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Abstract

Screening tests for disease have their performance measured through sensitivity

and specificity, which inform how well the test can discriminate between those

with and without the condition. Typically, high values for sensitivity and specificity

are desired. These two measures of performance are unaffected by the outcome

prevalence of the disease in the population. Research projects into the health of

the American Indian frequently developMachine learning algorithms as predictors

of conditions in this population. In essence, these models serve as in silico

screening tests for disease. A screening test’s sensitivity and specificity values,

typically determined during the development of the test, inform on the

performance at the population level and are not affected by the prevalence of

disease. A screening test’s positive predictive value (PPV) is susceptible to the

prevalence of the outcome. As the number of artificial intelligence and machine

learning models flourish to predict disease outcomes, it is crucial to understand if

the PPV values for these in silicomethods suffer as traditional screening tests in a

low prevalence outcome environment. The Strong Heart Study (SHS) is an

epidemiological study of the American Indian and has been utilized in

predictive models for health outcomes. We used data from the SHS focusing

on the samples taken during Phases V and VI. Logistic Regression, Artificial Neural

Network, and Random Forest were utilized as in silico screening tests within the

SHS group. Their sensitivity, specificity, and PPV performance were assessed with

health outcomes of varying prevalence within the SHS subjects. Although

sensitivity and specificity remained high in these in silico screening tests, the

PPVs’ values declined as the outcome’s prevalence became rare.Machine learning

models used as in silico screening tests are subject to the same drawbacks as

traditional screening testswhen the outcome to be predicted is of low prevalence.
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Impact statement

Artificial Intelligence (AI) and Machine Learning (ML)

techniques are increasingly integrated into screening and

diagnostic models to pinpoint individuals at risk of specific

diseases or medical conditions. However, with the rise in

popularity of AI and ML, the literature (and internet) is

flooded with reports on computer-based prediction and

screening tests, often focusing more on showcasing the

technique rather than discussing their screening and

diagnostic performance. In particular, there is a proliferation

of algorithms created for minority groups, including the

American Indian. A motivating factor in creating an in silico

screening exam for American Indians is that this population, as a

whole, experiences a greater burden of comorbidities, including

diabetes mellitus, obesity, cancer, cardiovascular disease, and

other chronic health conditions, than the rest of the U.S.

population. This report evaluates these AI algorithms for the

American Indian like a screening test in terms of performance in

low prevalence situations.

Introduction

Artificial Intelligence (AI) and Machine Learning (ML)

techniques are increasingly integrated into screening and

diagnostic models to pinpoint individuals at risk for specific

diseases or medical conditions [1]. However, with AI’s and ML’s

rise in popularity, the literature (and the internet) is flooded with

reports on computer-based prediction and screening tests, often

focused more on showcasing techniques than discussing their

screening and diagnostic performance. Advances in computer

processing speed, increasing numbers of data scientists, low- to

no-cost programming libraries, and availability of larger

healthcare data sets have driven the proliferation of AI

algorithms [2]. Kumar et al. have listed a sampling of

prediction algorithms and data sets, including those for

outcomes in Alzheimer’s disease, cancer, diabetes, chronic

heart disease, tuberculosis, stroke, hypertension, skin disease,

and liver disease, among others [3]. Notwithstanding the

proliferation of algorithms, AI is positioned to considerably

enhance the accuracy and efficiency of screening tests.

Specifically, ML algorithms can be trained on extensive data

sets to discern patterns and make predictive analyses based on

those patterns. Rapid expansion of AI technology, coupled with

enhanced computing power in health screening, underscores the

necessity for evaluating the algorithm’s performance and quality

of these algorithms [4].

The U.S. Government Accountability Office conducted a

technology assessment noting that AI and ML offer

advantages in analyzing underserved populations [5].

However, one challenge of utilizing AI in epidemiology

pertains to the underrepresentation or absence of minority

groups within these algorithms’ training data sets [6]. Also,

screening test performance may vary in minority populations

due to their differences in disease prevalence from non-minority

populations.

Many AI and ML methods for predicting disease in non-

minority populations are recalibrated for minority groups. For

example, an ML algorithm for mortality prediction based on

chronic disease was recalibrated for the population of South

Korea; this adjusted index showed a greater mortality prediction

than the original algorithm [7]. Another effort adjusted this

mortality prediction algorithm using hospital discharge

abstracts from six countries [8].

In terms of minority status, American Indians are sometimes

referred to as the “minority of the minority” or the “invisible

minority,” given their small population, cultural identity,

languages, and histories that set them apart from other

groups. Focusing on AI and ML can offer advantages in

analyzing these underserved populations, who, like American

Indians, bear a greater burden of certain health conditions

[9–11]. This study focused on in silico AI and ML screening

tests explicitly designed for the American Indian population.

The number of in silico diagnostic and screening tests has

grown exponentially over the last decade, with many of these

utilizing data sets based on American Indians. Our study serves

as a reminder that in silico screening tests, even when classified as

AI or ML algorithms, are still subject to the same limitations

related to disease prevalence as those of their laboratory-based

counterparts.

Popularization of Pima Indian data

Several research articles in the public domain report on AI

and ML algorithms for diabetes classification in the Pima Indian

population. A contributing factor is the availability of numerous

Pima Indian data sets provided to the AI community through

platforms like Kaggle, a popular resource for AI and ML

algorithm developers [12]. However, these studies often

overlooked the differences in disease prevalence among

different populations and the potential consequences of

applying algorithms trained specifically on one population

to another.

Examples of ML algorithms for diabetes classification in

Pima Indians sampled from the literature include Support

Vector Machines, Radial Basis Function, Kernel Support

Vector Machines, K-Nearest Neighbor, Artificial Neural

Networks, Fuzzy Support Vector Machine, Naïve Bayes

Classifier, J48 Decision Tree, and a Random Forest Classifier

[13–15]. Some of the articles in this sample failed to recognize the

high prevalence of diabetes among the Pima Indians and the

impact of disease prevalence on screening test performance, and

tended to focus solely on the methods used to perform the

classifications [14].
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The Strong Heart Study models

The Strong Heart Study (SHS) has played a significant role in

identifying risk factors and patterns related to cardiovascular

disease (CVD) in American Indian communities. It included

12 tribes located in Oklahoma, Arizona and the Dakotas.

Statistical models developed using SHS data have informed

interventions and public health policies targeting CVD. SHS

data were also used in developing ML models and risk-based

calculators addressing hypertension, diabetes, and coronary

heart disease (CHD) [16–18].

AI and ML risks with American Indian
data sets

However, potential risks are also associated with using ML in

American Indian contexts. One notable concern involves the risk

of ML algorithms perpetuating biases and stereotypes about

American Indian communities. Specifically, algorithms trained

on data sets that reinforce biases and stereotypes about American

Indians could inadvertently foster further inequities against a

population group frequently underrepresented in AI/ML

training data sets for applications such as virtual screening

tests. A lack of training data can also result in inaccuracies; a

recent example involved an image recognition application

identifying an American Indian in native dress as a bird [19].

To mitigate such risks, ML researchers and developers need to

collaborate closely with American Indian communities to ensure

their technologies are developed ethically and respectfully.

Collaborations could entail establishing research partnerships

with American Indian communities, involving community

members in designing and developing ML models, and

ensuring that models are built using unbiased and culturally

sensitive data sets, like those of the SHS.

Traditional screening test performance

Traditional screening test performance is typically based on a

gold standard in which an individual’s true disease status is

known to establish the test’s sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV).

The test’s sensitivity and specificity inform its effectiveness in

identifying the proportion of people in the population with and

without the condition of interest [20]. Sensitivity is the ability of

the test to correctly identify those with the condition, while

specificity is the ability of the test to correctly identify those

without it. Sensitivity can be calculated from the column of those

truly positive for the condition, while specificity is derived from

the column of those truly negative for the condition in Figure 1.

Among these metrics, the PPV holds clinical significance for

both healthcare providers and patients. The PPV is a conditional

probability that the tested individual has the disease, given that

they tested positive. A high PPV indicates effective identification

of individuals with the tested condition, guiding further testing,

diagnosis, and treatment decisions. The PPV is calculated from

the row in Figure 1 that represents those subjects who tested

positive for disease.

As disease prevalence decreases, screening test performance

decreases, particularly concerning the PPV. This decline can lead

to situations where accuracy and sensitivity remain high, giving a

false impression of a well-performing test due to the increased

number of false positives (FP). For example, in a population of

1,000 people with a disease prevalence of 40%, a test with a

sensitivity of 90% and specificity of 80% will produce a PPV of

75%. If the disease prevalence is lowered to 10% in this same

population, the PPV drops to 33.33%; hence, the prevalence

dominates in screening for rare diseases [21]. Therefore,

healthcare providers should consider these factors when

interpreting the PPV for further testing and treatment decisions.

While sensitivity and specificity provide information about

test performance across populations, PPV is often more relevant

in clinical practice. It helps physicians assess the likelihood of

disease presence after a positive test result, especially in

populations with low disease prevalence. If the disease

outcome becomes increasingly rare, the algorithm will likely

always predict the absence of disease, leading to high accuracy

but poor PPV [22].

This study aimed to develop and evaluate three popular and

commonly used AI andML techniques as in silico screening tools

for predicting three chronic conditions with differing prevalences

in the SHS population: peripheral artery disease (PAD),

hypertension, and type 2 diabetes. Specifically, we predicted

the disease outcome using epidemiological data with methods

including artificial neural networks (ANNs), random forest (RF),

and logistic regression (LR). Unlike their traditional laboratory-

based counterparts, these in silico tests do not have pre-

determined sensitivity or specificity; rigorous testing has not

been performed using a gold standard to establish these values.

Our simulations provided a glimpse of the sensitivity, specificity,

and PPV of these in silico screening tests, as these values changed

in response to differing disease prevalences. We hypothesized

that these in silico screening tools tailored to the American Indian

population would show reduced performance as disease

prevalence declines, regardless of the AI or ML method.

This research serves as a reminder that the limitations of

screening tests regarding disease prevalence still apply, whether

those tests are in silico AI or ML algorithms or traditional

screening tools.

Materials and methods

LR, ANNs, and RFs are well-known methods for creating in

silico screening tests. While RFs operate as a nonlinear model, LR
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requires a linear relationship with the regression coefficients.

ANNs present a more intricate approach, often featuring

multiple layers commonly known as deep learning. AI and

ML can potentially enhance screening for various medical

conditions by illuminating linear and nonlinear data

relationships. Nonetheless, it is crucial to acknowledge that

the application of AI in medical research and screening exams

is still nascent, and concerns over AI algorithms’ accuracy and

reliability linger.

Longitudinal epidemiological SHS data set

The SHS began in 1988 as a multi-center, population-based

longitudinal study of cardiovascular disease (CVD) and its risk

factors among American Indians. The study had three phases: a

clinical examination, a personal interview, and an ongoing

mortality and morbidity survey [23]. Participants from

12 different American Indian tribes were recruited from

Arizona, Oklahoma, and the Dakotas, aided by volunteers

from each community who promoted participation [24].

Phase II of the SHS, examining changes in risk factors for CVD in

the original cohort, occurred between 1993 and 1995. The Strong

Heart Family Study (SHFS), launched in Phase III (1998–1999),

investigated genetic determinants of cardiovascular disease and

extended recruitment to the original cohort’s family members aged

18 years and older [25]. Phase IV (2001–2003) involved surveillance

of the original cohort plus 90 families to continue the study of genetic

markers for CVD [26]. The PhaseV exam (2006–2009) continued the

SHFS, which began in Phase III; all participants fromPhase III and IV

were invited to participate in examinations conducted at local Indian

Health Service hospitals, clinics, or tribal community facilities [27]. In

Phase VI (2014–2018), all surviving participants were invited to

complete a medical questionnaire, and continued the morbidity

and mortality surveillance continued.

Physicians on the SHS Morbidity and Mortality (M & M)

review committee examined the types of health-related events

requiring hospital treatment and subsequent causes of mortality,

when it occurred. Two of these physicians independently reviewed

fatal events for cause, with the results reconciled by a third

physician. In addition, one physician reviewed the medical

records regarding study participant’s non-fatal events to verify

specific diagnoses (i.e., stroke). This surveillance occurred yearly

for both the original cohort and family cohort participants.

The available 2,468 Phase V SHS participants were divided

into development and training cohorts (80%), while the

remaining sample (20%) was assigned to a testing cohort. The

training cohort generated the model weights, while the testing

cohort assessed the algorithm’s quality.

A 1-year time-to-event data set for this study was constructed

from the examination date in Phase V. The M &M results and all

Phases of SHS data will cumulatively provide information on the

subject’s medical conditions and mortality outcomes. Basic

descriptive demographic statistics by gender, age, and

comorbidity, including the numbers and percentages for

binary variables, are listed in Table 1.

Data labels for hypertension and diabetes already existed

within the SHS Phase V data set but did not include a specific

label for PAD. The data included the participants’ right and left

FIGURE 1
Calculations of sensitivity, specificity, PPV, and NPV for screening tests usually have their performance metrics determined via a gold standard.
The numbers of true positives and negatives are represented by TP and TN, respectively. Likewise, the numbers of false positives and negatives are
represented by FP and FN.

TABLE 1 Age, gender, and medical condition of SHS Phase V
participants.

Medical condition All Male Female

N (%) 2,468 977 (39.59) 1,491 (60.41)

Age (years)

Mean (SD) 45.55 (16.41) 43.74 (16.00) 46.73 (16.58)

Median 44.40 42.70 45.70

Hypertension (%) 948 (38.41) 402 (42.41) 546 (57.59)

Diabetes (%) 631 (25.56) 240 (38.03) 391 (61.97)

PAD (%) 94 (3.81) 32 (34.04) 62 (65.96)
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ankle-brachial indexes (ABIs), which were used to define the

presence or absence of PAD. This study used a resting ABI of less

than 0.90 on either the right, left, or both sides, similar to that in

Virane et al., to indicate a PAD diagnosis. Participants were

coded as either 1 or 0 for the presence or absence of PAD,

respectively [28, 29].

LR, ANN, and RF were then used to model the PAD,

hypertension, and diabetes target features. These models ran

100 unique iterations of splitting and training the data, and

producing metrics from the test set. Metrics tracked for the

models were accuracy, specificity, sensitivity, PPV, and

NPV, which were averaged over 100 iterations for

each model type.

SAS version 9.4 was used to assemble the Phases of the SHS

into a single data set, while Python version 3.9.7 was used to

script the LR, RF, and ANN models.

FIGURE 2
Screening test diagnostics for logistic regression. Accuracy Specificity Sensitivity PPV NPV.

FIGURE 3
Screening test diagnostics for artificial neural networks. Accuracy Specificity Sensitivity PPV NPV.
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Results

Numbers of SHS participants reporting hypertension,

diabetes, and positivity for PAD are reported in Table 1.

More females thanmales participated in Phase V, comprising

over 60% of the study participants. In addition, women reported

higher percentages of hypertension, diabetes, and PAD

than did men.

Figures 2–4 show each model’s accuracy, sensitivity,

specificity, NPV, and PPV and reflect similar performance

patterns among all models. The PPV and sensitivity

measures seem to suffer the most as the outcome prevalence

declines, which is what is typically observed for a traditional

laboratory-based screening test. PPV and sensitivity decline for

all models but remain parallel for LR and appear to converge

within the ANN and RF models. As PPV and sensitivity decline

for the RF model, they converge to zero at an outcome

prevalence of 4% (PAD). Specific numerical values for each

model metric are recorded in Table 2 for all three chronic

conditions.

All three models reported accuracy and specificity values that

increased as the condition’s prevalence declined. These two

measures are roughly 95% or higher for PAD, regardless of

the model selected. Conversely, sensitivity and PPV decreased

as the prevalence declined, largely due to the increased number of

false positives. Although poor, the LRmodel reported the greatest

PPV of 18% for PAD, as compared to the ANN and RF, which

were at 9% and 0%, respectively.

The formulas for sensitivity and PPV in Figure 1 give insight

to the effect of false and true positives on these two metrics.

Traditional laboratory screening tests’ performance metrics are

usually determined via a gold standard. As the prevalence of the

TABLE 2 Summary of screening test diagnostics by method: logistic regression, artificial neural network, and random forest are represented by LR,
ANN, and RF.

Metric Model and chronic condition

Hypertension Diabetes PAD

LR ANN RF LR ANN RF LR ANN RF

Accuracy 78.99 76.00 79.35 81.49 77.66 82.18 95.57 94.56 95.99

Specificity 87.52 84.21 89.24 92.28 89.92 95.31 99.47 98.44 100.00

Sensitivity 64.79 62.41 62.88 44.59 36.06 37.26 2.40 2.07 0.00

PPV 75.61 73.62 77.75 62.88 61.77 70.13 18.06 9.04 0.00

NPV 80.63 79.87 80.12 85.08 83.52 83.88 96.06 96.00 95.99

FIGURE 4
Screening test diagnostics for random forest. Accuracy Specificity Sensitivity PPV NPV.
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condition declined, so did the number of true positives, while that

of false positives increased, driving down both the sensitivity and

PPV. Accuracy remained high as the true negatives grew,

inflating these metrics.

Discussion

LR, ANNs, and RFs are popular methods in the

burgeoning world of AI and ML. Although these methods

are quite different from one another, we can see that their

performance metric trends are similar in screening for disease

outcomes with varying prevalences. These performance

metrics give the developers of these methods an idea of

how a specific in silico screening method will perform in

the population it was designed to serve based on the

prevalence of the outcome.

Although these algorithms may have high predictive power,

as measured in terms of predictive accuracy, some are criticized

for lacking any causal reasoning [30]. For example, ANNs may

give reliable predictions for the end users; however, these end

users do not know how the algorithm came to a particular

conclusion. Thus, they are “black boxes” contributing little to

understanding a condition’s cause.

Regardless of the method used, the PPV declined in parallel

with the overall prevalence of the condition. The type of in silico

modeling approach is still subject to the same limitations as

those of traditional lab-based screening tests, an important

factor to remember as online screening tests become more

widespread. This study reminds us that regardless of the

approach used, in silico AI and ML screening tests are not

“magic bullets.” Their performance is still limited by the

prevalence of the disease in the populations they are

intended to serve.
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