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Abstract

Pharmacogenomics (PGx) holds the promise of personalizing medical

treatments based on individual genetic profiles, thereby enhancing drug

efficacy and safety. However, the current landscape of PGx research is

hindered by fragmented data sources, time-consuming manual data

extraction processes, and the need for comprehensive and up-to-date

information. This study aims to address these challenges by evaluating

the ability of Large Language Models (LLMs), specifically Llama3.1-70B, to

automate and improve the accuracy of PGx information extraction from the

FDA Table of Pharmacogenomic Biomarkers in Drug Labeling (FDA PGx

Biomarker table), which is well-structured with drug names, biomarkers,

therapeutic area, and related labeling texts. Our primary goal was to test the

feasibility of LLMs in streamlining PGx data extraction, as an alternative to

traditional, labor-intensive approaches. Llama3.1-70B achieved 91.4%

accuracy in identifying drug-biomarker pairs from single labeling texts

and 82% from mixed texts, with over 85% consistency in aligning

extracted PGx categories from FDA PGx Biomarker table and relevant

scientific abstracts, demonstrating its effectiveness for PGx data

extraction. By integrating data from diverse sources, including scientific

abstracts, this approach can support pharmacologists, regulatory bodies,

and healthcare researchers in updating PGx resources more efficiently,

making critical information more accessible for applications in

personalized medicine. In addition, this approach shows potential of

discovering novel PGx information, particularly of underrepresented

minority ethnic groups. This study highlights the ability of LLMs to
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enhance the efficiency and completeness of PGx research, thus laying a

foundation for advancements in personalized medicine by ensuring that

drug therapies are tailored to the genetic profiles of diverse populations.
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Impact statement

This study demonstrates the utility of Large Language

Models (LLMs), specifically Llama3.1-70B, in automating

pharmacogenomic (PGx) data extraction, addressing the

limitations of traditional manual methods that are labor-

intensive and slow to update. By achieving high accuracy in

identifying drug-biomarker pairs and integrating diverse data

sources, this work offers a practical solution for pharmacologists,

regulatory agencies, and healthcare professionals to streamline

PGx database updates. With automated extraction processes,

LLMs reduce the time and effort required to incorporate new

PGx insights, potentially enabling updates at a frequency and

scale that were previously unfeasible. This capability is critical for

translating PGx research into actionable, personalized treatment

guidelines that reflect the genetic diversity of patient populations,

ultimately advancing equity in personalized medicine.

Introduction

Pharmacogenomics (PGx) represents a pivotal advancement

in personalized medicine, tailoring drug therapies based on an

individual’s genetic profile [1, 2]. By understanding how genetic

variations influence drug response, PGx enables healthcare

providers to optimize treatment efficacy and minimize adverse

drug reactions [3, 4]. This personalized approach holds the

potential to significantly enhance patient outcomes, especially

in the management of complex diseases such as cancer,

cardiovascular disorders, and mental health conditions [5].

The importance of PGx lies in its ability to provide more

precise and effective treatments. For instance, variations in

genes encoding drug-metabolizing enzymes, drug transporters,

and drug targets can greatly influence a patient’s response to

certain medications. These genetic differences can determine

whether a patient will benefit from a particular drug,

experience no effect, or suffer from adverse reactions [6, 7].

Despite its promise, the clinical implementation of PGx has

been slower than anticipated, partly due to the complexity of

drug-gene interactions and the need for extensive empirical

evidence [8]. As our understanding of genetic factors in drug

response continues to grow, PGx is poised to become a standard

component of healthcare, revolutionizing the way treatments are

tailored to individual patients. Various databases and resources

for PGx information have been established to improve the

accessibility and utility of this data. Key resources include the

Pharmacogenomics Knowledgebase (PharmGKB), which curates

information about how genetic variations affect drug response

[9]. The pharmacogenomics database (PGxDB) database offers a

comprehensive platform for integrating PGx data, allowing

researchers to explore drug, target, and disease relationships

[10]. Additionally, the FDA has released the Table of

Pharmacogenomic Biomarkers in Drug Labeling (Table of

Pharmacogenomic Biomarkers in Drug Labeling | FDA),

providing drug and PGx biomarker pairs found in given drug

labeling sections which serves as the primary data source for this

study. Meanwhile, PGx-related research articles containing new

findings and conclusions are crucial for timely updating of

current PGx information. For instance, relevant abstracts can

be retrieved from PubMed or other resources. These resources

are essential for advancing the field of PGx and ensuring that

clinicians have the necessary tools to apply genetic insights to

patient care.

Large Language Models (LLMs) like Llama3.1 represent a

significant advancement in natural language processing, offering

powerful capabilities for extracting and analyzing complex data

from diverse sources. These models, trained on vast amounts of

text, can understand and generate human-like language, making

them highly effective for tasks such as data extraction,

summarization, and information synthesis [11, 12]. Recent

studies have demonstrated the potential of LLMs in various

fields, including PGx. For instance, LLMs have been shown to

significantly improve the efficiency and accuracy of data extraction

processes, and AI assistant showed improved efficacy in answering

user questions [13]. By leveraging these models, researchers can

automate the extraction of PGx information, overcoming

challenges related to the time-consuming and labor-intensive

nature of manual data processing.

In this study, we focused on evaluating the capabilities of

LLMs, particularly Llama3.1-70B [14, 15], for PGx information

extraction from various data sources. Our goal was to enhance

the current PGx information collection by improving its accuracy

and incorporating recent studies to fill in gaps and ensure the

data is comprehensive. It was essential to ensure that the model

could reliably identify and extract key PGx data, such as drugs

and related biomarkers, from diverse sources with a remarkable

degree of precision. The model demonstrated a high accuracy

rate of 91.4% when extracting information from structured texts

in the FDA PGx Biomarker table and 82% from the mixed texts,

underscoring its effectiveness in handling different types of data.
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A key aspect of our study was the integration of diverse

resources, including well-structured databases like the FDA PGx

Biomarker table, alongside relevant scientific abstracts. By

combining these sources, we were able to cross-validate and

enrich the PGx data, ensuring a more comprehensive, accurate,

and up-to-date dataset, particularly with insights related to

underrepresented populations and novel drug-biomarker

interactions. The results can better support personalized

medicine initiatives and enhance the overall effectiveness of

pharmacogenomic applications.

Materials and methods

Data processing for the FDA PGx
biomarker table

The FDA PGx Biomarker table (06/2023 version) was

downloaded in PDF format and converted into one Excel

table. All the special characters were then removed from the

texts. Biomarkers with multiple gene names or aliases were

further processed to ensure all the entries were retained. For

instance, for the listed biomarker ERBB2 (HER2), either

ERBB2 or HER2 identified by the model was considered a

correct identification. To ensure there was sufficient content

from which the model could extract information, labeling

texts in the FDA PGx Biomarker table with fewer than

300 words were removed from the analysis.

Prompt and model settings

The Llama3.1-70B-Instruct model [14, 15] was employed in this

study for the PGx information extraction and summarization. The

model was run using its default settings. We utilized the

“client.chat.completions.create” function to interact with the

model and obtain the responses. To guide the model effectively,

we set the system context as: “You are an expert in pharmacogenetics

and assistme in extracting information from texts.”This context was

designed to align the model’s responses with the specialized nature

of the task. The PGx texts from the PGx Biomarker table that

required information extraction, along with specific questions, were

provided in the prompt as user content. For example, a typical

prompt would be: “Please review this labeling text and identify the

pairs of drug and biomarker clearly mentioned. Output the pairs in

‘drug-biomarker’ format. Please try to give me both the generic name

and brand name of the drug.” As a result, the model may identify

multiple drug-biomarker pairs from the query texts, andwe consider

the extraction correct if the listed pair is included in the results.

The prompt we used to extract PGx information from the

label texts was “Based on this content [texts for information

extraction], answer the following questions step-by-step in short

answers, only about the drug [drug name] and biomarker

[biomarker name] as a pair. Then please generate a horizontal

form table with the following items: Phenotypes/Genotypes:

Identify the phenotypes (drug response influenced) or genotypes

(genetic variants) associated with the biomarker. Frequency by

Ethnicity: Provide the frequencies of the identified phenotypes or

genotypes by ethnicity. Reason for PGx Labeling: State the reason

for pharmacogenomic labeling of the biomarker. ADRs Associated

with Biomarker: Identify adverse drug reactions related to the

biomarker. Gender Differences: Indicate whether the biomarker is

influenced by gender (Yes/No). Ethnicity Differences: Indicate

whether drug response differs by ethnicity (Yes/No). Asian

Stats: Provide the phenotype or genotype frequency of the

biomarker in the Asian population. If no data is available,

write ‘No data.’ Black/AA Stats: Provide the phenotype or

genotype frequency of the biomarker in the Black population. If

no data is available, write ‘No data.’ Hispanic Stats: Provide the

phenotype or genotype frequency of the biomarker in the Hispanic

population. If no data is available, write ‘No data.’ Polymorphism:

Identify the genotype of the biomarker that influences drug

response. Summary: Categorize the information using one or

more keywords from ‘Therapeutic Use,’ ‘Dosing,’ ‘Drug

Response,’ ‘Metabolism,’ and ‘Ethnicity-Specific’.”

Generation of mixed texts

To mimic the real-world scientific texts, which often discuss

multiple drugs and biomarkers, we generated mixed texts by

combining the labeling texts associated with two different drug-

biomarker pairs from the FDA PGx Biomarker table. Each labeling

text record was divided into five groups by randomly determining

where to break the text, always ensuring the breaks occurred at the

end of a sentence. This approach preserved the original sequence

of sentences within each group. To create a mixed text, we selected

these ten groups, five from each of two different segmented

records, and merged them. This process allowed us to generate

new, coherent mixed texts while blending information from two

distinct drug-biomarker pairs (Supplementary Figure 1).

PubMed abstracts query

The PubMed API and Entrez library [16] were used to

retrieve relevant abstracts based on a given drug-biomarker

pair. We requested the title or abstract of one publication to

contain both the drug and biomarker. To further narrow down

the candidates to ensure the relevance of the collected abstracts,

we also required that one of the keyworks, including PGx,

pharmacogenomics, minority, variants, mutations, and

population, be presented in either the title or abstract.

Additionally, if no abstract could be found based on the initial

query, we then searched for those abstracts that mentioned only

the drug and biomarker. Considering the limitation of prompt
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length of the Llama3.1-70Bmodel, we collected up to five abstracts

for each PGx labeling record. The same prompt was used to extract

PGx information from abstracts and from labeling texts.

Calculation of concordance rate

In this study, we used the concordance rate to measure the

extent to which PGx categories (Therapeutic Use, Dosing, Drug

Response, Metabolism, and Ethnicity-Specific) identified from

the PGx labeling texts were also represented in the relevant

abstracts for the same drug-biomarker pair. The concordance

rate was calculated using the following formula:

Concordance rate

� #of PGx categories common to both PGx labeling texts and relevant abstracts
#of PGx categories identified in PGx labeling texts

This metric provided a clear and quantitative assessment of

the overlap between the information in the PGx labeling texts and

the scientific abstracts, allowing us to evaluate the consistency and

completeness of the extracted data across different sources.

Results

High accuracy achieved with structured
labeling texts in the FDA PGx
biomarker table

We first evaluated the model’s ability to identify drug and

biomarker pairs from the labelling texts in the FDA PGx

Biomarker table. Each entry contains the drug name, associated

biomarker, therapeutic area, and labeling texts. Our analysis

focused on the therapeutic area of Oncology, which had the

largest number of records in the table (Figure 1A). We excluded

records with non-gene biomarkers such as chromosome alterations

or hormone receptors. As a result, out of 210 drug-biomarker pairs,

the model successfully identified 192 pairs, achieving an

identification accuracy of 91.4% (Figure 1B). Among these,

36 pairs required manual review and confirmation due to

discrepancies arising from variations in nomenclature, such as

the use of generic versus brand names of drugs or biomarker

aliases. For example, the model identified the biomarker MKI67 as

Ki-67, where MKI67 refers to the gene encoding the Ki-67 protein,

indicating both terms represent the same entity. After manual

validation, these 36 pairs missed by exact name matching were

confirmed as correctly identified, contributing to the overall count

of 192 accurate predictions (Figure 1C).

By manually reviewing the 18 records where the model failed

to identify the drug-biomarker pairs, we found that most of them

had short labeling texts in the FDA PGx Biomarker table,

sometimes without the drug or biomarker even mentioned,

leaving no way for the model to extract them. Another

example was the drug brand name LONSURF, which was

mentioned in the labeling text column of the PGx Biomarker

table, but the listed drug names were tipiracil and trifluridine, the

generic names of this drug. For this particular record, the model

failed to identify either the brand or generic names.

Challenges with mixed texts

As Llama3.1-70B demonstrated high accuracy in identifying

drug-biomarker pairs from a section of labeling text, we further

challenged the model with mixed texts from two records. This

FIGURE 1
(A) The frequency of the Therapeutic Area in the FDA PGx Biomarker table. Majority of the records were related toOncology. (B) The percentage
of listed drug-biomarker pairs identified correctly by themodel in structured andmixed texts, respectively. (C) The number and partition of the drug-
biomarker identification results in structured texts.
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approach aimed to mimic the complex content often

encountered in scientific studies, where discussions typically

involve multiple drugs and biomarkers. To create a mixture

testing set, we selected two records, each related to different

drugs, and split them by sentences. These sentences were then

merged to form a single paragraph, which was subsequently fed

to the model (Methods, Supplementary Figure 1). This setup was

designed to evaluate the model’s ability to accurately extract

relevant drug-biomarker pairs from a less structured and more

intricate text, closely resembling real-world scientific

documentation.

From the 156 records where the model correctly identified

the drug-biomarker pairs without manual confirmation, we

generated 50 mixture texts for testing (Methods). Using the

same prompt and manual validation, we observed that the

model could accurately identify at least one drug-biomarker

pair for the testing records in 41 out of 50 (82%) cases

(Figure 1B). Specifically, the model identified all the two drug-

biomarker pairs in 32 records (64%), indicating a relatively high

level of accuracy even with mixed and more complex text inputs.

However, some cases posed significant challenges for the model.

For instance, fusion names like BCR-ABL1 were occasionally

difficult for the model to identify correctly. Additionally, there

were instances where the model misidentified drugs due to the

complexity of the text. In one particular case, a record included

two drugs: ALIMTA (the brand name for pemetrexed) and

pembrolizumab, which was mentioned as a comparator drug

in the study. The primary drug for this record was pemetrexed,

but the model incorrectly identified pembrolizumab as the paired

drug. Notably, the drug-biomarker pair for this challenging case

had been correctly identified in previous assessments without the

interference of another record.

We further evaluated the mis-identified drug-biomarker

pairs in the mixture texts by examining cases where the

model incorrectly linked the drug and biomarker from two

different records. As a result, ten mis-linked drug-biomarker

pairs were identified from nine records. The results suggest that

the presence of unrelated content may confuse the model,

highlighting the need for careful consideration when handling

complex and mixed information in texts.

Extraction of PGx information related to
minority groups

Pharmacogenomics information is crucial for understanding

how genetic variations influence drug responses across different

population groups. Many PGx studies highlight the role that

ethnic differences may play in drug efficacy and safety, with some

of these findings reflected in labeling documents. Unique genetic

profiles that may significantly impact responses to medications

have been observed among minority groups, though these

profiles remain underexplored. Despite growing awareness of

genetic diversity, many minority populations continue to be

underrepresented in PGx research, contributing to gaps in

personalized medicine.

In this study, we collected 178 records from the FDA PGx

Biomarker table containing terms such as “American,” “Asian,”

“Caucasian.” For each labeling text, we tasked the model to extract

PGx information related to race or ethnicity. Key information

extracted included the presence of ethnicity differences, frequency

of genetic variants by ethnicity, reasons for PGx labeling, and

adverse drug reactions (ADRs) associated with biomarkers (as

detailed in Table 1). The model demonstrated its effectiveness by

accurately identifying crucial details, such as the phenotypes of Poor

Metabolizers (PM) and Extensive Metabolizers (EM) for the

tolterodine-CYP2D6 pair. It correctly highlighted that the

tolterodine labeling indicates approximately 7% of Caucasians

and 2% of African Americans were poor metabolizers in that

study. It is important to acknowledge that this labeling uses

outdated terminology. The terms “White” and “Black/African

American” are now preferred. This differentiation is vital for

understanding the potential risks of adverse reactions, like QT

prolongation, in specific populations (Table 1).

We assessed the model’s accuracy in determining whether

there were “ethnicity differences” in the labeling text column.

The model was asked to answer a Yes/No question (Table 1)

based on whether any information on ethnicity difference was

found in the texts (Methods). Of the 178 records analyzed,

94 contained information explicitly stating ethnicity

differences. However, some records mentioned the inclusion

of diverse minority groups in studies but did not discuss or

conclude any differences among these groups. For example, a

labeling might state “56 of the subjects were male, 61 were White,

20 were Black or African American, 8 were Hispanic or Latino”

but if no comparisons or outcomes were discussed, it should be

marked as having no ethnicity difference.

We then manually reviewed the records classified by the model

as having no ethnicity difference, identifying any false negatives.

Impressively, the model achieved 100% accuracy in correctly

identifying records that explicitly stated ethnicity differences. This

finding underscores the model’s reliability in detecting ethnicity-

related PGx information and highlights the importance of ensuring

accurate representation and consideration of minority groups in

PGx research. This work illustrates the value of using LLMs to

systematically and accurately identify PGx information across

diverse populations. With appropriate data, LLMs have the

potential to retrieve important PGx insights for minority groups

from diverse published sources, contributing to more inclusive and

equitable healthcare practices.

Validation of extracted PGx information

The extracted data, encompassing details about drug-

biomarker pairs, genetic variations, and ethnicity-specific
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information, plays a vital role in personalized medicine, which

requires high accuracy. While verifying straightforward

elements identified by the model, such as the presence or

absence of ethnicity differences, is relatively easy, evaluating

the detailed PGx information extracted from the texts is

challenging due to its complexity. The intricacies involved in

interpreting genetic data and its clinical implications require

careful consideration. Manually verifying the extracted

information would be impractical given the large volume

and complexity of the data. Therefore, we implemented a

systematic validation process using predefined PGx

categories to evaluate the accuracy and consistency of the

extracted information. This approach ensured a thorough

and efficient assessment, allowing us to confirm the

reliability of the model’s outputs.

Particularly, when we tasked the model with extracting

PGx information from the labeling texts in the FDA PGx

Biomarker table, we also required a summary of each record

using predefined keywords, including Therapeutic Use,

Dosing, Drug Response, Metabolism, and Ethnicity-Specific

(Table 1). For each ethnic PGx record, we collected up to five

PubMed abstracts that contained the drug-biomarker pair in

the title or abstract. To address concerns that abstracts might

focus on different aspects and to narrow down the search to

more relevant studies, we included additional keywords such as

pharmacogenomics, PGx, and minority, in the PubMed query

(Methods). This approach increased the chances of retrieving

abstracts that provided the necessary PGx details, ensuring a

thorough and focused validation process.

As a result, 137 out of 178 ethnic records had at least one

abstract found in PubMed that contained the drug-

biomarker pairs. The Llama3.1-70B model was then tasked

again to tag each individual abstract with the predefined PGx

information categories. By comparing the categories from

the FDA PGx Biomarker table with those from the relevant

abstracts, we evaluated the accuracy and consistency of the

extracted information, ensuring alignment with external

authoritative sources. A matched PGx category indicates

that the particular drug-biomarker pair was studied by

different research groups and that similar findings were

concluded in the PGx field.

Among the 178 ethnic records in the FDA PGx Biomarker

table, 125 discussed Drug Response, making it the most

frequently mentioned category (Figure 2A). Additionally, we

found a high consistency in that 78 out of 94 records (83%)

identified with Ethnicity Differences were categorized as

Ethnicity-Specific. In contrast, only 29 records were related to

Dosing. However, the abstracts we collected, which involved the

same drugs and biomarkers, exhibited different frequency

patterns for these PGx categories (Figure 2A). The lower

frequency of ethnicity-specific data in the abstracts suggests

that this aspect may not be a major focus in the studies

we collected.

We then calculated the PGx categories concordance rate,

defined as the percentage of the categories identified in PGx

labeling that were also covered by those from relevant

abstracts. To assess the consistency of the extracted

information, we compared the highest concordance rate

based on a single abstract and the rate based on the

aggregated abstract set. The median consistency was over

85% (Figure 2B), indicating high accuracy of the PGx

information extracted by the LLM. This cross-validation

not only confirms the reliability of the model’s extraction

capabilities but also highlights the robustness of our

methodology in integrating and validating pharmacogenomic

data across diverse sources.

TABLE 1 An example of the PGx information extracted from the FDA PGx Biomarker table related to the give drug-biomarker pair of Tolterodine-
CYP2D6.

Pair Tolterodine-CYP2D6

Phenotypes/Genotypes Poor metabolizers (PM), Extensive metabolizers (EM)

Frequency by Ethnicity Approximately 7% of Caucasians, approximately 2% of African Americans

Reason for PGx Labeling Increased risk of QT prolongation and higher serum concentrations of tolterodine in poor metabolizers

ADRs Associated with Biomarker QT prolongation, increased risk of cardiac arrhythmias

Gender Differences No

Ethnicity Differences Yes

Asian Stats No data

Black/AA Stats Approximately 2%

Hispanic Stats No data

Polymorphism CYP2D6 poor metabolizers have a slower rate of tolterodine metabolism, resulting in higher serum concentrations

Summary Metabolism, Dosing, Drug Response, Ethnicity-Specific
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No big difference was observed between the highest and

aggregated concordance rates (Figure 2C), suggesting that

individual abstracts are sufficiently comprehensive in covering

the relevant PGx categories. The approach we used successfully

retrieved abstracts that were well-aligned with the information

we were interested in from the FDA PGx Biomarker table,

FIGURE 2
PGx categories summarized from the FDA PGx Biomarker table and relevant scientific abstracts. (A) The frequency of predefined PGx categories
summarized by Llama3.1-70B for the 178 ethnic records from the FDA PGx Biomarker table. (B) The concordance rate of PGx categories between the
FDA PGx Biomarker table and abstracts. The highest rate based on a single abstract and the rate based on an aggregated abstract set were compared.
(C) A comparison of the highest and the aggregated concordance rate for each individual record.

TABLE 2 An example of the PGx information extracted from the FDA PGx Biomarker table and relevant abstracts collected from PubMed for
Tolterodine-CYP2D6.

Pair Tolterodine-CYP2D6

Phenotypes/Genotypes Extensive metabolizers (EM), Poor metabolizers (PM), Intermediate metabolizers (IM), Ultra-rapid metabolizers (UM), Variants:
CYP2D6*2, CYP2D6*10, CYP2D6*92, CYP2D6*93, CYP2D6*94, CYP2D6*95, CYP2D6*96, F164L, F219S, D336N, E215K

Frequency by Ethnicity CYP2D6 poor metabolizers: 5-10% in Caucasians, 1-2% in Asians, No data for other ethnicities

Reason for PGx Labeling Variability in metabolism leading to differences in drug response and adverse reactions

ADRs Associated with Biomarker Increased risk of adverse reactions in PMs due to higher plasma concentrations. Decreased efficacy in UMs due to lower plasma
concentrations

Gender Differences No

Ethnicity Differences Yes, CYP2D6 allele frequencies vary among ethnicities

Asian Stats CYP2D6*10: 51.4% (Japanese), 40.9% (Chinese) * CYP2D6 poor metabolizers: 1-2%

Black/AA Stats No data

Hispanic Stats No data

Polymorphism Variants: CYP2D6*2, CYP2D6*10, CYP2D6*92, CYP2D6*93, CYP2D6*94, CYP2D6*95, CYP2D6*96, F164L, F219S, D336N,
E215K

Summary Metabolism, Drug Response, Ethnicity-Specific
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ensuring that the abstracts are relevant and valuable for

validating the PGx information.

The findings indicate that we can use these abstracts

complementarily with the labeling texts to potentially

extract additional PGx information for certain drug-

biomarker pairs. As shown in Table 2, we asked the model

the same questions based on the integrated texts of the four

relevant abstracts (PMIDs: 28087463, 24619889, 22277677,

14606931). Additional PGx information associated with

ethnic groups of Japanese and Chinese were found in

these abstracts.

Discussions

While it is relatively straightforward to validate the

extraction of certain PGx items from structured texts, such

as drug and biomarker names from labeling sections,

assessing the overall quality and completeness of the

extracted information from more variable sources poses

significant challenges. Unlike structured data, where

predefined formats facilitate comparison and validation,

publications and reports vary widely in focus and detail,

complicating direct comparison of PGx information across

different sources. To address this challenge, we employed a

strategy where the model was instructed to tag the extracted

texts with predefined categories, enabling a more systematic

comparison. This tagging approach offers an initial method

for aligning information across sources; however, we

recognize that these categories may require further

refinement or customization based on the specific content

and objectives of different studies. Our results demonstrated

that Llama3.1-70B achieved high accuracy in extracting drug

and biomarker pairs from structured labeling texts,

particularly when biomarkers were listed as gene or protein

names. However, the model encountered difficulties when

extracting less common biomarker names, such as “hormone

receptors,” which were excluded from the main analysis due

to lower extraction accuracy. This limitation highlights the

importance of prompt engineering and model tuning for

specific use cases. Tailoring prompts to explicitly account

for uncommon biomarkers or providing additional context

within the prompt could improve the model’s ability to

accurately identify and extract these entities, an approach

that warrants further exploration.

Identifying drug-biomarker pairs in mixed texts, where

multiple records are combined, presents a more complex

challenge for LLMs. Our study found that while Llama3.1-70B

performed well with structured labeling texts, its accuracy

decreased when processing mixed texts, likely due to the

increased ambiguity and variety of content. This challenge

would likely increase further with full-text publications, where

drug-biomarker relationships are not always clearly delineated.

To address these complexities, future studies could be benefit

from a targeted approach, such as instructing the model to focus

on specific drug-biomarker pairs to enhance extraction accuracy.

In preliminary tests, the model was able to accurately identify

relevant information from mixed texts when a specific drug-

biomarker pair was targeted, suggesting that targeted prompts

could improve accuracy in more complex texts.

Our findings demonstrate that LLMs like Llama3.1-70B can

efficiently support the extraction of PGx information from

structured sources, such as the FDA PGx Biomarker table,

providing a foundation for integrating valuable data from

scientific abstracts and potentially, with further refinement,

from more complex sources like full-text publications. This

automated approach can reduce the time and effort required

for initial data extraction, improving the completeness of PGx

databases by streamlining the process. However, we recognize

that integrating LLM-extracted data directly into regulatory or

clinical decision-making frameworks would require extensive

validation and quality control, including human oversight, to

ensure accuracy and relevance.

Implementing a structured workflow that leverages LLMs

for routine extraction of PGx data could support the initial

stages of database updates. Such a process would involve

combining LLM-extracted insights with manual review and

verification steps, enhancing the accessibility and usability of

PGx data for non-regulatory applications, such as research and

exploratory analyses in pharmacogenomics. This framework

can be refined to incorporate more sophisticated validation

methods, advancing the field of personalized medicine

incrementally through a combination of automated and

manual processes. Future work will focus on evaluating and

refining this workflow to ensure reliability and utility in various

PGx contexts.

While our study utilizes the Llama3.1-70B model, the

primary focus of this work is the development of a

generalizable framework for pharmacogenomic (PGx) data

extraction. Our approach, which involves structured prompts,

data integration techniques, and strategies for handling

complex, mixed-text data, is designed to be adaptable to future

advancements in LLM technology. As LLMs continue to improve,

this framework can be applied to newer models, enabling

consistent, automated PGx data extraction and updating

without reliance on a specific LLM version. This flexibility

makes the framework suitable for various applications in PGx

research, supporting the evolving needs of pharmacologists,

regulatory bodies, and healthcare researchers.
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