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Abstract

Cancer progression is orchestrated by the accrual of mutations in driver genes,

which endow malignant cells with a selective proliferative advantage.

Identifying cancer driver genes is crucial for elucidating the molecular

mechanisms of cancer, advancing targeted therapies, and uncovering novel

biomarkers. Based on integrated analysis of Multi-Omics data and Network

models, we present MONet, a novel cancer driver gene identification algorithm.

Our method utilizes two graph neural network algorithms on protein-protein

interaction (PPI) networks to extract feature vector representations for each

gene. These feature vectors are subsequently concatenated and fed into a

multi-layer perceptron model (MLP) to perform semi-supervised identification

of cancer driver genes. For each mutated gene, MONet assigns the probability

of being potential driver, with genes identified in at least two PPI networks

selected as candidate driver genes. When applied to pan-cancer datasets,

MONet demonstrated robustness across various PPI networks,

outperforming baseline models in terms of both the area under the receiver

operating characteristic curve and the area under the precision-recall curve.

Notably, MONet identified 37 novel driver genes that were missed by other

methods, including 29 genes such as APOBEC2, GDNF, and PRELP, which are

corroborated by existing literature, underscoring their critical roles in cancer

development and progression. Through theMONet framework, we successfully

identified known and novel candidate cancer driver genes, providing

biologically meaningful insights into cancer mechanisms.
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Impact statement

The mechanisms underlying cancer development are

complex, and identifying cancer driver genes is crucial for

cancer diagnosis and personalized treatment. Therefore, we

have developed a novel cancer driver gene identification

algorithm called MONet, based on the comprehensive analysis

of multi-omics data and network models. Our results

demonstrate that MONet identifies a substantial number of

confirmed and potential cancer driver genes with superior

performance and reveals new driver genes that other methods

have missed. Conducting biomedical experimental research on

the new driver genes discovered by MONet can aid precision

medicine and provide better treatment options for

cancer patients.

Introduction

The progression of cancer is driven by mutations in specific

genes, known as cancer driver genes, that confer growth

advantages to malignant cells [1–3]. Identifying these driver

genes is crucial for disease diagnosis and personalized

treatment, making it a primary objective of cancer genomics

research [4–6]. Large-scale collaborative efforts such as The

Cancer Genome Atlas (TCGA) [7] and the International

Cancer Genome Consortium (ICGC) [8] have amassed

unprecedented datasets, furnishing comprehensive resources

for cancer driver gene discovery. Over the past decade,

researchers have developed a multitude of computational

methods to identify potential cancer driver genes, often

grounded in experimental hypotheses. For instance,

frequency-based methods typically assume that driver genes

exhibit recurrent mutations at a higher frequency than non-

driver genes [9–11]. In contrast, network-based methods

hypothesize that cancer results from alterations in multiple

genes that interact closely and play key roles in cancer-related

biological pathways, rather than single-gene alterations [12].

These complementary approaches have collectively enriched

our understanding of the complex and multifactorial nature of

cancer. Computational methods based on gene mutation

frequency have been widely applied to identify cancer driver

genes. For example, Dees ND et al. developed MuSiC [9], an

integrated mutation analysis tool that combines standardized

sequence-based data with clinical data to infer relationships

between mutations, affected genes, and pathways. This allows

researchers to prioritize driver genes and distinguish significant

driver mutations from passenger mutations. Tamborero D et al.

proposed OncodriveCLUST [11], which uses silent mutations in

coding regions as a background mutation model to identify genes

with mutation frequencies significantly exceeding the

background rate in specific protein regions. Lawrence MS

et al. proposed the MutSigCV [10] algorithm, which is based

on the mutation frequency and lineage of specific patients. This

algorithm uses a background mutation model that incorporates

gene expression and replication timing information to adjust for

variations, thereby calculating the background mutation rate of

specific genes to improve the accuracy of identifying cancer-

related genes.

In recent years, through network analysis, researchers can

identify cancer driver genes, a process that is vital for

understanding the mechanisms and progression of cancer

[13]. Representative algorithms for driver gene identification

based on pathway and network analysis include the following.

Leiserson MD et al. proposed the HotNet2 [14] algorithm, which

is designed to identify mutated subnetworks within gene

interaction networks. HotNet2 considers the weights of

mutations within single protein networks, enhancing its ability

to identify and understand key roles within mutated

subnetworks. Cho A et al. introduced the MUFFINN [15]

algorithm, which integrates mutation information of

individual genes with that of neighboring genes in functional

networks to identify driver genes. Colaprico A et al. developed

the Moonlight [16] algorithm, designed to identify cancer driver

genes that act as dual-role players within the

transcriptome network.

In current cancer research, methods that integrate multi-

omics data and biological network analysis are widely used for

cancer driver gene identification. These methods not only

enhance our understanding of cancer development

mechanisms but also provide new strategies and

approaches for personalized treatment. Therefore,

combining multi-omics data integration with biological

network analysis is becoming an inevitable trend in

exploring cancer complexity. EMOGI [17] is an

interpretable machine learning method based on graph

convolutional networks (GCN) that integrates genomics,

epigenomics, and transcriptomics data as gene features and

combines them with PPI networks to learn more abstract gene

features. MTGCN [18] is a multi-task learning framework

based on GCN that optimizes both node classification and

edge link prediction tasks by learning node embedding

features. These methods have shown promising results,

confirming the effectiveness of combining multi-omics data

with network models for cancer driver gene identification.

Nevertheless, despite the efficacy of graph neural network-

based methods, their predictive performance in cancer driver

gene identification can be limited by the inherent complexity of

biological networks. To address this, we propose MONet, which

integrates both graph convolutional networks and graph

attention networks to enhance the representational power of

gene features through the concatenation of feature vectors.

Additionally, we selected six independent PPI networks for

model training, ensuring that the predicted candidate driver

genes are comprehensive and accurate. Through MONet, we

identified 376 candidate driver genes, 184 of which are known
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driver genes recorded by multiple benchmarks. Among

remaining 192 predicted genes, most of them are supported

by other datasets or corroborative studies, highlighting the

potential of MONet in cancer driver gene identification.

Materials and methods

Multi-omics data and PPI networks

We utilized the same multi-omics data and PPI networks as

EMOGI to predict cancer driver genes. For the sake of

completeness, we briefly introduce these data.

Our method employed four types of multi-omics data:

somatic mutation (SM), copy number variation (CNV), gene

expression (GE), and DNAmethylation (DNAm). We integrated

these four types of multi-omics data from 16 cancer types: BLCA,

BRCA, CESC, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD,

LUSC, PRAD, READ, STAD, THCA, and UCEC. After

normalizing these datasets, we concatenated them to form a

feature matrix, where rows represent genes and columns

represent features.

We collected protein-protein interactions from CPDB

[19], STRING-db [20], MultinetI [21], IRefIndex [22], and

PCNet [23]. Depending on the network, we only considered

high-confidence interactions. For CPDB, interactions with a

score higher than 0.5 are retained. For STRING-db,

interactions with a score higher than 0.85 are kept.

Multinet and the older version of IRefIndex (v.9.0) were

collected from the HotNet2 GitHub repository. For the

newer version of IRefIndex (v.15.0), only interactions

between human proteins were considered. PCNet was

used without further processing and serves as a

consensus network.

Benchmark datasets

In the absence of a recognized “gold standard” dataset

containing both positive and negative driver gene

annotations, it is challenging to accurately assess the

performance of previous prediction tools [24, 25]. To

comprehensively evaluate our method, we utilized three

commonly used datasets as benchmark datasets, and their

union was used as the source of positive samples. For ease of

comparison, the datasets were used in the same versions as

EMOGI. These datasets include CGC [6], NCG [26], and

DigSEE [27]. The CGC database manually curates a list of

723 common genes causally implicated in cancer. The NCG

database contains a curated list of expert-selected and

candidate cancer genes, with the included genes being

proven or predicted to be drivers of cancer. In the selection

of positive samples, only confirmed cancer driver genes were

used. DigSEE was employed to search for genes related to

cancer in the PubMed database, restricted to the 16 cancer

types, and a set of 85 highly confident cancer genes was

identified using DNA methylation and gene expression

as evidence.

Negative samples represent genes least likely to be associated

with cancer. To generate a list of negative samples, potential

cancer-related genes were recursively removed from all genes,

including those present in the NCG database, genes related to

cancer pathways in the KEGG [28]database, genes in the OMIM

[29] disease database, genes predicted to be cancer-related in

MutSigdb [30], and genes whose expression is correlated with

cancer genes [31].

Since the proposed algorithm is trained using different PPI

networks, only positive and negative samples contained within

the underlying PPI networks were used for training. Table 1

presents the total number of genes included in the PPI networks

used, along with the counts of positive samples, negative samples,

and unlabeled genes.

Overview of MONet

Figure 1 illustrates the main workflow of MONet. Firstly,

the graph structure constructed from the PPI network is fed

into two graph neural network algorithms, GCN and GAT, to

learn the feature vector representations of each gene, resulting

in two feature matrices: the GCN-Feature matrix and the

GAT-Feature matrix. Next, the feature vectors obtained

from the two matrices are concatenated together gene-wise,

forming a new feature vector for each gene, termed as the

Graph Enhanced feature. Subsequently, the new feature

vectors are inputted into a multilayer perceptron (MLP)

model to perform semi-supervised cancer driver gene

identification tasks, comprehensively learning the node

features. This process yields the probability of each gene

being predicted as a cancer driver gene, and genes are

ranked based on these probabilities. Finally, the top

300 candidate genes from each of the six PPI networks are

TABLE 1 The total number of genes included in the PPI networks,
along with the counts of positive samples, negative samples, and
unlabeled genes.

PPI Number Positive Negative Unlabeled

CPDB 13,627 796 2,187 10,644

STRING 13,179 783 2,415 9,981

Multinet 14,398 790 3,709 9,899

IRefIndex 17,013 836 4,056 12,121

IRefIndex (2015) 12,129 785 1,971 9,373

PCNet 19,781 859 3,921 15,001
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selected, and genes that appear in at least two networks are

considered as candidate driver genes.

GCN layer and GAT layer

GCN algorithm can preserve the structural information of

the graph. Therefore, we first use the GCN algorithm on the

graph structure constructed from the PPI network to learn the

feature vector representation of each gene.

GCN learns node features through the following steps. First,

the initial graph structure data G � (V, E) is mapped to a new

space fG → f*. Taking a single-layer forward propagation graph

convolutional neural network as an example, the feature of the

i-th layer neural network is represented by wi. When computing

the nodes vi in the graph, the output Hl+1 of each layer of the

network can be represented by a nonlinear function f(•, •) as

Hl+1 � f(Hl, A), where A is the adjacency matrix. The graph

convolutional neural network structure is realized through a

nonlinear activation function σ(•), and its layer-wise

propagation rule is given in Equation 1.

f Hl+1, A( ) � σ ~D
−1
2 ~A ~D

−1
2HlWl( ) (1)

where ~A � A + I represents the adjacency matrix of graph G, I

represents the identity matrix, ~D � ∑ ~Aij represents the degree

matrix of the adjacency matrix ~A, and Wl represents the weight

matrix of the convolutional neural network at layer l.

The GCN algorithm relies on two input matrices: the

adjacency matrix of the network and the feature matrix

composed of the features of each node. This allows GCN to

preserve the structural information of the graph, fully

exploiting the latent information in the PPI network,

thereby enhancing the classification performance for genes.

FIGURE 1
Overview of MONet. First, the graph structures of the PPI networks are learned using GCN and GAT to obtain feature vector representations for
each gene. Then, these feature vectors from the two matrices are concatenated together to form a new feature vector. Subsequently, the new
feature vectors are input into an MLP for the driver gene identification task. Finally, the top 300 candidate genes are selected from each of the 6 PPI
networks, and genes appearing in at least two networks are designated as candidate driver genes. The multi-omics data include Mutation
Features (MF), DNA Methylation Features (METH), Gene Expression Features (GE), and Copy Number Alteration Features (CNA).
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However, during the learning process, GCN assigns equal

importance to all nodes within the same neighborhood. In

practical applications, we need an algorithm that can more

intelligently discern the importance of neighboring nodes,

which is where GAT excels.

In MONet, we used the GAT method with integrated multi-

head attention mechanism. In GAT, for a single graph attention

layer, the input consists of a set of node features:

h � h1
→
, h2
→
, ..., hN

�→{ }, hi→∈ RF, where N is the number of nodes

and F represents the dimensionality of each node’s feature vector.

This layer generates a new set of node features (with feature

dimension F’): h’ � h1
′

→
, h2

′
→
, ..., h′N

�→{ }, h′i→∈ RF′. The attention layer

propagation mechanism employed in this study is based on

Equations 2–5.

eij � a Whi
→
,Whj

→( ) (2)

eij � LeakyReLU �aT Whi
→ ‖ Whj

→[ ]( ) (3)

αij � softmaxj eij( ) � exp eij( )∑
k∈Ni

exp eik( ) (4)

h′i
→

� σ
1
K
∑K
K�1

∑
j∈Ni

αkijW
khj
→⎛⎝ ⎞⎠ (5)

where eij represents the importance of node j to node i,W and �a

are trainable parameters, K represents the number of attention

heads, and ‖ denotes the concatenation operation.

Enhancing the GAT method through the integration of the

multi-head attention mechanism brings several significant

advantages. Firstly, introducing multiple attention heads allows

for parallel processing of different aspects of the graph, thus

improving computational efficiency. Each head focuses on

learning different features, achieving a comprehensive

representation of the graph’s complex structure. Additionally, the

multi-head mechanism enhances the model’s robustness and

generalization ability by integrating diverse attention

distributions. Even in the presence of noise or errors in

individual heads, collective insights from multiple heads ensure

the model’s resilience. Lastly, and most importantly, introducing

multi-head attention mechanism can enhance the expressive power

of the attention layers.

Enhanced feature

By applying both the GCN layer and the GAT layer, the

original gene feature vectors are transformed, resulting in two

new feature matrices: the GCN-Feature matrix and the GAT-

Feature matrix, where the rows represent genes and the columns

represent new features. To fully leverage the gene feature vector

representations learned by GCN and GAT, MONet innovatively

concatenates these learned feature vectors into a single new

feature vector, thereby enhancing the gene features. This new

feature vector is termed the Graph Enhanced feature.

GCN and GAT are two distinct types of graph neural

network algorithms, each employing different methods for

information aggregation. GCN aggregates information from

neighboring nodes based on the graph’s Laplacian spectrum

(or adjacency matrix), making it well-suited for capturing

global structural features of the graph, particularly excelling in

learning global relationships based on the graph topology. In

contrast, GAT utilizes a self-attention mechanism to dynamically

assign weights to each neighboring node, enabling it to flexibly

capture the importance of local neighbors and highlight critical

interactions between nodes. Therefore, GCN focuses more on

learning global structures, while GAT emphasizes the importance

of local interactions between nodes. By concatenating the feature

vectors learned by both algorithms, the Graph Enhanced feature

integrates the strengths of both methods, providing a more

comprehensive description of gene characteristics. Our

subsequent comparisons reveal that the feature vectors learned

by GCN and GAT may possess complementary properties. By

combining these features, we can address the limitations of

features learned by each algorithm individually, thereby

enhancing the overall feature representation. MONet achieved

better results compared to using GCN and GAT alone.

Identification and screening of
driver genes

MLP is an artificial neural network composed of multiple

layers of perceptrons or neurons. Each layer is fully connected to

the next. A basic perceptron model includes three components:

input values, weights and biases, and an activation function. Each

perceptron receives a set of inputs, multiplies these inputs by the

corresponding weights, and then adds a bias. This result is passed

through an activation function to produce an output value. The

training of an MLP typically involves the backpropagation

algorithm and gradient descent optimization. In MONet, the

integrated gene feature vectors, referred to as Graph Enhanced

features, are input into an MLP to perform a semi-supervised

cancer driver gene identification task. This process fully learns

the node features, ultimately producing a probability for each

gene being a cancer driver gene. The genes are then ranked based

on these probability values.

Selecting candidate driver genes that appear in multiple PPI

networks helps to reduce the influence of randomness and noise

from individual networks. Additionally, by screening across

different networks and choosing genes with high occurrence

frequency as candidate driver genes, the consistency and

reproducibility of the results are increased, thereby enhancing

the credibility of the study. Consequently, we applied the MONet

to the graph structures constructed from the six PPI networks
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used in this study, resulting in six sets of gene rankings. We

selected the top 300 genes from each ranking as candidate genes

and included those that appeared in at least two sets as candidate

driver genes for further analysis.

Results

Evaluation metrics

We evaluated the performance of MONet using common

evaluation metrics, including accuracy, the area under the

receiver operating characteristic curve (AUROC), the area

under the precision-recall curve (AUPR), the F1 Score, and

the Matthews Correlation Coefficient (MCC). AUROC

represents the area under the receiver operating

characteristic (ROC) curve, which is an important indicator

for measuring classification performance. By computing the

true positive rate (TPR) and false positive rate (FPR) and

generating the ROC curve, we calculated the area under it.

The precision-recall (PR) curve illustrates the relationship

between precision and recall at different thresholds, and the

area under it represents the AUPR value. The F1 Score and

MCC are particularly well-suited for imbalanced datasets. The

F1 Score evaluates a model’s ability to predict positive samples

by combining precision and recall into a single metric. MCC

provides a comprehensive assessment of a model’s predictive

performance by incorporating all elements of the confusion

matrix, including true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN). These evaluation

metrics comprehensively assess the classification

performance and predictive capability of the model. Several

indicators are introduced below.

Accuracy � TP + TN

TP + FP + TN + FN
(6)

ROC curve according to the following equation:

TPR � TP

TP + FN

FPR � FP

TP + FP

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

PR curve according to the following equation:

Precision � TP

TP + FP

Recall � TP

TP + FN

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (8)

F1 Score � 2 · Precision · Recall
Precision + Recall

(9)

MCC � TP · TN − FP · FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (10)

where True Negative (TN), True Positive (TP), False Negative

(FN), and False Positive (FP), respectively, are in Equations 6–10.

Model training

In this study, we used a binary cross-entropy loss function

L � −(cylogσ(x) + (1 − y)log(1 − σ(x))). Due to the

imbalance between positive and negative samples in the

training data, we applied a weight c to the positive samples in

the loss function. For instance, in the CPDB network, there are

796 positive samples and 2,187 negative samples. Since the

negative samples are approximately three times the number of

positive samples, we assigned a weight of 3 to the positive samples

in the loss function (c = 3). When training MONet, we first

divided the labeled samples, i.e., the total of positive and negative

samples, into 75% for the training set and 25% for the test set. We

employed ten-fold cross-validation to train the model and

calculated the average results of the test sets from the ten

folds to evaluate the model’s performance.

For the graph structure constructed from the CPDB network,

after tuning the parameters, we found that in GCN, the number of

hidden layers is 2, with dimensions of 300 and 100, respectively.

The dimension of the GCN output layer is set to 16. In GAT, there

is one hidden layer with a dimension of 100, incorporating a multi-

head attention mechanism, with 5 heads in the hidden layer and

1 head in the output layer. The output layer of the GAT has a

dimension of 16. We concatenated the output vectors from GCN

andGAT to form a 32-dimensional vector, whichwas then fed into

an MLP. The MLP has one hidden layer with a dimension of 16.

Finally, the MLP outputs the probability that each node is

predicted to be positive, which corresponds to the probability

of each gene being a cancer driver gene.We ranked the genes based

on these probability values to identify candidate cancer driver

genes. During training, we used the Adam optimizer with a

learning rate of 0.001, a weight decay rate of 0.0005, and a

dropout rate of 0.5. We set the epochs to 2000 and used the

validation set loss as the criterion for early stopping.

Performance on PPI network

To demonstrate the necessity of using multiple PPI networks,

we conducted tests with varying numbers of PPI networks. The

results showed that when using a single PPI network, only a small

proportion of the top 300 genes predicted by MONet were

confirmed as known driver genes in the reference dataset.

Moreover, the performance varied significantly across different

networks, with the proportion of known driver genes reaching

38.7% for IRefIndex but 50.3% for STRING (Figure 2A),

indicating suboptimal overall performance. When multiple

PPI networks were used, and genes appearing in at least two

networks were selected as candidate driver genes, the proportion

of known driver genes identified was higher than that achieved

with a single network (Supplementary File S1). This

demonstrates that integrating multiple networks is more

advantageous for identifying driver genes.
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Figure 2B shows the trend in the number of known driver

genes identified by MONet when using 2–6 PPI networks, with

results for 2–5 networks represented as averages. It can be

observed that as the number of PPI networks increased, the

number of identified known driver genes also grew. This may be

attributed to the inclusion of additional protein-protein

interaction pathways from newly added networks, which are

potentially associated with driver gene functionality. However,

the growth rate gradually diminished, suggesting that increasing

the number of PPI networks does not always lead to continuous

performance improvement. Since MONet’s performance is

highly dependent on the quality of PPI networks, it is

significantly influenced by the accuracy and reliability of the

network data. With the ongoing advancements in medical

experiments, the diversity and quantity of PPI networks are

continuously expanding. Given MONet’s strong performance,

we believe it can be applied to a broader range of PPI network

structures, providing robust support for driver gene research.

To evaluate the capability of the proposed MONet method in

predicting cancer driver genes, we employ five performance

metrics: accuracy (ACC), AUROC, AUPR, F1 Score and

MCC. In our study, we train MONet method on six different

PPI networks and evaluate its performance on each network. By

training and evaluating on multiple networks, we can

comprehensively understand MONet’s generalization ability

and robustness. The performance metrics for MONet on each

PPI network are summarized in Table 2. These metrics will help

us thoroughly assess MONet’s effectiveness in predicting cancer

driver genes and provide a critical reference for further

experimental results.

Observing the table, it can be seen that on CPDB, MONet

performs well in terms of AUROC (0.8864) and AUPR (0.7781),

though its ACC (0.7909) is slightly lower compared to other

networks. On STRING, MONet demonstrates robust

performance, particularly excelling in AUPR (0.8069) and

achieving high AUROC (0.9119) and ACC (0.8125) values. Its

F1 Score (0.6862) and MCC (0.5774) reflect good alignment

between predictions and true labels. On Multinet, MONet

achieves exceptional performance, with one of the highest

AUROC (0.9360) values and strong AUPR (0.7825). The

F1 Score (0.6830) and MCC (0.6172) highlight its ability to

make balanced predictions. IRefIndex and IRefIndex (2015)

show relatively better performance in AUPR compared to

other metrics. PCNet emerges as the top-performing network,

with the highest ACC (0.9067), AUROC (0.9379), and MCC

(0.6456), along with a strong F1 Score (0.6942), reflecting its

robust and balanced predictions. Overall, our MONet algorithm

performs well on all six PPI networks.

Ablation experiment

MONet employed multi-omics data for predicting driver

genes. To examine whether the inclusion of multi-omics

features improves model performance, we conducted ablation

experiments. Specifically, we individually inputted single omics

FIGURE 2
Impact of different PPI networks on MONet performance. (A) Proportion of known driver genes among the predicted driver genes identified
using a single PPI network. (B) Trend in the number of known driver genes identified when using 2–6 PPI networks, with the results for 2–5 networks
represented as the average.

TABLE 2 Performance of MONet on each PPI network. ACC, AUROC,
AUPR, F1 score, and MCC values across six PPI networks.

PPI ACC AUROC AUPR F1 score MCC

CPDB 0.7909 0.8864 0.7781 0.6750 0.5445

STRING 0.8125 0.9119 0.8069 0.6862 0.5774

Multinet 0.8622 0.9360 0.7825 0.6830 0.6172

IRefIndex 0.8618 0.9053 0.7076 0.6258 0.5432

IRefIndex
(2015)

0.8058 0.8805 0.7525 0.7035 0.5740

PCNet 0.9067 0.9379 0.7700 0.6942 0.6456
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type features (namely, Mutation Features (MF), DNA

Methylation Features (METH), Gene Expression Features

(GE), and Copy Number Alteration Features (CNA)) into the

model, as well as combined features of two omics types (namely,

MF + METH, MF + GE, MF + CNA, METH + GE, METH +

CNA, GE + CNA), combined features of three omics types

(namely, MF + METH + GE, MF + METH + CNA, MF + GE

+ CNA, METH + GE + CNA), and all omics type features. The

experimental results are presented in Table 3.

Table 3 displays the performance comparison of MONet and

its variants in pan-cancer driver gene prediction. Firstly, we

observed that when various omics features were individually

applied to the model, multi-omics exhibited the best model

performance. Specifically, the combination of multi-omics

features achieved the highest scores in terms of ACC,

AUROC, and AUPR, with values of 0.7909, 0.8864, and

0.7781, respectively. This indicates that integrating multiple

omics data can better predict genes and improve model

performance. Next, we further compared the performance of

single omics features. Among single omics features, GE

performed the best in terms of AUROC, reaching 0.8711,

while CNA performed the worst in terms of ACC and AUPR,

with values of 0.7145 and 0.8055, respectively. This may reflect

the importance of gene expression data in gene prediction, and

the relatively weaker predictive ability of copy number alteration

features compared to other omics data. Subsequently, we

analyzed the combination effects of various omics type

features. We observed that the MF + METH combination

exhibited the best comprehensive performance in terms of

ACC, AUROC, and AUPR, with values of 0.7855, 0.8790, and

0.7689, respectively. However, the MF + METH + CNA

combination achieved the highest score in terms of AUPR,

reaching 0.7610, indicating that adding copy number

alteration features can improve the performance of gene

prediction models in certain scenarios.

Overall, integrating multiple omics data can significantly

improve the performance of gene prediction models, and the

combination of different omics features may have varying

degrees of impact on model performance.

Comparison with other methods

To further evaluate the performance of MONet, we selected

four evaluationmetrics, AUROC, AUPR, F1 Score andMCC. For

comparison, we chose four other algorithms to compare their

performance with MONet, including the EMOGI, MTGCN,

GCN, and GAT. The EMOGI and MTGCN method are both

graph neural network algorithms based on the integration of

multi-omics data, where EMOGI is based on GCN and predicts

cancer driver genes using multi-omics data, while MTGCN, also

based on GCN, is a multitask learning framework that

simultaneously optimizes node prediction and link prediction

tasks. The GCN and GAT algorithms apply the integrated multi-

omics data to GCN and GAT models, respectively, as in our

study. Using the experimental data from our study, we applied

the five algorithms to the CPDB network, and for the other four

algorithms, we followed the default parameter settings of their

original algorithms. For the results obtained with different

algorithms, we plotted ROC curves (Figure 3A) and PR curves

(Figure 3B) to compare their AUROC and AUPR values.

Additionally, bar charts were created to visualize the F1 Score

(Figure 3C) and MCC (Figure 3D) of the different methods.

Observing Figure 3, we find that MONet outperforms the

other four baseline methods on the CPDB network. The AUROC

of MONet reaches 0.8864, which is 0.0243 higher than the

relatively effective MTGCN algorithm and 0.0315 higher than

the least effective GCN. Comparing the area under the PR curves,

the advantage of MONet becomes more prominent, reaching

0.7781, surpassing the other four algorithms. MONet

outperforms other algorithms in terms of F1 Score (0.675)

and MCC (0.5445), demonstrating its superior ability to

balance precision and recall as well as to handle data

imbalance effectively. Compared to other methods, MONet

exhibits more balanced overall performance, making it a

reliable and effective tool for cancer driver gene identification.

Furthermore, comparing MONet, GCN, and GAT, it is evident

that MONet significantly outperforms GCN and GAT. This

improvement stems from the complementary nature of the

TABLE 3 The performance comparison of MONet and its variants in
driver gene prediction. Themulti-omics features includeMutation
Features (MF), DNA Methylation Features (METH), Gene Expression
Features (GE), and Copy Number Alteration Features (CNA).

Features ACC AUROC AUPR

MF 0.7708 0.8601 0.7497

METH 0.7547 0.8563 0.7242

GE 0.7480 0.8711 0.7351

CNA 0.7145 0.8055 0.6438

MF + METH 0.7855 0.8790 0.7689

MF + GE 0.7373 0.8300 0.6767

MF + CNA 0.7601 0.8639 0.7546

METH + GE 0.7761 0.8774 0.7430

METH + CNA 0.7399 0.8476 0.7098

GE + CNA 0.7668 0.8697 0.7399

MF + METH + GE 0.7601 0.8666 0.7352

MF + METH + CNA 0.7480 0.8717 0.7610

MF + GE + CNA 0.7413 0.8683 0.7537

METH + GE + CNA 0.7688 0.8714 0.7453

Multi-omics 0.7909 0.8864 0.7781
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new features derived from MONet’s concatenation, which

effectively integrates the global graph information captured by

GCN with the local neighborhood relationships emphasized by

GAT. This finding also validates the effectiveness of the ensemble

approach in the task of pan-cancer driver gene prediction.

Identifying novel cancer driver genes

Database comparison
The identification of cancer driver genes is crucial for

elucidating the mechanisms of tumorigenesis and cancer

progression. Here, we present the capability of MONet in

identifying novel cancer driver genes. Among the

376 candidate cancer driver genes identified by integrating six

PPI networks, 184 genes were validated against benchmark

datasets, accounting for approximately 49%. This indicates

that MONet has a high predictive accuracy and that the

selection of candidate driver genes is reasonable. In other

words, these 184 genes are known cancer driver genes, while

the remaining 192 genes are predicted cancer driver genes

identified by MONet. Next, we compared the remaining

192 newly predicted cancer driver genes with three

independent cancer gene sets, specifically from NCG, OncoKB

[32], and ONGene [33], ensuring no overlap with the known

cancer gene sets used for training MONet. Additionally, we

analyzed the newly predicted cancer driver genes using

CancerMine [34], a database that employs text mining and

regular updates to collect information on driver factors,

oncogenes, and tumor suppressors. The comparison results

are illustrated in Figure 4A.

The study results indicate that among the remaining

192 newly predicted cancer driver genes, over 58% have at

least one piece of evidence suggesting their potential as cancer

FIGURE 3
Comparison of MONet with other methods. (A) ROC curves and AUROC values of MONet, EMOGI, MTGCN, GAT, and GCN. (B) PR curves and
AUPR values of MONet, EMOGI, MTGCN, GAT, and GCN. (C) F1 Scores of MONet, EMOGI, MTGCN, GAT, and GCN. (D) MCC values of MONet,
EMOGI, MTGCN, GAT, and GCN.
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driver genes. Specifically, 3 genes are supported by all three

datasets (NCG, OncoKB, and ONGene), 33 genes are supported

by two datasets, 76 genes are supported by one dataset, and the

remaining 80 genes are considered new potential cancer driver

genes. Analysis based on the CancerMine database shows that

among these 80 new genes, 61 are implicated in one or more

aspects related to driver factors, oncogenes, or tumor

suppressors.

Ultimately, only 29 genes are not included in the four selected

reference sets of candidate cancer driver genes. Overall,

approximately 85% (163/192) of the newly predicted cancer

driver genes have at least one piece of evidence supporting

their potential as cancer driver genes.

Comparative analysis
Similar to MONet, we applied EMOGI, MTGCN, GCN, and

GAT to six PPI networks, selecting genes that ranked in the top

300 across at least two of the PPI networks for discussion. Our

results revealed that MONet predicted 37 novel driver genes that

did not overlap with those identified by other methods,

demonstrating MONet’s unique ability to uncover new driver

genes missed by other approaches (Figure 4B). Among these

novel driver genes, 29 have been supported by existing literature,

indicating their association with cancer progression

(Supplementary File S2). Among them, APOBEC2 may be

associated with nucleotide alterations in cancer-related gene

transcripts, potentially promoting carcinogenesis [35]. GDNF

is considered a growth factor that plays a crucial role in the

nervous system, affecting cell survival and differentiation.

Evidence suggests that GDNF can promote the survival and

spread of already occurring cancer cells in specific environments,

such as the leptomeninges [36]. Furthermore, PRELP is linked to

the onset, progression, and metastasis of colorectal cancer,

suggesting it may act as a promoter in cancer progression and

could be a potential therapeutic target or prognostic marker [37].

KEGG and GO enrichment analysis
Using the R package clusterProfiler (v4.10.0) [38], we found

that 181 KEGG pathways were significantly enriched (p < 0.05,

q < 0.05) among the cancer driver genes identified by MONet

(Supplementary File S3). The top 30 most significant pathways

are considered known or potentially related to cancer

(Figure 5A). For instance, pathways such as proteoglycans in

cancer (p.adjust = 2.04 × 10−42), human papillomavirus infection

(p.adjust = 3.66 × 10−28), prostate cancer (p.adjust = 1.86 × 10−25),

breast cancer (p.adjust = 9.30 × 10−24), and microRNAs in cancer

(p.adjust = 2.49 × 10−20) are well-known cancer pathways.

Additionally, the PI3K-Akt signaling pathway (p.adjust =

3.89 × 10−39) plays a crucial role in regulating cell growth,

survival, and metastasis, making it an attractive therapeutic

target in cancer due to the frequent deregulation of PI3K

pathway signaling [39]. The MAPK signaling pathway

(p.adjust = 1.88 × 10−22) is significant in regulating

cancer resistance and suggests that targeting this pathway

could be a potential therapeutic strategy for cancer

treatment [40].

Next, we mapped the 376 candidate driver genes identified by

MONet to GO terms (Supplementary File S4), including

biological processes (BP), cellular components (CC), and

molecular functions (MF). Our charts display the top 30 GO

terms (Figure 5B). Overall, these terms are associated with

processes such as cell death, cell differentiation, cell

FIGURE 4
The analysis of cancer driver genes predicted by MONet. (A) Among the cancer driver genes predicted by MONet, 49% are already known
cancer driver genes. For the newly predicted cancer driver genes, most have multiple sources of evidence supporting their potential as driver genes,
including candidate cancer genes from NCG, manually curated cancer genes from OncoKB, and literature-curated cancer genes from ONGene.
Specifically, 3 genes are supported by all three datasets, 33 genes are supported by two datasets, 76 genes are supported by one dataset, and
80 genes are newly identified by MONet. Based on the analysis from the CancerMine database, among these 80 newly identified genes, 61 genes are
implicated in one or more aspects related to driver factors, oncogenes, or tumor suppressors. (B) Venn diagram showing the overlap between
MONet and other methods. Thirty-seven genes were uniquely predicted by MONet.
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proliferation, cell activation, and immune system functions, all of

which play critical roles in cancer development.

Analysis of 29 newly predicted candidate
driver genes

For the 29 candidate driver genes newly predicted byMONet,

we conducted a search on the PubMed website1 and found that

22 of these genes are closely related to the processes of cancer

occurrence, development, and treatment. For instance, For

example, LNX1 has been identified as a negative regulator of

cancer stem-like cells (CSCs), playing a significant role in

regulating the stemness of colorectal cancer cells [41].

Overexpression of SNW1 has been confirmed to be associated

with poor prognosis in various types of cancers, with

upregulation observed in a subset of prostate cancer samples

[42]. COL4A4 is downregulated in lung adenocarcinoma and is

associated with various tumor microenvironment (TME)

parameters, immune therapy response, and drug resistance

[43]. Previous reports have also indicated differential

expression of COL4A4 in other tumors, correlating with

prognosis, tumor stemness, immune checkpoint gene

expression, and TME parameters. NID2, when demethylated

or overexpressed in lung cancer cells, leads to decreased cell

viability, proliferation, migration, and invasion, suggesting its

role in promoting cancer development [44]. Silencing

PTGER3 by siRNA in ovarian cancer cells is associated with

FIGURE 5
GO and KEGG enrichment analysis of 376 candidate driver genes. (A) Top 30 significantly enriched KEGG pathways. The horizontal axis
represents the ratio of genes in each enriched KEGG pathway, and the vertical axis represents significantly enriched pathways. (B) Top 10 significantly
enriched GO terms in biological processes (BP), cellular components (CC), and molecular functions (MF).

1 https://pubmed.ncbi.nlm.nih.gov/
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decreased cell growth, reduced invasiveness, cell cycle arrest, and

increased apoptosis, indicating PTGER3 as a potential

therapeutic target for chemotherapy-resistant ovarian cancer

with high levels of expression of certain oncogenic proteins

[45]. Additionally, genes like ACTA1 [46], COL4A3 [47],

A2M [48], ADRB2 [49], MYOC [50], among others, are

closely associated with cancer biomarkers, candidate

prognostic factors, and therapeutic targets.

Gene Expression Profiling Interactive Analysis 2 (GEPIA2)

[51] is an updated version of GEPIA used for analyzing RNA

sequencing data. It includes expression data from 9,736 tumor

samples and 8,575 normal samples obtained from The Cancer

FIGURE 6
Survival analysis. (A) Survival analysis of 29 genes using GEPIA2 reveals that low expression of KNG1, ACTN2, VCAM1, MYDN, COL6A2, and
ACTC1 is significantly associated with poor overall survival (OS), indicating that they are cancer risk factors (P < 0.05, HR > 1, group cutoff = median).
(B) The heatmap displays the logarithmic scale (log10) of hazard ratios for different genes. Red and blue blocks represent higher and lower risks,
respectively. Rectangles with borders indicate significant adverse and favorable outcomes in the prognostic analysis.
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Genome Atlas (TCGA) and the Genotype-Tissue Expression

(GTEx) project. In this study, GEPIA2 was employed to

conduct survival analysis on 29 candidate cancer driver genes,

with cancer types limited to 16 pan-cancer datasets. The survival

analysis using GEPIA2 revealed that low expression of six genes,

namely KNG1, ACTN2, VCAM1, MYDN, COL6A2, and

ACTC1, was significantly associated with poor overall survival

(OS) and represented cancer risk factors (P < 0.05, HR > 1, group

cutoff = median, (Figure 6A).

GEPIA2 conducts survival analysis based on gene or isoform

expression levels. For a given list of cancer types, it provides a

heatmap displaying survival analysis results for multiple cancer

types. We restrict the six genes obtained just now to individual

cancers and plot a heatmap to observe the relationship between

these genes and the corresponding cancers (Figure 6B).

Specifically, red squares indicate higher risk. We can observe

that most gene blocks in the figure are red. Additionally, in

certain cancers, high gene expression is associated with shorter

survival time (P < 0.05, HR > 1), as indicated by the red-bordered

blocks in the heatmap. We can observe many such squares in the

figure. These findings suggest that these genes are likely

associated with cancer. To explore the relevance of these

genes to cancer, we conducted a literature search. Previous

studies have indicated that the loss of ACTN1 inhibits cancer

cell proliferation, invasion, and migration, while ACTN1 itself

can promote tumor growth and metastasis [52]. COL6A2 has

been identified as a central gene in risk prediction models for

BLCA, with qRT-PCR results showing downregulation [53]. In

KIRC, high expression of COL6A2 in patients correlates with

poorer survival and may be associated with adverse outcomes

and distant metastases [54]. COL6A2 has also been identified as

one of the genes in classifiers distinguishing LUSC from other

cancer types [55]. Based on these findings, we speculate that the

aforementioned genes could serve as potential biomarkers for

their corresponding cancers, aiding in auxiliary diagnosis and

prognosis assessment, or could become candidate targets for

targeted therapy, thus contributing to the development of new

personalized treatment strategies.

Analysis of gene-drug target associations

The improvement in cancer survival rates is primarily driven

by advancements in early diagnosis and novel drug treatments

[56]. Therefore, identifying the molecular targets of each drug

and discovering new drug targets in cancer are crucial for

enhancing cancer treatment efficacy.

The Drug-Gene Interaction Database (DGIdb v5.0.6, 2) [57]

integrates reported literature on drug-gene interactions and

includes data from four sources: Gene Sources, Drug Sources,

Interaction Sources, and Potentially Druggable Sources,

comprising 47 databases. It provides information on the

associations between genes and their known or potential drug

interactions. DGIdb contains over 10,000 genes and 15,000 drugs

involved in over 50,000 drug-gene interactions or belonging to

one of 43 potentially druggable gene categories. Drugs targeting

specific genes may be closely associated with the development

and progression of cancer, and may even represent potential

anticancer drugs.

In this study, we examined the newly predicted

candidate driver genes using the DGIdb database. The

data were limited to the NCIt database in Drug Sources

and five databases in Interaction Sources (ChEMBL, CIViC,

DTC, PharmGKB, TTD). Among the 29 newly predicted

candidate driver genes, 19 were found to be associated

with drugs in the DGIdb database, with 7 found in the

NCIt database and 16 in the remaining five

databases (Figure 7).

According to the literature supported by the DGIdb

database, there is empirical evidence indicating the

relevance of newly discovered genes to the occurrence,

development, and treatment of cancer. For instance, van

Huis-Tanja et al. conducted a clinical correlation study and

found that specific genetic markers may influence the efficacy

of oral 5-fluoropyrimidine prodrug capecitabine in treating

metastatic colorectal cancer. In patients receiving single-agent

capecitabine therapy, the rs4702484 variant located near the

ADCY2 gene and the MTRR gene may be slightly associated

with a decreased progression-free survival (PFS) in

homozygous wild-type patients [58]. Additionally, the

transferrin receptor TfR, which is upregulated in certain

cancer cells, has emerged as a potential therapeutic target.

A targeted drug against TfR is Transferrin Receptor-Targeted

Anti-RRM2 siRNA CALAA-01 (NCI Thesaurus Code:

C78450). It is a proprietary nanoparticle formulation

targeted at the transferrin receptor, containing non-

chemically modified small interfering RNA (siRNA) against

the M2 subunit of ribonucleotide reductase (RRM2), with

potential anti-tumor activity. This drug binds to and releases

anti-RRM2 siRNA via the transferrin receptor (TfR), silencing

RRM2 expression, thereby inhibiting the assembly of

ribonucleotide reductase (RR) and resulting in cell

proliferation suppression. Furthermore, a targeted drug for

ACTC1, DEXAMETHASONE, is commonly used in cancer

treatment to alleviate side effects induced by cancer therapy,

control cancer-related inflammation and immune responses

as part of cancer treatment. However, several clinical studies

have found an association between the use of dexamethasone

and a decrease in overall survival rate in patients. Preclinical

studies in mouse glioma models have shown a reduction in

tumor-infiltrating lymphocytes after dexamethasone

treatment [59].2 https://www.dgidb.org/
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Multi-omics feature analysis

To further validate the reliability of utilizing multi-omics

features for identifying cancer driver genes, we systematically

compared driver genes selected from the CGC database with

neutral genes (NGs) obtained from DORGE [60] (3,417 genes in

total). We evaluated each feature across different cancer types to

assess whether there are significant differences between CGC and

NGs genes.

Specifically, we extracted four types of features from multi-

omics data and conducted a comparative analysis between CGC

and NGs based on these features. To evaluate the distributional

differences between the two groups of genes, we performed

Wilcoxon rank-sum tests and calculated p-values for each

feature to assess statistical significance. Typically, a p-value

less than 0.05 is considered significant. Using the CPDB

network as an example, we visualized the feature distributions

between CGC and NGs through a heatmap (Figure 8A), box

plots, scatter plots, and half-violin plots (Figure 8B). The analysis

results for other networks are provided in the Supplementary

Files S5-1, S5-2.

As shown in Figure 8, among the 64 features across 16 cancer

types, the majority of features exhibit p-values below 0.05,

indicating significant differences, with only six features failing

to reach significance. This demonstrates that the selected four

multi-omics features are effective in distinguishing CGC from

NGs. Among them, the MF and METH features show significant

differences across all 16 cancer types, whereas the GE feature fails

to show significance in the PRAD cancer type, and the CNA

feature does not achieve significance in CESC, KIRP, LUSC,

READ, and THCA cancer types. These findings suggest that most

features exhibit significant differences between CGC and NGs,

implying that these features may hold potential biological

relevance in the identification of cancer driver genes.

Discussion

In this study, we introduced MONet, an integrated

algorithm based on GCN and GAT, for the identification of

cancer driver genes. MONet combines four pan-cancer omics

data types (gene mutations, DNA methylation, gene

expression, and copy number variations) with PPI networks

to predict cancer driver genes. By integrating six PPI

networks, MONet identified 376 candidate cancer driver

genes. Among them, 184 were already known cancer driver

genes, while most of the remaining 192 newly predicted cancer

driver genes were supported by other datasets or research

methods. Among the 192 newly predicted genes, we compared

these genes with the driver genes identified by EMOGI,

MTGCN, GAT, and GCN across the six PPI networks. Our

analysis revealed that 37 genes were uniquely predicted by

MONet. Notably, 29 genes, including APOBEC2, GDNF, and

PRELP, have been confirmed by existing literature to be

associated with cancer development and progression.

We observed that approximately 85% (163/192) of the newly

predicted cancer driver genes were supported by evidence

suggesting their potential as cancer driver genes.

FIGURE 7
The results of the detection of candidate driver genes in the DGIdb database. (A) Left figure displays the number of candidate driver genes
retrieved from the five databases within Interaction Sources, the NCIt database, and those not found in the DGIdb database, along with their
proportions relative to the total number of candidate driver genes. (B) Right figure illustrates the overlap of candidate driver genes from the five
databases within Interaction Sources (ChEMBL, CIViC, DTC, PharmGKB, TTD).
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FIGURE 8
Analysis of multi-omics features in individual cancer types. (A) Wilcoxon rank-sum test p-values across 16 cancer types, with bold borders
highlighting squares where the p-value is greater than 0.05. (B) Box plots, scatter plots, and half-violin plots for theMF feature across 16 cancer types.
Each plot compares CGC and NGs, displaying the mean values for both groups and the p-values from the Wilcoxon rank-sum test.
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The innovation of this study lies in the effective integration of

GCN andGAT algorithms into a unified framework. TheMONet

model combines the complementary strengths of these two

algorithms: GCN excels at capturing global graph structures,

while GAT emphasizes the importance of local neighborhoods

through its attention mechanism. By integrating multi-omics

data with PPI networks to fully explore the potential information

of multi-omics features and gene interactions, thereby improving

the effectiveness of identifying cancer driver genes.

Results showed that the MONet model outperformed baseline

models in terms of the area under the receiver operating

characteristic (ROC) curve and the area under the precision-

recall (PR) curve, demonstrating excellent performance and

stability across different PPI networks. By conducting ablation

experiments on the multi-omics data used by MONet, we

verified that using multi-omics data can improve the prediction

performance of driver genes. Additionally, we provided evidence

support for newly predicted driver genes by comparing with

existing driver gene databases, performing KEGG enrichment

analysis and GO enrichment analysis, and consulting existing

literature. For genes that could not be validated, we conducted

survival analysis and drug target analysis to support their potential

as cancer driver genes. Definitive evidence indicates the

involvement of newly discovered genes to the occurrence,

development, and treatment of cancer. We ultimately confirmed

the reliability of the selected multi-omics data and can be used to

explore and identify novel cancer driver genes, which provides a

foundational assurance for our study.

Although this study has achieved significant results in

identifying cancer driver genes, there is still room for

improvement. For example, when constructing the graph

structure based on PPI networks, we did not consider the issue

of edge weights. Future research could incorporate edge weight

information to develop more accurate cancer driver gene

identification algorithms to further improve identification

effectiveness. Our study demonstrates that increasing the number

of PPI networks can enhance the performance of driver gene

identification; however, the marginal benefits gradually diminish.

Future research could focus on exploring optimal strategies for PPI

network combinations to achieve a better balance between

performance and resource utilization. Furthermore, as

biotechnology advances, higher-quality PPI networks will further

improve the reliability of driver gene identification, providing greater

possibilities and opportunities for optimization in future studies.
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