required

accuracy and quality of validation for this clinical use. In the

near term, machine learning and deep learning algorithms may

be used as clinical tools, such as for screening and triaging by

optometrists and comprehensive ophthalmologists, or aid in

management decisions along with clinical data, imaging,

genetics, and biopsy results when deemed necessary. These

tools are likely to be more beneficial in non-specialist

community centers, where diagnostic accuracy may be lower,

rather than in specialist ocular oncology centers, where

experienced clinicians already achieve high diagnostic

accuracy. The latter use as a tool for ocular oncologists will

become more useful as long-term follow-up data is available to

validate algorithm outputs prospectively with clinically

meaningful ground truths, including tumor growth rate,

histopathologic findings, metastatic risk, and disease-

specific mortality.

Discussion

The application of artificial intelligence to diagnose

melanocytic choroidal tumors represents a promising

advancement in ocular oncology. Machine learning methods

rely on manual examination of imaging features, which

introduces variability and often limits diagnostic accuracy.

Deep learning models, especially CNNs, address some of these

limitations by automating feature extraction and analysis,

improving diagnostic reliability and potentially enhancing

patient outcomes.

Studies have predominantly utilized fundus photography as

the primary imaging modality for developing and validating

machine learning models. Pre-trained CNN architectures and

FIGURE 4
Grad-CAM showing regions relevant for classification. Row 1 shows original images and Row 2 shows the Grad-CAM heatmaps overlaid on the
original images. (A1–A2) Ultrasound image of choroidal melanoma. (B1–B2) Ultrasound image of choroidal nevus. (C1–C2) Ultra-widefield retinal
image of choroidal melanoma. (D1–D2) Ultra-widefield retinal image of choroidal nevus. Modified with permission from [57].
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custom-built CNNs have already achieved accuracy metrics

surpassing 90%, demonstrating the effectiveness of these

models in capturing key image features. Despite these

promising findings, models trained exclusively on fundus

photography have inherent limitations. Fundus images

provide a surface-level view, which may not capture critical

information such as tumor depth and structural details. In

contrast, OCT and ultrasound are capable of capturing

deeper, three-dimensional characteristics of tumors, offering a

more comprehensive understanding of tumor morphology.

By combining these different modalities, deep learning

models can access a richer and more diverse set of features,

enabling more accurate diagnosis and improving the ability to

detect subtle signs of malignancy. Multimodal imaging has

shown considerable success in ophthalmology, particularly in

the diagnosis and management of conditions like diabetic

retinopathy [70, 71], age-related macular degeneration (AMD)

[72, 73], and glaucoma [74, 75]. However, despite the

demonstrated success of multimodal imaging in diagnosing

retinal diseases, its application to choroidal tumors has been

limited. The use of multi-modal imaging for choroidal tumors

has the potential to significantly enhance diagnostic accuracy by

merging surface-level information from fundus photography

with cross-sectional structural details provided by OCT and

internal characteristics captured through ultrasound. Each

modality offers unique advantages: fundus photography

captures surface features like lesion color and margins, OCT

provides detailed tumor thickness and subretinal fluid

information, and ultrasound allows for the assessment of

thicker tumor depth and internal echogenicity.

Such multimodal approaches hold wide-ranging clinical

applications, including screening, referral triaging, risk

assessment, detailed tumor characterization for clinical trials,

surveillance, planning of radiation therapy, and monitoring for

local recurrence after treatment. Multimodal imaging thus

represents a promising frontier for research and innovation in

ocular oncology, supporting the continued refinement of

machine learning and deep learning tools in diagnosing and

managing uveal melanoma.

Moreover, issues related to data availability and quality

remain a major hurdle. Uveal melanoma is a rare condition,

and the lack of large, diverse datasets increases the risk of model

overfitting and reduces generalizability. Recent efforts to mitigate

these issues include multicenter collaborations and external

validation, which have demonstrated improved model

robustness across different populations and imaging

conditions [52]. Another significant challenge lies in clinical

integration. While machine learning and deep learning models

have achieved impressive results in research environments, real-

world deployment requires seamless integration with electronic

health records and imaging systems. This integration is

crucial for reducing the workload on clinicians and ensuring

that artificial-intelligence-generated insights can be readily

incorporated into routine clinical workflows. Tools such as

online prediction calculators have shown promise in this

regard, but further work is needed to automate data input and

output processes [50].

Conclusion

Artificial intelligence has the potential to improve the

diagnostic approach to melanocytic choroidal tumors, offering

significant improvements in accuracy and efficiency. However,

challenges related to data availability, ground truth labeling,

model interpretability, and clinical integration must be

addressed to fully realize the potential of these tools in

everyday clinical practice. Future directions such as the use of

collaborative networks of institutions, multimodal imaging

integration, and improved interpretability methods are key to

overcoming current limitations. As these technologies continue

to evolve, they are expected to play an increasingly important

role in uveal melanoma diagnosis and treatment, leading to

earlier detection, more accurate diagnoses, and ultimately

better patient outcomes. Possible clinical applications

encompass screening, referral triage, diagnosis, risk

assessment, tumor localization and morphological analysis for

clinical trials, active surveillance, radiation planning, and

monitoring for post-treatment recurrence. Several critical

areas require further exploration and development to fully

realize the potential of these technologies. With continued

refinement and targeted solutions to current limitations,

machine learning and deep learning diagnostic tools could

become integral to ophthalmic practice, empowering clinicians to

make more accurate and informed decisions.
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