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Abstract

Blood-based biomarkers for motor neuron disease are needed for better

diagnosis, progression prediction, and clinical trial monitoring. We used

whole blood-derived total RNA and performed whole transcriptome analysis

to compare the gene expression profiles in (motor neurone disease) MND

patients to the control subjects. We compared 42 MND patients to 42 aged and

sex-matched healthy controls and described the whole transcriptome profile

characteristic for MND. In addition to the formal differential analysis, we

performed functional annotation of the genomics data and identified the

molecular pathways that are differentially regulated in MND patients. We

identified 12,972 genes differentially expressed in the blood of MND patients

compared to age and sex-matched controls. Functional genomic annotation

identified activation of the pathways related to neurodegeneration, RNA

transcription, RNA splicing and extracellular matrix reorganisation. Blood-

based whole transcriptomic analysis can reliably differentiate MND patients

from controls and can provide useful information for the clinical management

of the disease and clinical trials.
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Impact statement

The present study analysed the gene expression on the whole transcriptome scale in

the blood of motor neuron disease (MND) patients. We demonstrated that MND patients

have highly specific gene expression patterns or fingerprints, and many genes are

differentially expressed in the blood of MND patients. This finding significantly

impacts our understanding of the role of the differentially expressed genes in the
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pathogenesis of MND. These findings present the utility of RNA-

base blood biomarkers for neurological diseases and in precision

clinical management.

Introduction

Motor neurone disease (MND) is a group of chronic sporadic

and familial disorders characterised by progressive degeneration

of motor neurons [1]. The disease is caused by the degeneration

of the upper, lower, or both motor neurones. The prognosis of

MND depends upon the age at onset and the area of the central

nervous system affected [2]. Based on the site of origin and the

severity of neurological involvement, four main subtypes of

MND have been described: amyotrophic lateral sclerosis

(ALS), progressive bulbar palsy (PBP), progressive muscular

atrophy (PMA), and primary lateral sclerosis (PLS) [3].

ALS is the most common form of MND. ALS and MND are

commonly used interchangeably or as synonyms. ALS is also

known as Lou Gehrig’s disease or Charcot disease [1]. ALS is an

adult-onset, progressive, neurodegenerative disorder involving

the large motor neurons of the brain and the spinal cord. It

produces a characteristic clinical picture with weakness and

wasting of the limbs and bulbar muscles, leading to death

from respiratory failure within 5 years.

The degeneration of motor neurons is irreversible, and

apparently, it starts many years before the clinical features

emerge. Therefore, reliable biomarkers from easily accessible

tissues are needed for earlier diagnosis and better prediction

of the progression of the disease. The molecular pathology

underlying MND relies on genetic variants described in at

least 100 different genes to date and on the overlay of the

transcriptomic changes [4, 5]. The pathogenesis of the disease

involves oxidative stress, inflammation, ER stress with protein

aggregation, autophagy and aberrant RNA processing [5, 6].

Familial and sporadic forms of MND can be distinguished

based on the evidence of genetic variants and family history

[7]. However, only about 20% of MND cases can be explained by

known genetic variations [8].

In addition to the well-known genes and their variants, we

recently described an unexpectedly large number of exonisation

of SINE-VNTR-Alu repeats (SVAs) in the motor cortex [9].

SVAs are known to alter splicing, and several of these elements

have been associated with disease through such mechanisms [10,

11]. This indicates the significant role that noncoding or dark

genomes can play in the pathogenesis of complex diseases.

Moreover, analysis of the whole transcriptome gives an

excellent functional opportunity to explore the molecular

changes at different stages of diseases, making it a suitable

tool for biomarkers [10]. Indeed, transcriptomic analysis can

be performed from any biological material, like blood or

cerebrospinal fluid and can be used for different conditions

[5, 12, 13]. Transcriptomic analysis helps to understand the

effect of DNA variants, especially for the splicing-

altering variants.

Post-mortem tissue analysis for chronic diseases is always

an option to identify molecular patterns in the affected tissues,

and this can help to classify the different pathogenic

mechanisms [6]. However, using peripheral tissues, like

blood, skin, or saliva, allows molecular profiling during the

disease’s progression and real-life monitoring of pathogenic

changes [12, 14, 15]. In the case of MND, several previous

studies have been performed to analyse the transcriptomic

profile of the blood [16, 17]. In one example, whole blood-

derived RNA (PAXgene tubes) was used for microarray

analysis; in another, PBMC-derived RNA was used for RNA

sequencing. These studies have their limitations. In the case of

the microarray analysis, only a certain number of genes that are

printed in the microarray can be analysed, and while the

number is high (29,830 unique and suitable probes), the

TABLE 1 General characteristics of the study cohort.

Group Motor neurone disease (MND) Healthy controls (HC)

Total, na 42 42

Male, n 13 13

Female, n 29 29

Total mean age, y (sd) 65.6 (9.3) 65.7 (9.4)

Male mean age, y (sd) 64.6 (11.6) 64.3 (11.4)

Female mean age, y (sd) 66.2 (8.4) 66.2 (8.4)

MND duration, m (sd) 18.2 (19.2) —

Male duration, m (sd) 16.6 (24.5) —

Female duration, m (sd) 19.0 (16.8) —

an, number of subjects; y, years; m, months; sd, standard deviation.
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whole transcriptome sequencing gives information entire

transcriptome (60,230 elements) [17]. Moreover, RNA-seq

has a better dynamic range in detecting gene expression

therefore the power to detect differential expression is better.

PBMC-derived samples only include monocytes and do not

contain neutrophils, basophils, and eosinophils. While

basophils and eosinophils are only a small subset of all

immune cells (0–2% and 1–7%, respectively), neutrophils

make up a majority of circulating nucleated blood cells

(45–75%) [18]. Therefore, analysing PBMC samples will give

only partial information about the RNA changes in the blood

and this has been shown in many studies [18–20]. The present

study aimed to perform whole transcriptome analysis from the

whole-blood (Tempus tubes) derived RNA and to identify the

TABLE 2 Differentially expressed genes in the blood of MND patients compared to healthy controls. The top 30 genes are shown sorted by the FDR-
adjusted p-value.

Ensembl ID logFC p-adj Gene name Gene symbol

ENSG00000202354 6.49 1.25E-136 RNA, Ro60-associated Y3 RNY3

ENSG00000201098 7.26 4.63E-119 RNA, Ro60-associated Y1 RNY1

ENSG00000282885 3.29 3.44E-111 novel transcript lnc-NEMF-1

ENSG00000091986 −6.81 4.27E-101 coiled-coil domain containing 80 CCDC80

ENSG00000011465 −7.48 9.56E-99 decorin DCN

ENSG00000118523 −4.88 5.04E-97 cellular communication network factor 2 CCN2

ENSG00000164692 −7.26 1.58E-95 collagen type I alpha 2 chain COL1A2

ENSG00000108821 −6.43 1.04E-93 collagen type I alpha 1 chain COL1A1

ENSG00000128591 −5.83 8.20E-93 filamin C FLNC

ENSG00000138131 −5.55 1.70E-87 lysyl oxidase like 4 LOXL4

ENSG00000113739 −7.73 2.01E-86 stanniocalcin 2 STC2

ENSG00000199568 9.05 1.07E-80 RNA, U5A small nuclear 1 RNU5A-1

ENSG00000248527 3.20 6.12E-80 MT-ATP6 pseudogene 1 MTATP6P1

ENSG00000087245 −6.83 6.87E-80 matrix metallopeptidase 2 MMP2

ENSG00000186340 −7.55 2.94E-79 thrombospondin 2 THBS2

ENSG00000115414 −5.71 1.45E-78 fibronectin 1 FN1

ENSG00000150459 −0.79 3.01E-77 Sin3A associated protein 18 SAP18

ENSG00000212283 5.02 4.23E-77 small nucleolar RNA, C/D box 89 SNORD89

ENSG00000111799 −6.88 1.03E-75 collagen type XII alpha 1 chain COL12A1

ENSG00000199631 7.52 2.52E-73 small nucleolar RNA, C/D box 33 SNORD33

ENSG00000144810 −6.44 3.84E-73 collagen type VIII alpha 1 chain COL8A1

ENSG00000164761 −6.80 1.42E-72 TNF receptor superfamily member 11b TNFRSF11B

ENSG00000115963 −6.65 2.38E-70 Rho family GTPase 3 RND3

ENSG00000115461 −7.69 9.88E-70 insulin like growth factor binding protein 5 IGFBP5

ENSG00000126214 0.95 1.05E-63 kinesin light chain 1 KLC1

ENSG00000186660 −0.54 1.50E-63 ZFP91 zinc finger protein, E3 ubiquitin ligase ZFP91

ENSG00000142156 −2.90 1.73E-62 collagen type VI alpha 1 chain COL6A1

ENSG00000238961 5.94 3.17E-62 small nucleolar RNA, H/ACA box 47 SNORA47

ENSG00000166923 −7.07 2.09E-61 gremlin 1, DAN family BMP antagonist GREM1

ENSG00000281501 1.98 5.08E-61 SEPSECS antisense RNA 1 SEPSECS-AS1
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whole blood transcriptomic profile by comparing MND

patients to the age and sex-matched healthy controls.

Materials and methods

Study cohort

Between 2013 and 2018, a total of 84 participants (42 MND

patients and 42 healthy control patients without any chronic

diseases) were enrolled in the study and signed written informed

consent. Inclusion criteria for MND patients were the diagnosis

of probable or definitive MND based on El Escorial Criteria and

the absence of a positive family history.

For the healthy controls, we excluded patients with any chronic

diseases, especially any neurologic, rheumatological, haematological,

or oncological conditions. In addition, treatment with biologics or

chemotherapy was also excluded. A white blood cell (WBC) count

and C-reactive protein (CRP) weremeasured in every health control

to exclude any underlying inflammatory condition.

The blood samples were collected into Tempus Blood RNA

tubes and stored according to the manufacturer’s instructions.

The research was conducted with the approval of the University

of Tartu Research Ethics Committee, and all participants

provided written informed consent. The comprehensive

patient selection process leveraged hospital records,

neurologist consultations, and the Estonian Health Insurance

Fund’s national health data repository.

The whole blood was collected from 42 MND patients and

42 healthy controls using Tempus Blood RNA collection tubes

(Thermo Fisher Scientific). Neurologists recruited MND patients,

and the subtype of theMNDwas confirmed. Healthy controls were

recruited among the visitors referred to the blood analysis who did

not have chronic diseases. The control samples were ideal controls

without any neurological condition or major chronic illness and

were age- and sex-matched to the MND group (complete

information is given in Supplementary Table S1).

Whole transcriptome analysis and
functional annotation

The RNA was isolated from whole blood using a Tempus

Spin Isolation Kit (Thermo Fisher Scientific). After initial quality

control and quantification (A260/280 ratio, RIN number). RNA

was used for the total RNA sequencing necessary for the whole

transcriptome analysis.

Total RNA sequencing was performed in all 84 samples at the

Genomics Core Facility at Murdoch University, Perth, WA.

Illumina paired-end 2 × 100bp read length using NovaSeq 6000.

FIGURE 1
Heatmap of the 100 differentially expressed genes (FDR < 0.05, logFC > |0.07|) with the highest statistical significance. Before clustering,
z-scores of the normalised expression data were calculated and a complete method for hierarchical clustering using Euclidean distance. Samples
with “ALS” designate the MND group, and “KT” designate healthy controls.
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The NovaSeq Control Software v1.7.5 and Real-Time Analysis

(RTA) v3.4.4 performed real-time image analysis. RTA performs

real-time base calling on the NovaSeq instrument computer. The

Illumina DRAGEN BCL Convert 07.021.624.3.10.8 pipeline

generated the sequence data. The FASTQ files were analysed

using salmon 1.10.3 by using the reference genome

GRCh38 [21]. Salmon counts were imported to the R studio

using the tximeta package [22]. Differential whole transcriptome

analysis was performed with the DESeq2 package [23]. No fold-

change filtering was initially applied, but the False Discovery Rate

(FDR) was set at 0.05 to adjust for multiple testing, and this

corresponds to the 1.05 fold change threshold in our experiment.

The functional annotation of the differential gene expression

was performed with the packages ReactomePA, clusterProfiler and

DOSE [24–26]. Principal component analysis was performed by

using pcaExplorer and factoextra packages. The heatmap clustering

was performed with the ComplexHeatmap package based on the

z-scores of the normalised expression data and using Euclidean

distance for complete linkage agglomerative clustering.

Pair-wise analysis

To perform a pair-wise analysis of individual genes between

MND and healthy controls, we applied the two-tailed Wilcoxon

rank-sum test implemented in the function compare_means() of

the package ggpubr [27]. We generated a list of all known MND

genes using the OMIM catalogue and identified 97 genes that are

directly connected to the MND or its subtypes. This list extracted

normalised counts from the salmon quant files and made

boxplots with pairwise comparisons. Plots were generated

using ggplot2 version 3.5.1 and ggpubr version 0.6.0 packages.

Statistical analysis was performed with R software version

4.4.0 and RStudio Version 2023.06.0 + 421.

Results

Description of the study cohort

The general characteristics of the population are reported in

Table 1. The median age was 65.6 (standard deviation 9.3) years,

and most subjects were female (69%). No patient reported a

positive family history of MND; therefore, all the participants

had sporadic forms, and all patients received standard MND

therapy with riluzole. The most frequent clinical subtype was the

classic ALS (86%). Spinal symptoms were present the most

commonly (60%).

Whole blood RNA sequencing
RNA sequencing resulted in at least 50 million paired 150 bp

reads per sample, and all reads had Phred score higher than 30.

FIGURE 2
Volcano plot of the whole transcriptome data from the blood on controls and MND patients The default cut-off for log2FC is >|2|, and the
default for P-value is 10e-6. Dashed lines represent these values. Red dots represent genes meeting both cut-off criteria; green dots meet only the
log2FC cut-off, and blue dots indicate genes meeting only the P-value cut-off.
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Salmon was used to quantify transcript abundances from fastq

files. Tximeta was used to import the resulting quant files, and

gene-level summarisation was used for the DESeq2 workflow.

Healthy controls were compared to the MND RNA-seq results,

and we identified 12,972 genes differentially expressed (FDR <
0.05) in the blood of MND patients. The top 30 differentially

regulated genes are shown in Table 2. Out of these 12,972 genes,

8,008 were upregulated, and 4,964 were down-regulated

(Supplementary Table S2, sheet 1). A heat map with all

12,972 genes is shown as Supplementary Figure S1, and it

shows a clear separation of MND patients from the healthy

controls. A smaller heatmap with the top 100 genes is shown in

Figure 1, and a volcano plot is shown in Figure 2. The heatmap

with 100 genes shows a consistent and clear separation of the

MND from the healthy controls. This remarkable finding shows

that a disease highly specific to the central nervous system can be

differentiated from controls by the blood transcriptome profile.

When we used the FDR 0.05 filtering threshold, we detected

the genes Log2 FC 0.07 threshold, which transforms to an

expression difference of 1.05-fold change (20.07). We then

applied an additional fold change threshold to filter the

dataset further. When we applied FC threshold of 1.1

(log2 FC 0.13), we got 12,839 differentially expressed genes

(DEGs, Supplementary Table S2, sheet 2). With the FC

threshold of 1.5 (log2 FC 0.59), we got 6,403 DEGs

(Supplementary Table S2, sheet 3), and finally, applying the

threshold of FC 2.0 (log2 FC 1.0), we got 3,286 DEGs

(Supplementary Table S2, sheet 4).

The principal component analysis identified that disease

status, PC1 was responsible for 43.75% of the variance and gene

expression profiles clearly separated MND patients from

healthy controls (Figure 3A). The genes with the highest

differential expression (the lowest FDR values) had a very

high correlation with the PC1 (Figure 3B, “Dim.1” is PC1)

and the scree plot (Figure 3C) verified that most of the variation

in our study cohort is explained by three principal components,

PC1, PC2 and PC3. PC1 is disease status, and we were not able

to identify the essence of the PC2 and PC3. These are neither

the sex (Supplementary Figure S2, Panels A) nor age

(Supplementary Figure S2, Panels B and C) of the patients,

nor the type of the disease (Supplementary Figure S2, Panels D

and E). It could be that PC2 and PC3 are some other factors

reflecting the heterogeneity of the pathophysiology

of the MND.

FIGURE 3
A combined plot of principal component analysis. Panel (A) is the PC1 and PC2 plot showing good separation of study cohort by PC1 and the
highest impact of disease status (43.75% of variance). Panel (B) is a correlation plot of the expression of the top significant genes with PC1 (Dim.1),
these genes all are correlated with theMND/control status. Panel (C) is a scree-plot showing that in our study three components (PC1, PC2, and PC3)
were responsible for almost all the variance. Panel (D) shows the loading of different genes in the PC1.
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Pairwise analysis of known MND genes

In addition to the whole transcriptome analysis, we performed a

pairwise (MND versus healthy controls) study of 97 known MND

genes (a list of the genes is provided in Supplementary Table S3) and

30 top-regulated genes from the DESeq2 analysis. All results are

shown in Supplementary Figure S3, and partial results are in Figures

4, 5. Interestingly, some MND-related genes are upregulated (ALS2,

NEK1, ATXN2), while others are downregulated (SOD1, UBQLN2

aka ALS15) in patients. In addition, FUS and ANXA11 were

upregulated, and ANG was downregulated in patients (Figures

5A–F). Moreover, the DESeq2 top genes RNY3, RNY1, and

ENSG0000282885 were highly upregulated in patients with

almost no expression in control subjects (Figures 5G–I). At the

same time, other DESeq2 top genes, CCDC80, DCN, and CCN2,

were highly expressed in controls, and their expression was almost

missing in patients’ blood (Figures 5J–L). These examples indicate

that there are many high fold-change difference genes with almost

no expression in one group and very high expression in another, and

these genes have very high potential to be a transcriptional

biomarker for the MND.

The pairwise analysis of all 97MND genes indicated that some

well-known MND genes weren’t differentially expressed in the

blood (boxplots are in Supplementary Figure S3). Out of all

97 genes, 38 (39%) of them AMFR, AR, ATX3, BICD2,

C9orf72, CHRNA3, DAO, DCTN1, DNAJC7, ERBB4,

HNRNPA2B1, IGFALS, KIF5A, LGALSL, LRP12, MAPT,

MOBP, NEFH, OPTN, PAH, PON1, PON2, PON3, PRPH,

PSEN1, SARM1, SCYL1, SETX, SLC1A2, SLC52A3, SMN1,

SMN2, SQSTM1, TARDBP, TRPM7, TUBA4A, VRK1, VSX1,

were not differentially expressed between patients and controls.

Fourteen genes of these 38 genes were not expressed in blood.Most

of these genes that were not differentially expressed had excellent

expression levels in the blood. AMFR has an expression level of

1,800 normalised counts, C9orf72 has 1,500 normalised counts,

PSEN1 has an expression at 2,500 normalised counts,TARDBP has

an average gene expression of 1,600 normalised counts, SQSTM1

has an expression level of 3,100 normalised counts. Therefore, all

these genes are highly expressed in the whole blood, but their

expression level is not dependent on the disease status.

Functional annotation of differentially
expressed genes

Functional annotation of differentially expressed genes

indicated statistically significant activation of several human

disease pathways (Table 3, full version provided in

Supplementary Table S4). Remarkably, three

neurodegenerative diseases were at the top of the table of the

KEGG pathways: Parkinson’s disease, prion disease, and

amyotrophic lateral sclerosis (Figure 6). In addition, several

pathways involved in the pathogenesis of neurodegeneration

were also activated. These included protein processing in the

endoplasmic reticulum, proteasome, lysosome and ubiquitin-

mediated proteolysis.

FIGURE 4
A combined boxplot of five MND-related genes and their expression levels in the blood of MND patients and controls gives comparative blood
expression levels for these selected genes. Pairwise statistical comparisons are shown in Figure 5 and in Supplementary Figure S3.
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Reactome and GSEA analyses use more canonical pathways

(Supplementary Tables S5, S6). Reactome identified statistically

significant enrichment of the mRNA splicing and transcription-

related pathways in combination with cellular energetics

pathways (mitochondria and respiratory electron transport) to

be affected (Figure 7). GSEA analysis (Figure 8) identified

statistically significant enrichment of sensory perception,

olfactory signalling and many pathways related to the

extracellular matrix reorganisation (collagen degradation,

elastic fibre formation, assembly of collagen fibres).

In summary, KEGG pathway analysis found statistically

significant activation of the ALS pathway together with other

neurodegeneration pathways. The findings from Reactome and

GSEA added more details to the KEGG finding and identified

several cellular pathways that can give a mechanistic

understanding of the pathogenesis of MND.

Discussion

The current study presented a whole transcriptome

analysis of the whole blood RNA from MND patients

compared to age and sex-matched healthy controls

(Figure 9). As a main finding, we identified 12,972 genes

differentially expressed; 8,008 were upregulated, and

4,964 were downregulated in the blood of MND patients.

Most remarkably, the heatmap based on these 12,972 genes

was highly specific and separated MND from healthy controls.

Therefore, we can conclude that the identified differentially

expressed genes are specific for the MND status. This doesn’t

mean that all of these genes are directly related to the

pathogenesis of MND but instead reflects the complexity of

the disease, where pathogenic changes are mixed with

compensatory changes. However, this still shows that

MND, while a CNS-specific disease, has remarkable

changes in the blood transcriptomics, and blood could be a

perfect source for the diagnostic biomarkers for MND.

The number of differentially expressed genes seems to be

unreasonably high, but van Rheenen et al., used Illumina bead

chips with only 29,830 unique and suitable probes, and they

also identified 7,038 genes to be differentially expressed [17].

This number is very close to the one that we identified if we

take into account that in our study, we used RNA-seq that

analysed the expression of 60,230 genes, and our sample is

perfect sex and age-matched, which means more power. In

addition, in our own previous study, we identified

FIGURE 5
Pairwise comparison (Wilcoxon rank-sum test) and boxplots of six MND-related genes (A–F) and six of the most significant differentially
expressed genes (G–L) in the blood of MND patients and controls. The Y-axis shows gene expression in normalised counts.
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4,824 differentially expressed genes in the CSF of MND

patients [5]. Therefore, the number of differentially

expressed genes between MND patients and healthy

controls seems to be high, but also other studies have

found a similarly high number of differentially

expressed genes.

In addition, the number of differentially expressed genes

remains high even after applying different filtering criteria.

While we initially did not use any specific fold-change filtering,

the statistically significant FDR only detected genes with at least

a 1.05 fold change difference. When we applied more stringent

FC filtering thresholds, the number of differentially expressed

genes reduced, but it was still remarkable, with 6,403 genes for

FC 1.5 and 3,286 genes with the threshold of FC 2.0. This

indicates a robustly specific gene expression profile in the blood

of MND patients, making it a reliable source for potential RNA-

based biomarkers.

The genes that we identified differentially expressed

correlate quite well with the results of the previously

published similar studies. We identified all the genes found

TABLE 3 KEGG pathways that are enriched in the blood transcriptome of MND patients.

Category Subcategory ID Description Gene
ratio

Bg
ratio

P-adjusted

Human Diseases Neurodegenerative disease hsa05012 Parkinson disease 165/3,781 271/8,843 2.36E-07

Human Diseases Cardiovascular disease hsa05415 Diabetic cardiomyopathy 130/3,781 205/8,843 2.36E-07

Human Diseases Neurodegenerative disease hsa05020 Prion disease 167/3,781 278/8,843 3.14E-07

Human Diseases Neurodegenerative disease hsa05014 Amyotrophic lateral sclerosis 212/3,781 371/8,843 5.97E-07

Metabolism Energy metabolism hsa00190 Oxidative phosphorylation 92/3,781 138/8,843 5.97E-07

Organismal Systems Environmental adaptation hsa04714 Thermogenesis 143/3,781 235/8,843 5.97E-07

Genetic Information
Processing

Folding, sorting and degradation hsa04141 Protein processing in endoplasmic
reticulum

109/3,781 170/8,843 5.97E-07

Human Diseases Neurodegenerative disease hsa05022 Pathways of neurodegeneration - multiple
diseases

265/3,781 483/8,843 1.07E-06

Human Diseases Cancer: overview hsa05208 Chemical carcinogenesis - reactive oxygen
species

136/3,781 226/8,843 2.72E-06

Human Diseases Neurodegenerative disease hsa05010 Alzheimer disease 217/3,781 391/8,843 5.09E-06

Human Diseases Neurodegenerative disease hsa05016 Huntington disease 177/3,781 311/8,843 7.00E-06

Genetic Information
Processing

Translation hsa03013 Nucleocytoplasmic transport 72/3,781 108/8,843 1.14E-05

Genetic Information
Processing

Folding, sorting and degradation hsa03050 Proteasome 36/3,781 46/8,843 2.46E-05

Cellular Processes Transport and catabolism hsa04142 Lysosome 82/3,781 132/8,843 0.0001

Genetic Information
Processing

Folding, sorting and degradation hsa04120 Ubiquitin mediated proteolysis 87/3,781 142/8,843 0.0001

Genetic Information
Processing

Translation hsa03010 Ribosome 102/3,781 172/8,843 0.0002

Genetic Information
Processing

Chromosome hsa03082 ATP-dependent chromatin remodeling 73/3,781 117/8,843 0.0003

Cellular Processes Cell growth and death hsa04110 Cell cycle 94/3,781 158/8,843 0.0003

Genetic Information
Processing

Replication and repair hsa03030 DNA replication 28/3,781 36/8,843 0.0004

Human Diseases Infectious disease: bacterial hsa05132 Salmonella infection 138/3,781 251/8,843 0.0009

Metabolism Glycan biosynthesis and
metabolism

hsa00510 N-Glycan biosynthesis 37/3,781 53/8,843 0.0010

Human Disease Neurodegenerative disease hsa05017 Spinocerebellar ataxia 84/3,781 144/8,843 0.0016

Bg, background.
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in the paper by Garau et al, Table 5 [28]. In addition, we also

compared our genes to the study of van Rheenen et al and found

that many genes overlapped between these studies [17].

Therefore, our results are generally in very good

concordance with previously published studies.

Not all MND-specific genes were differentially expressed.

C9orf72 is a gene with the highest genetic impact in MND, but

it was not differentially expressed. C9orf72 is highly expressed

in the blood with an average normalised count of 1,500.

Therefore, the low expression level cannot explain the lack

FIGURE 6
KEGG pathway “Amyotrophic Lateral Sclerosis”with the blood RNA gene expression data. Genes in green are downregulated, and genes in red
are upregulated.
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of significant differences. A similar observation is true for the

SQSTM1, TARDBP, OPTN and PSEN1, all genes with high

expression in the blood, but no difference in expression

between MND and controls (Supplementary Figure S2). It

is hard to understand why these genes did not show

differential expression, but these genes have a mutation-

specific effect, and in our cohort, we may not have

mutations in these genes. This might be unlikely, as we

have identified pathogenic repeat polymorphism for

C9orf72 in one patient who has 1,000 repeats with a length

of over 6,000 bp.

We saw significant differences in many MND-related genes.

For instance, SOD1 was downregulated in MND patients.

Similarly, ANG and ACSL5 were significantly downregulated

in MND patients compared to controls. It is somewhat

surprising that SOD1 is downregulated in MND patients as it

is also assumed to form aggregates in sporadic patients [29–31].

At the same time, we couldn’t find a significant difference for the

OPTN gene, another gene that has clear implications in MND

pathology and had a very high expression level in blood. It is

remarkable that while its aggregates are common for familial and

sporadic MND forms, we could not detect significant differences

in the expression of OPTN [32].

Our study is certainly not the first to analyse MND

patients’ transcriptomes. One study analysed gene chips

from whole blood RNA, finding 2,943 genes differentially

expressed [17]. These authors did not find SOD1, C9orf72,

SQSTM1, TARDBP, or OPTN to be differentially expressed;

this study got similar results to ours. Other published studies

have used selected cell fractions, like PBMCs or

lymphoblastoid cells [16, 28, 33, 34]. The cell fractionation

studies identified a much smaller number of differentially

expressed genes, and their results are difficult to compare to

our results as the approaches are quite different. However, one

recent study used a machine learning approach to compare

brain and blood transcriptomic data and identified three

distinct clusters of the MND subtypes with potentially

different pathological mechanisms [6]. These three

pathogenic subtypes didn’t describe any particular MND

mutation but rather the biological pathways that involved

particular differentially expressed genes. The present study is

based on blood transcriptome, and we have identified similar

differentially expressed genes. While we couldn’t identify

three distinctive subtypes, the heatmap of the

12,972 differentially expressed genes separated MND

patients from controls. Moreover, for MND patients, we

saw at least two clusters with specific gene expression

profiles. Therefore, our study results seem to match the

results of the study by Marriott et al [6]. The main finding

is that gene expression profiles and RNA analysis could be

FIGURE 7
Dotplot of Reactome analysis based on the fold-change expression differences in the blood of MND patients. Top 15 the most significantly
upregulated pathways are shown.
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used as a source for biomarkers and can have clinical utility in

differentiating patients with distinctive pathogenetic

mechanisms.

We identified that the most up-regulated gene, with logFC 23,

inMNDblood is theAPOBEC3DE gene (Volcano plot in Figure 2).

APOBEC3DE is located at 22q13.1 and is a cytidine deaminase

gene family member. This gene is one of the APOBEC cluster

family on chromosome 22 [35, 36]. APOBEC proteins are part of

innate immunity, and they inhibit retroviruses by deaminating

cytosine residues in retroviral cDNA [37]. Interestingly,

APOBEC3DE also inhibits retrotransposition of the long

interspersed element-1 (LINE-1) by interacting with ORF1p, a

protein encoded by LINE-1 [38]. LINE-1 has been implicated in

the pathogenesis of MND, and therefore, APOBEC3DE finding

seems very relevant as they suppress LINE1 activity [39]. In

addition, APOBEC proteins can induce somatic mutations into

genomic DNA and promote the development of different diseases

[40].APOBEC proteins are also involved in the clearance of foreign

DNA from human cells, implicating their role in the cellular

defence system against mutations that make them very plausible

in connection with the MND [41, 42]. Loss of the nuclear TDP-43

due to the cytoplasmic aggregation of the TDP-43 is associatedwith

decondensation of the chromatin around LINE1 elements and

increased activation or LINE1 with their retrotransposition.

Upregulation of the APOBEC3DE might be an endogenous

defence mechanism as it is a part of the innate response to

retroviral activation [43].

Many differentially expressed genes are involved in splicing

and RNA processing: RNU5A-1, RNU1-1, RNY3, and RNY1, to

name some. Interestingly, these RNA synthesis and splicing-

related genes are all upregulated in MND samples and not

expressed in the blood of control samples at all. These are

genes that have a high potential to become a blood biomarker

for MND or help to predict the progression of the disease. While

it is not clear how these genes participate in the pathogenesis of

MND, splicing mutations and genes participating in splicing

involvement in MND have been shown in many previous studies

[44–46]. The results from blood transcriptomics were very

uniform and showed the upregulation of several genes related

to RNA synthesis and splicing, as also indicated in Figure 6.

The function of downregulated genes is more diverse, with

possible common denominators being the extracellular matrix

(ECM) organisation and remodelling (Figure 7). Reduced

expression of CCDC80, COL1A1, COL1A2, MMP2, and

TNFRSF11B indicates the ECM reorganisation also found

in GSEA enrichment analysis (Figure 2). The expression of

these genes was very low in MND samples and very high in the

blood of controls, showing a highly significant logFC for these

genes. Similarly, IGFBP5 almost lacked expression in the

MND group and had very high expression in the blood of

FIGURE 8
Dotplot of GSEA analysis based on the fold-change expression differences in the blood of MND patients. Top 15 the most significantly
upregulated pathways are shown.
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control subjects. Overexpression of the IGFBP5 in mice has

induced axonopathy and sensory deficits similar to those seen

in diabetic neuropathy [47]. The motor axon degeneration in

these mice resembled the pathology seen in MND [47].

IGFBP5 has been shown to promote neuronal apoptosis in

the experimental models and also in patients with spinal

muscular atrophy and ALS [48–50].

When discussing these results, we have to consider the effect of

MND itself on gene expression and not only the effect of genes on

the disease. Most likely, the genes that are significantly

downregulated and have very low expression levels in MND

patients are the genes that are affected by the MND condition.

The cluster of ECM organisation genes indicates the degeneration

of the neurones and are the genes directly impacted by the MND.

Stanniocalcin 2 (STC2) and thrombospondin 2 (THBS2) are genes

that are related to organogenesis and tissue differentiation [51–53].

Interestingly, the proposed function of these genes is related to

collagen genes and MMPs. Therefore, it seems that MND affects

tissue reorganisation, and the genes that are required for tissue

plasticity are downregulated. We can speculate that genes are not

causative for the disease but are affected by the chronic disease

condition and lead to enhanced degeneration of neurones.

Conclusion

We performed whole transcriptome analysis from the

whole blood RNA and identified 12,972 genes differentially

expressed between MND patients and controls. These gene

expression changes have the potential to be used as

biomarkers to diagnose MND and possibly to evaluate the

progression of the disease and drug responsiveness in clinical

trials. RNA-based biomarkers have excellent potential as they

are quickly responding biomarkers and can be analysed by

standardised methods. In conclusion, we were able to identify

the characteristic blood gene expression profile of

MND patients.
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