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Abstract

This study explores the feasibility of quantitative Optical Coherence

Tomography Angiography (OCTA) features translated from OCT using

generative machine learning (ML) for characterizing vascular changes in

retina. A generative adversarial network framework was employed alongside

a 2D vascular segmentation and a 2DOCTA image translationmodel, trained on

the OCT-500 public dataset and validated with data from the University of

Illinois at Chicago (UIC) retina clinic. Datasets are categorized by scanning range

(Field of view) and disease status. Validation involved quality and quantitative

metrics, comparing translated OCTA (TR-OCTA) with ground truth OCTAs (GT-

OCTA) to assess the feasibility for objective disease diagnosis. In our study, TR-

OCTAs showed high image quality in both 3 and 6mmdatasets (high-resolution

and contrast quality, moderate structural similarity compared to GT-OCTAs).

Vascular features like tortuosity and vessel perimeter index exhibits more

consistent trends compared to density features which are affected by local

vascular distortions. For the validation dataset (UIC), the metrics show similar

trend with a slightly decreased performance since the model training was blind

on UIC data, to evaluate inference performance. Overall, this study presents a

promising solution to the limitations of OCTA adoption in clinical practice by

using vascular features from TR-OCTA for disease detection. By making

detailed vascular imaging more widely accessible and reducing reliance on

expensive OCTA equipment, this research has the potential to significantly

enhance the diagnostic process for retinal diseases.
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Impact statement

This study represents a significant advancement in retinal

imaging by demonstrating the feasibility of using generative

machine learning to translate OCT features into OCTA

features, addressing a critical gap in clinical practice. By

employing a generative adversarial network framework trained

on diverse datasets, the research establishes quantitative features

in Translated OCTA. This innovation enhances the ability to

objectively diagnose retinal diseases by providing reliable

vascular imaging without the need for costly OCTA

equipment. The findings reveal that vascular features from

TR-OCTA, such as tortuosity and vessel perimeter index,

offer more consistent diagnostic trends compared to

traditional density features. This new information has the

potential to transform retinal disease diagnostics, making

detailed vascular imaging more accessible and cost-effective,

thereby improving patient outcomes and broadening the

adoption of advanced imaging techniques in routine

clinical settings.

Introduction

Optical Coherence Tomography (OCT) is a cutting-edge

medical imaging technology that has revolutionized our ability

to observe and comprehend the complex structures of biological

tissues. It is non-invasive and capable of providing highly

detailed in-depth retinal pathologies. It generates high-

resolution cross-sectional images of tissues using low-

coherence light, therefore has been widely adopted in

ophthalmic clinical care [1]. As a result, OCT has been

demonstrated for early identification and monitoring of

various retinal illnesses including diabetic retinopathy (DR),

age-related macular degeneration (AMD) and glaucoma that

cannot be obtained by any other non-invasive diagnostic

technique [2–8].

The rapid development of OCT, growing interest in this field,

and its increasing impact in clinical medicine has contributed to

its widespread availability. However, due to its non-dynamic

imaging technology, conventional OCT cannot visualize blood

flow information such as blood vessel caliber or density and

remains only limited to capturing structural information [2, 9].

As a result of this information gap, OCT angiography (OCTA)

was developed which can produce volumetric data from

choroidal and retinal layers and provide both structural and

blood flow information [10, 11]. OCTA provides a high-

resolution image of the retinal vasculature at the capillary

level, allowing for reliable detection of microvascular

anomalies in diabetic eyes and vascular occlusions. It helps to

quantify vascular impairment based on the severity of retinal

diseases. In recent years, OCTA has been demonstrated to

identify, detect, and predict DR [12–19], AMD [20–22],

Glaucoma [23] and several other retinal diseases [24–31].

Despite the advantages, widespread deployment of OCTA has

been limited due to the high device cost [32, 33]. The additional

requirements of hardware and software for an OCTA device pose

a financial burden for clinics as well as patients This is one of the

major reasons that only a limited number of hospitals and retinal

clinics use OCTA for in-depth retinal vascular analysis. Another

limitation of OCTA is the process of generating an OCTA scan,

which takes longer time and involves repetitive scanning of the

retina making the data acquisition harder due to involuntary eye

movements and motion artifacts, reducing the quality of OCTA

images [33]. Due to the limitation of OCTA data, most studies

involving OCTA based imaging biomarkers and involving the

use of artificial intelligence (AI) are difficult to validate

extensively for future clinical deployment.

From literature, a potential solution to this problem can be

the utilization of AI and machine learning (ML) to produce

OCTA images from the already available OCT data which has

been showing promising outcomes [34–39]. Incorporating ML

for OCTA translation from OCT offers significant advances in

ophthalmic diagnostics by increasing angiographic and

functional information in existing OCT data. This transition

harnesses ML’s capability to autonomously analyse OCT scans

and generate detailed vascular images, traditionally obtained

through OCTA, aligned with OCT information. By doing so,

it substantially lowers the barriers to accessing high-resolution

vascular imaging, which is crucial for diagnosing and monitoring

retinal diseases and provides a robust detection system.

Furthermore, ML dependent approaches alleviate some of

OCTA’s limitations, including its high cost, susceptibility to

artifacts from patient movement and the extensive time

required for image acquisition.

Different studies have been reported [40–42] attempting to

leverage ML algorithms for generative-adversarial learning,

typically utilizing a UNet for image translation in recent

years. However the quality of the translated OCTA (TR-

OCTA) is usually sub-optimal and the retinal vascular areas

are not refined enough. The first application of this approach was

reported by Lee et al., 2019 [34] to train an algorithm to generate

retinal flow maps from OCT images avoiding the needs for

labelling but it was limited to capture higher density of deep

capillary networks. According to some recent studies [35–37],

incorporating textual information or surrounding pixels, it is

possible to improve the OCTA image quality. Le et. Al [39]

proposed another approach incorporating spatial speckle

variance and generative AI, however, it requires OCT/OCTA

data from custom devices. In this paper, we adopt and implement

a generative-adversarial learning framework-based algorithm

demonstrated by Li et al [36] for translating OCT data into

OCTA. The focus of this study is to demonstrate the feasibility of

using such TR-OCTA image generated vascular features (Blood

Vessel Density (BVD), Blood Vessel Caliber (BVC), Blood Vessel

Tortuosity (BVT), Vessel Perimeter Index (VPI)) for disease
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detection. We compare these OCTA features with ground truth

(GT) – OCTAs. The quality of the TR-OCTAs were compared

with features such as Structural Similarity IndexMeasure (SSIM),

Fréchet Inception Distance (FID) and patch-based contrast

quality index (PCQI). From our observation and statistical

analysis, we found that overall, the SSIM values indicate a

moderate level of structural similarity between TR-OCTA and

GT-OCTA images, with some variability across different patient

categories and scan range however PCQI scores are quite close

for both dataset and some deviation in FID scores is noticeable. It

was observed that the model generally achieved a slightly better

performance in depicting normal and pathological retinal

features for the 3 mm scans compared to the 6 mm. However,

across both field of view (FoV), there were slight discrepancies in

quantitative vascular metrics such as BVD, BVC and VPI,

highlighting areas where the translation model could be

further refined. This analysis underscores the potential of

using AI-driven translation models for OCTA image analysis,

while also pointing to the need for improvements to enhance the

accuracy of vascular feature representation, particularly at

varying FoV.

Materials and methods

The overall methodology of our feature extraction pipeline is

demonstrated in Figure 1. We first translate OCT data into

OCTA (using algorithm demonstrated by Li et. al [36]) and

quantify the retinal features in both GT and TR-OCTAs for

validation.

Translation algorithm

We adopted and implemented the OCT to OCTA translation

algorithm from Li et al [36]. We describe the process here briefly.

The process of OCTA translation fromOCT images is carried out

in 3 steps (Figure 1): (a) generating 3D OCTA volumes from

paired 3D OCT volumes using conditional generative adversarial

network (GAN), (b) improving image quality by focusing only

the vascular regions, utilizing the 2DVSeg model, thorough

vascular segmentation, (c) preserving contextual information

for better quality translated images through a 2D translation

model (2DTR) generating 2D paired OCTA maps. The baseline

architecture of the translation model is built upon pix2pix, an

image translation model [41]. The aim of the model is primarily

to translate OCT volumes to its paired OCTA volume as closely

as possible to the original clinical images. [4] The framework

includes a 3D GAN where the 3D generator takes a 3D OCT

volume as its input and outputs a corresponding TR-OCTA

volume. a 3D discriminator is used to effectively distinguish

between the original (ground-truth) OCTA volumes and the

generated ones. An adversarial loss is used to train both the

generator and discriminator. Furthermore, to calculate for each

pixel difference between TR-OCTA and GT-OCTA, a distance

loss is considered. The framework also uses a 2D vascular

segmentation model (Figure 2A) to help with the improved

quality of the vascular regions by utilizing OCTA reflected

vascular data by focusing on the vascular areas during the 3D

volume translation process.

This model also utilizes a 2D generative translation model

(Figure 2B) to build heuristic (suboptimal) 2D OCTA projection

maps from their corresponding OCT that can provide heuristic

contextual information where output values are affected by the

surrounding pixels resulting in outputs with additional

contextual information.

Comparative feature analysis

The generated TR-OCTA maps were compared on several

quantitative features to the GT projection maps for comparison:

BVD, BVC, BVT, and VPI. Also, for qualitative comparison:

SSIM, FID and PCQImetrics were used to quantify the translated

image quality and similarity to GT OCTA maps. All the metrics

evaluation were performed using MATLAB and Python. Feature

FIGURE 1
Framework of OCT to OCTA translation and characterization
of quantitative features.
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values were calculated separately for 3 mm and 6 mm across

different patient groups and compared between the OCT500 and

UIC datasets. A two-tail t-test was carried out for each feature to

compare if there is a significant difference between the TR-

OCTA and GT-OCTA values with a p value <0.05.

Metrics and features

Similarity metrics
We used three metrics to compare GT and TR-OCTAs, as

described below:

SSIM: SSIM or Structural Similarity Index Measure, is a

method for measuring the similarity between two images.

SSIM is based on the perception of the human visual system

and it considers changes in structural information, luminance

and contrast. The idea is that pixels have strong inter-

dependencies, especially when they are spatially close. These

dependencies carry important information about the structure of

the objects in the visual scene.

FID: FID score is a metric used to evaluate the quality of

images generated by models, such as those produced by GANs. It

measures the similarity between two sets of images, typically

between a set of generated images and a set of real images, by

comparing the statistics of their features extracted by a pre-

trained Inception model [43]. The FID score calculates the

distance between the feature vectors of the real and generated

images, using the Fréchet distance (also known as the

Wasserstein-2 distance). A lower FID score indicates that the

distribution of the generated images is closer to the distribution

of the real images, suggesting higher quality and more

realistic images.

PCQI: PCQI is another metric designed to assess the quality

of images by focusing on local contrast changes, which are crucial

for visual perception, especially in textured regions [44]. Unlike

many traditional image quality metrics that evaluate images

globally, PCQI operates on small, localized patches of an

image, making it particularly effective at capturing and

evaluating detailed contrast differences between a reference

image and a test image. PCQI calculates the quality score

based on three main aspects: patch similarity, contrast

distortion, and mean luminance change, within these localized

regions. The final score is a weighted sum of these aspects,

providing a single quality metric that reflects how perceptually

close the test image is to the reference image in terms of local

contrast and brightness. A higher PCQI score indicates a better

match between the test and reference images, suggesting less

contrast distortion and more accurate reproduction of the

original image’s visual quality.

Quantitative OCTA features
We characterized three vessel and one density based features

(Equations 1–4), as described below:

BVD: BVD or vessel area density (VD) [45], is the ratio of the

blood vessels to the total area measured and can be utilized for

identifying early detection of retinal pathologies including DR

[46, 47], AMD [48, 49] etc.

BVD � vascular area

total area
(1)

BVC: BVC, also named as vessel diameter index [50], is

calculated as the ratio of vessel area to the vessel length [12]. BVC

distortion can be used to quantify retinal vascular shrinkage and

is typically observed in different retinopathies such as diabetic

retinopathy (DR) [51].

BVC � vascular area

vascular length
(2)

BVT: BVT is defined as a measure of degree of vessel

distortion [26, 52]. During any retinal pathologies, distorted

vessel structures can affect the blood flow efficiency and can

be measured as:

BVT � 1
n
∑

geodesic distance between endpoints for a vessel branch

euclidean distance between endpoints for a vessel branch

(3)
here, n = total number of vessel branches.

VPI: VPI [52] is measured as the ratio of the contour length

of the vessel boundaries or vessel perimeter to the total vessel area

and has been used for detection of DR and sickle cell

retinopathy (SCR) from.

OCTA images:

VPI � overall contour length of blood vessel boundaries

total blood vessel area
(4)

Statistical Analysis: We performed statistical analysis based

on the selected features to quantify the TR-OCTA and measure

the quality of the translation. This analysis will help us improve

the accuracy and efficiency of the TR-OCTA translated fromGT-

OCT and GT-OCTA.

Results

Dataset

We used 2 datasets for our study, a public dataset of

500 patients containing paired 3D OCT and OCTA volumes,

OCTA-500 [53] and a dataset of DR patients collected from UIC

with 445 scans containing OCT volumes and OCTA projections.

OCT500 dataset is divided into 2 subsets according to their

FoV (Field of view), 3 mm and 6 mm. The translation algorithm

is applied separately to the two subsets for comparison. The

datasets are further divided into different diseased patients and

normal patients for quantitative feature comparison. The 3 mm

dataset contains 6 AMD patients, 5 Choroidal neovascularization
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(CNV) patients, 29 DR and 160 Normal patients who are

compared statistically after evaluating the feature values. The

3 mm set contains paired OCT and OCTA volumes from

200 patients with a field of view (FOV) 3 mm × 2 mm ×

3 mm. Each volume has 304 slices with a size of 640px ×

304px. The generated projection map is of 256px × 256px

size. The whole dataset is divided into a 70-25-5% split: 140,

10, and 50 volumes for training, validation and test sets

respectively. Similarly, the 6 mm set contains paired OCT and

OCTA volumes from 300 patients with FOV of 6 mm × 2 mm ×

6 mm. Each volume is of size 640px × 400px, containing

400 slices and generated projection maps are of size 256px ×

256px. Similar to 3 mm set: 180, 20, and 100 volumes are split as

training, validation and test sets. The 6 mm dataset contains

43 AMD, 11 CNV, 14 Central serous chorioretinopathy (CSC),

35 DR, 10 Retinal vein occlusion (RVO), 91 Normal and 96 other

retinal pathology-affected patients for which a similar statistical

evaluation is carried out and feature values are calculated.

UIC data and image acquisition
The UIC study was approved by the institutional review

board of the University of Illinois at Chicago and was in

FIGURE 2
(A) 2D vascular segmentation model, (B) 2D Translation model.
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compliance with the ethical standards stated in the

Declaration of Helsinki. The patients with DR were

recruited from UIC Retinal Clinic. We performed a

retrospective study of consecutive diabetic patients (Type

II) who underwent OCTA and OCT imaging. The patients

are thus representative of a university population of diabetic

patients who require imaging for management of diabetic

macular edema and DR. OCT/OCTA images of both eyes of

every patient were collected. We excluded subjects with

macular edema, previous vitreous surgery, and history of

other eye diseases. All patients had undergone a complete

anterior and dilated posterior segment examination (J.I.L.).

The patients were classified by severity of DR (mild,

moderate, and severe) according to the Early Treatment

Diabetic Retinopathy Study staging system. The grading

was done by retina specialist who used a slit-lamp fundus

lens for the diagnosis. OCT/OCTA data were acquired using

an ANGIOVUE spectral domain OCTA system (Optovue,

Fremont, CA), with a 70-kHz A-scan rate, an axial an axial

resolution of 5 μm, and a lateral resolution of 15 µm. All the

OCTA images were macular scans and had field of view of

6 mm. We exported the OCTA images from the software

ReVue (Optovue) and used custom-developed software in

Python OpenCV for further image analysis, feature

extraction, and image classification.

The UIC dataset contains 445 OCT scans from 41 patients

with different DR conditions: control, mild, moderate and severe.

The scans were selected based on signal strength Q ≥ 5 for this

study. Similar to OCT500, this dataset has both 3mm (187 scans)

and 6 mm (258 scans) scans for different stages of DR: Control,

Mild, Moderate and Severe. For 3 mm FOV, we used 35 scans for

Control group, 118 for Mild, 37 for Moderate and 97 for Severe.

On the other hand, for 6 mm, the set included 59 for Control,

143 Mild, 69 Moderate and 123 Severe scans for comparison.

3 mm slices are of size 640px × 304px and 6 mm slices are mostly

of 640px × 400px with some mixed 640px × 304px scans which

are used to generate 256px × 256px OCTA slices. Some patients

were listed in multiple categories therefore, scans of those

patients were included in multiple categories before feature

evaluation.

Comparative analysis of similarity and
OCTA features

The algorithm for TR-OCTA generation was exclusively

trained only on OCT500 and tested on the UIC dataset for

feature quantification and comparison. Figures 3A–H depicts

GT-OCTA and generated TR-OCTA images at 3 mm and 6 mm

scan range from diseased as well as normal patients for

FIGURE 3
GT and TR-OCTA images for NORMAL (A, E), DR (B, F), CNV (C, G) and AMD (D, H) patients fromOCT500. (A–D) images are of 3mm and (E–H)
are of 6 mm. Similarly (I–P) are OCTA images from UIC dataset. (I, M) from Control, (J, N) from Mild, (K, O) from Moderate and (L, P) from Severe
group for 3 mm and 6 mm respectively.
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OCT500 while Figures 3I–P represent the images for UIC dataset

across various patient categories.

OCT500 3 mm dataset has AMD (6), CNV (5), DR (29) and

NORMAL (160) patients totalling 200 patients, while 6 mm

dataset includes AMD (43), CNV (11), CSC (14), DR (35), RVO

(10), OTHER retinopathies (96) and NORMAL (91) patients

totalling 300. Two-tail T-tests were carried out (p < 0.05) between

GT and TR-OCTAs for BVD, BVC, BVT and VPI (3 mm

complete dataset). The results indicate that BVD and BVC

have p-values close to 0.5, suggesting that there is no

significant difference between these features in the GT and

TR-OCTA values (Table 1). This means that these features

can be used for effective disease classification. Upon

evaluating quality metrics for the datasets (Tables 2, 3), mean

SSIM for 3 mm was found to be slightly higher (0.48) than 6 mm

dataset showing SSIM ranging from 0.16–0.52 with a mean of

0.42. SSIM values were also calculated for different patient

statuses in both datasets. For the 3 mm dataset: AMD patients

show a slightly lower mean SSIM, DR dataset on the other hand

reveals a higher mean SSIM compared to other patient groups.

However, for 6 mm: AMD, CNV, CSC, patients with other

retinopathies and Normal group showed a close SSIM mean

value except for DR patients with a slightly higher mean SSIM

(0.43) and RVO patients, a lower mean SSIM of 0.36 (Table 2).

Furthermore, The FID score for the 3 mm dataset was lower

(35.88) compared to the 6 mm dataset, which had a higher FID

score of 49.06. On the other hand, PCQI scores were comparably

high for both datasets with the 3 mm set slightly outperforming

the 6 mm (Table 3). All these feature values were also calculated

for the complete dataset and separately for different diseased and

normal patients for comparative analysis (Table 4). BVD and

BVT values from 3 mm show some trend among Normal and

AMD, CNV, DR groups which is mimicked by the TR-OCTA

(Figures 4A–D). Overall, TR-BVC, TR-VPI, TR-BVT, and TR-

BVD values (Figure 5) are concentrated within a specific range

and closer to the GT values for each feature respectively. For

BVD, some outliers are further away from the lowest value of the

BVD range which is consistent with the findings from the

categorized distribution of feature values (Supplementary

Figures S1A–D).

Similarly, for the complete 6 mm dataset we performed

T-tests (p < .05) for BVD, BVC, VPI and BVT but only BVD

was found to have statistically similar values for both TR-OCTA

and GT-OCTA images (Table 1). The 6 mm dataset contained

TABLE 1 Two-tail t-test between GT-OCTA and TR-OCTA for OCT500 and UIC datasets.

Quantitative
Features

OCT500 3 mm (p< .05) OCT500 6 mm (p < .05) UIC 3 mm (p < .05) UIC 6 mm (p < .05)

BVD 0.48 0.58 1.7 e−31 4.91 e−15

BVC 0.45 1.35 e−52 7.14 e−115 1.5 e−106

BVT 1.1 e−7 0.006 1.54 e−41 6.76 e−14

VPI 1.36 e−22 8.26 e−31 3.89 e−5 .040

TABLE 2 SSIM values for 3 mm and 6 mm from both OCT500 and UIC.

SSIM
(OCT500)

Complete AMD CNV DR NORMAL CSC RVO Others

3 mm 0.4835
(0.29–0.60)

0.4513
(0.29–0.55)

0.4754
(0.44–0.52)

0.4923
(0.29–0.59)

0.4834
(0.34–.60)

- - -

6 mm 0.4175
(0.16–0.52)

0.4102
(0.30–0.50)

0.4224
(0.38–0.45)

0.4329
(0.35–0.52)

0.4212
(0.25–0.49)

0.4140
(0.32–0.45)

0.3664
(0.26–0.43)

0.4169
(0.16–0.51)

SSIM (UIC) Complete Control Mild Moderate Severe

3 mm 0.2808 (0.13–0.39) 0.3188 (0.21–0.38) 0.2961 (0.14–0.35) 0.2914 (0.13–0.39) 0.2647 (0.13–0.39)

6 mm 0.2952 (0.12–0.38) 0.2820 (0.12–0.36) 0.2966 (0.19–0.37) 0.2920 (0.12–0.38) 0.2679 (0.12–0.37)

TABLE 3 FID and PCQI scores for the complete datasets of
OCT500 and UIC.

OCTA dataset (OCT500) FID PCQI (mean, SD)

3 mm 35.88 0.99795 (0.000457)

6 mm 49.06 0.99778 (0.000539)

OCTA Dataset (UIC) FID PCQI (Mean, SD)

3 mm 150.34 0.99546 (0.000737)

6 mm 107.74 0.99555 (0.000606)
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central serous chorioretinopathy (CSC), retinal vein occlusion

(RVO) and other retinal pathologies that were absent in the

3 mm dataset (Figures 4E–H). In a comparative analysis

(Table 5), BVD for RVO and BVT for AMD patients shows

a larger deviation compared to other cases when calculated.

Also, BVD and BVT values for translated image follow the

trend set by the GT-OCTA. However, BVC, BVT, and VPI

were measured having closer values in all cases. When plotted,

the distribution of the feature values for TR-OCTA and GT-

OCTA, similar to the 3 mm dataset, BVC, VPI and BVD show

more outliers compared to BVT and the distribution is similar

to the 3 mm dataset. Supplementary Figures S1E–K exhibits

feature value distribution for AMD, CNV, CSC, DR, RVO,

other retinal pathologies and normal patients and a similar

TABLE 4 Statistical analysis of TR-OCTA compared to GT-OCTA for 3 mm dataset from OCT500.

OCTA
Dataset

Dataset (no. Of patients) BVD (mean, SD) BVC (mean, SD) BVT (mean, SD) VPI (mean, SD)

TR-OCTA Complete (200) 212.31 (29.93) 22.80 (0.81) 1.086 (0.006) 26.91 (5.47)

GT-OCTA 210.22 (29.04) 22.75 (0.41) 1.089 (0.006) 31.43 (2.35)

TR-OCTA AMD (6) 213.73 (20.05) 22.45 (1.03) 1.087 (0.009) 29.24 (1.91)

GT-OCTA 205.46 (26.45) 22.91 (0.39) 1.09 (0.003) 29.69 (1.63)

TR-OCTA CNV (5) 228.53 (22.36) 22.34 (1.04) 1.087 (0.003) 26.36 (3.7)

GT-OCTA 224.22 (16.47) 22.90 (0.53) 1.089 (0.005) 30.26 (2.55)

TR-OCTA DR (29) 209.07 (27.51) 23.12 (0.71) 1.080 (0.007) 26.92 (4.32)

GT-OCTA 210.80 (34.82) 23.14 (0.42) 1.087 (0.005) 28.25 (3.55)

TR-OCTA NORMAL (160) 212.34 (30.86) 22.77 (0.81) 1.086 (0.006) 26.84 (5.79)

GT-OCTA 209.86 (28.39) 22.67 (0.37) 1.089 (0.006) 32.11 (1.41)

FIGURE 4
Feature values for different patient groups from both OCT500 and UIC. (A–D) show feature trend of 3 mm for OCT500, (E–H) for OCT500
6 mm, (I–L) UIC 3 mm and (M–P) UIC 6 mm dataset.
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trend of BVD feature having more outliers is observed for

diseased as well as normal patients in comparison to other

features except RVO.

For UIC dataset Table 2, 3 summarize the qualitative metrics

and Tables 6, 7 summarize quantitative feature values for both

3 mm and 6 mm presenting the validity of implementation of

automated image-to-image translation. The whole 3 mm dataset

show a mean SSIM value of 0.2808 however Control group as

well as other DR stages show slight deviation in terms of mean

SSIM although their value range stays similar. For the complete

6 mm, SSIM was slightly higher (0.2952) and contrary to the

3 mm set, Control, Mild and Moderate groups show closer values

to each other except for Severe with a slight decrease in value:

0.2679. As a quality metrics, FID scores show higher value than

OCT500 for both 3 mm and 6 mm: 150.34 and

107.74 respectively however PCQI scores were closer to the

ideal value for both 3 mm and 6 mm.

From two-tail T-tests (p < .05) BVD, BVC, BVT and VPI

values for TR-OCTA were found to be statistically different from

GT-OCTA for 3 mm and 6 mm which is expected due to the fact

that UIC data was excluded from the training (Table 1). These

feature values were calculated (3 mm and 6mm) for the complete

dataset as well as separately for different patient groups. For

3 mm (Table 6), BVD (Figures 4I–L) shows more deviation from

the GT values compared to BVC and VPI except BVT which

shows better comparative values. From Figure 6 we can observe

the difference between TR and GT images and concentrated

values with some outliers for BVC, BVT, and BVD.

FIGURE 5
Feature value distribution of 3mmand 6mm scans for OCT500. (A–D) are BVC, VPI, BVT and BVD values for 3mm. Similarly, (E–H) show values
for 6 mm.
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Supplementary Figures S2A–D shows the range of values for all

the features observed in different DR groups and the mean values

for TR-OCTA lies below the GT-OCTA most of the cases except

for BVD which lies above GT values for Mild, Moderate and

Severe group.

A similar pattern is recognized from the 6 mm analysis

(Table 7) having BVD a higher deviation from the GT

compared to BVC, BVT, and VPI. BVD shows more outliers

for TR-OCTA than other features contributing to the larger

difference (Figure 6). All these feature values are calculated

separately for Control, Mild, Moderate and Severe groups and

in general BVD shows higher difference between TR-OCTA and

GT-OCTA among all the features for different patient groups

(Figures 4M–P). Supplementary Figures S2E–H represents

TABLE 5 Statistical analysis of TR-OCTA compared to GT-OCTA for 6 mm dataset from OCT500.

OCTA dataset Dataset (no. Of
patients)

BVD (Mean ± St.d) BVC (Mean ± St.d) BVT (Mean ± St.d) VPI (Mean ± St.d)

TR-OCTA Complete (300) 210.80 ± 30.45 44.78 ± 1.37 1.087 ± 0.006 24.95 ± 2.97

GT-OCTA 212.34 ± 37 42.91 ± 1.33 1.088 ± 0.007 27.94 ± 3.02

TR-OCTA AMD (43) 210.13 ± 32.07 44.28 ± 1.28 1.063 ± 0.005 24.56 ± 3.32

GT-OCTA 204.72 ± 35.76 42.93 ± 1.44 1.063 ± 0.007 27.76 ± 3.65

TR-OCTA CNV (11) 213.11 ± 27.01 45.00 ± 1.03 1.087 ± 0.003 24.06 ± 1.63

GT-OCTA 224.63 ± 46.59 42.59 ± 1.03 1.089 ± 0.007 27.39 ± 3.36

TR-OCTA CSC (14) 209.66 ± 22.43 45.12 ± 0.96 1.088 ± 0.0064 25.08 ± 1.86

GT-OCTA 215.35 ± 45.51 43.08 ± 0.98 1.088 ± 0.0063 28.59 ± 2.24

TR-OCTA DR (35) 215.09 ± 28.04 45.12 ± 1.30 1.086 ± 0.0065 26.2 ± 2.95

GT-OCTA 210.66 ± 37.54 43.50 ± 1.18 1.087 ± 0.0068 28.68 ± 3.2

TR-OCTA RVO (10) 228.13 ± 60.63 44.13 ± 1.15 1.089 ± 0.0079 24.82 ± 1.76

GT-OCTA 239.79 ± 26.76 43.09 ± 0.91 1.087 ± 0.009 27.55 ± 2.89

TR-OCTA Others (96) 207.14 ± 30.19 44.88 ± 1.34 1.086 ± 0.0062 25.19 ± 3.06

GT-OCTA 213.22 ± 32.52 43.06 ± 1.19 1.088 ± 0.0073 27.74 ± 2.61

TR-OCTA Normal (91) 211.34 ± 27.64 44.75 ± 1.50 1.087 ± 0.0072 24.5 ± 2.97

GT-OCTA 210.71 ± 39.42 42.53 ± 1.51 1.089 ± 0.0073 27.95 ± 3.13

TABLE 6 Statistical analysis of TR-OCTA compared to GT-OCTA for 3 mm dataset from UIC.

OCTA
Dataset

Dataset (no. Of scans) BVD (Mean ± St.d) BVC (Mean ± St.d) BVT (Mean ± St.d) VPI (Mean ± St.d)

TR-OCTA Complete (187) 220.91 ± 21.73 18.21 ± 0.86 1.078 ± 0.0066 24.52 ± 2.70

GT-OCTA 189.29 ± 25.59 20.95 ± 0.65 1.090 ± 0.0086 26.11 ± 4.45

TR-OCTA Control (35) 212.69 ± 17.66 18.38 ± 0.80 1.083 ± 0.0082 25.48 ± 1.90

GT-OCTA 217.57 ± 27.82 20.25 ± 0.48 1.089 ± 0.0073 31.30 ± 4.53

TR-OCTA Mild (118) 223.29 ± 22.97 18.00 ± 0.86 1.078 ± 0.0056 23.99 ± 2.76

GT-OCTA 180.42 ± 19.80 21.17 ± 0.58 1.091 ± 0.0088 24.56 ± 3.47

TR-OCTA Moderate (37) 216.40 ± 24.49 18.51 ± 0.97 1.078 ± 0.0065 24.73 ± 2.45

GT-OCTA 189.60 ± 20.77 20.91 ± 0.47 1.091 ± 0.0102 26.29 ± 3.25

TR-OCTA Severe (97) 229.30 ± 18.85 17.96 ± 0.95 1.077 ± 0.0061 23.83 ± 2.76

GT-OCTA 181.44 ± 20.79 20.99 ± 0.50 1.090 ± 0.0087 24.51 ± 3.57
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feature value distribution with outliers for different DR groups.

Similar to 3 mm, TR-OCTA BVD feature value distribution

shows a mean higher than the GT-OCTA for Control, Mild,

Moderate and Severe groups.

Discussion

In this paper, we implemented a recently demonstrated

algorithm [36] for OCT-OCTA translation and validated the

translated OCTA images to show their utility in quantitatively

characterizing retinal features using two datasets OCT500 and

UIC. We present a comprehensive analysis comparing the

performance of GT- OCTA images with those generated by a

TR-OCTA across different patient groups, including those with

complete data sets, for both 3 mm and 6 mm FoV. Several

qualitative (SSIM, FID, PCQI) and quantitative metrics (BVD,

BVC, BVT, and VPI) were considered to validate the

comparative performance analysis on a clinical dataset from

UIC. We found FID and PCQI scores to be the most reliable

qualitative metrics and a combination of BVT, VPI could be

considered best for distinguishing diseases specially DR patients

in TR-OCTA.

SSIM was utilized as a quality metric to assess the similarity

between TR-OCTA and GT-OCTA images, providing insight

into the translation model’s ability to replicate key structural

features of the retinal vasculature. For OCT500, between 3 mm

and 6 mm, mean SSIM from the complete dataset of 3 mm was

higher than 6 mm despite both values were far from the ideal

value. The reason behind is how the translation algorithm works

that focuses on the vasculature rather than the entire image while

SSIM considers pixel difference between the reference and the

target image for its entirety. This becomes more prominent from

the UIC dataset. Both 3 mm and 6 mm sets form UIC shows

lower mean SSIM than OCT500 since the algorithm was

exclusively trained on OCT500 and as a result the generated

TR-OCTAs show less structural similarity overall to the GT-

OCTA. SSIM for different patient groups was also considered to

measure the response of the TR-OCTAs for different pathologies.

UIC dataset mostly show consistent mean SSIM across different

pathologies except for RVO (6 mm) indicating the algorithm

couldn’t capture the vascular structure from the RVO patient

equally as other pathologies which could also be contributed to

the lower number of sample available for training (3.34%).

Similar observations can be made from UIC 3 mm and 6 mm

however the model fails to capture the key structural features of

severe stage DR patients. Therefore, from our observations, SSIM

is not an ideal metric for GAN generated OCTA images.

Two more quality metrics, FID and PCQI scores were

considered as these are more suitable for GAN generated

image quality comparison against reference (GT) images.

OCT500 3 mm set, having lower FID score, indicate higher

similarity to the reference data, suggesting that the 3 mm scans

exhibit better image quality compared to the 6 mm scans within

this dataset. This trend is consistent with expectations, as higher

resolution (smaller scanning area) typically results in finer detail

and less distortion. The UIC dataset shows comparatively higher

FID scores for both 3 mm and 6 mm scans, indicating lower

fidelity compared to the OCT500 dataset which can be explained

as the effect of implementing the model to a dataset excluded

from the training. Interestingly, the 6 mm scans have a lower FID

score than the 3 mm scans, suggesting better relative

performance at a larger scanning area for this dataset. This

inverse trend can be attributed to variations in image quality

for 6 mm image acquisition (image collected after a certain date is

of higher quality than the previous scans). Another quality

metric, PCQI values for the OCT500 dataset are found to be

exceptionally high for both 3 mm and 6 mm. These results

TABLE 7 Statistical analysis of TR-OCTA compared to GT-OCTA for 6 mm dataset from UIC.

OCTA
Dataset

Dataset (no. Of scans) BVD (Mean ± St.d) BVC (Mean ± St.d) BVT (Mean ± St.d) VPI (Mean ± St.d)

TR-OCTA Complete (258) 214.75 ± 25.5 37.30 ± 0.93 1.084 ± 0.0059 25.66 ± 2.86

GT-OCTA 199.76 ± 15.05 39.54 ± 0.87 1.089 ± 0.0069 27.14 ± 2.46

TR-OCTA Control (59) 211.57 ± 21.79 37.35 ± 0.72 1.085 ± 0.0064 28.55 ± 2.19

GT-OCTA 197.61 ± 12.83 39.40 ± 0.74 1.088 ± 0.0062 27.43 ± 2.027

TR-OCTA Mild (143) 218.19 ± 22.93 37.12 ± 1.067 1.084 ± 0.0056 25.86 ± 2.74

GT-OCTA 199.29 ± 14.16 39.60 ± 0.80 1.088 ± 0.0070 26.76 ± 2.30

TR-OCTA Moderate (69) 209.54 ± 29.57 37.64 ± 0.83 1.084 ± 0.0060 27.00 ± 2.42

GT-OCTA 204.29 ± 14.62 39.41 ± 0.93 1.089 ± 0.0072 27.81 ± 2.31

TR-OCTA Severe (123) 216.41 ± 25.25 37.14 ± 0.81 1.083 ± 0.0057 26.12 ± 2.44

GT-OCTA 201.34 ± 14.96 39.34 ± 0.84 1.089 ± 0.0072 26.72 ± 2.52
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indicate minimal variation and high consistency in image quality

across different scans. The slight decrease in PCQI for the 6 mm

scans is consistent with the increased FID score, further

confirming that the 3 mm scans offer superior quality. The

PCQI scores for the UIC dataset, while slightly lower than

those of the OCT500 dataset, still demonstrate high image

quality, for 3 mm and 6 mm sets. The minimal difference in

PCQI between 3 mm and 6 mm scans suggests that the image

quality is relatively stable across different FoVs, despite the

higher FID scores.

To compare the quantitative feature values between TR-

OCTA and GT-OCTA, we focus on the performance across

different categories since neither OCT500 nor UIC has equal

distribution of data across different pathologies and normal or

control group. In a comparative analysis from OCT500, BVD

shows more deviation from the GT-OCTA, specially for 6 mm,

supporting the better FID and PCQI scores for 3 mm, indicating

the model can capture the superficial layer vasculature better

than the deep layer hence vessel density shows bigger difference

between TR-OCTA and GT-OCTA (Tables 4, 5). This feature

also has the greatest number of outliers (Figure 5) among all

features contributing to larger difference. Similar observations

can be made from UIC dataset, showing the models limitation in

capturing vasculature from all layers equally. When plotted, the

trend set by the GT-OCTA for BVD show higher deviation for

CNV in OCT500 3 mm. TR-OCTA also follows the same trend,

however, for OCT500 6mm, BVD feature values tend to follow

the GT-OCTA apart from RVO patients. On the other hand, for

UIC 3 mm and 6 mm, BVD fails to properly exhibit the trend

shown by GT-OCTA indicating inclusion of the data in the

FIGURE 6
Feature value distribution of 3mmand 6mm scans for the UIC dataset. (A–D) are BVC, VPI, BVT, and BVD values for 3mm. Similarly, (E–H) show
values for 6 mm scans.
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training process provides better result for BVD (Tables 6, 7).

However, for UIC 6mm, BVD shows clear distinction between

control and early stage DR as well as severe stage DR, similar to

what has been reported in other studies [12]. Overall, when

trained, BVD could be considered as a potential biomarker for

CNV and RVO patients as evident from the analysis (Figure 4).

BVC, another quantitative feature, unlike BVD, doesn’t show

that large of a deviation from the GT values across different

pathologies indicating it could be used as a measure of

performance even on a dataset not seen before. OCT500 3 mm

TR-OCTA tend to show some variations for CNV and RVO patient

similar to BVD however the trend goes beyond what is observed

from GT-OCTA. From UIC dataset, however, BVC feature values

across different pathologies stay in close range across different stages

of DR patients without showing any large deviation. However, the

TR-OCTA values follow GT-OCTA trend.

BVT feature values show least deviation for all datasets across

different patient categories. For OCT500 3 mm, TR-OCTA

values follow the trend set by GT-OCTA specially showing a

clear distinction among DR and other pathologies as well as

normal state (Figure 4C). In consistent with this scenario, UIC

BVT feature values stay in close range for (TR-OCTA and GT-

OCTA) 3 mm and show a better trend line for 6 mm. From

OCT500 6 mm, BVT feature values, while closely following GT-

OCTA values, show clear distinction for AMD patients

indicating a potential choice for AMD classification at lower FoV.

Finally, VPI feature values for OCT500 3 mm TR-OCTA

show an opposite trend compared to GT-OCTA. GT-OCTA

show clear distinction among AMD, CNV and DR pathologies

however TR-OCTA fails to identify the distinction. However,

OCT500 6 mm TR-OCTA shows a much better performance

showing the clear deviation of values for CNV, CSC and DR

patients indicating the model’s ability to distinguish between

normal and AMD, CNV, DR patients in general. A similar

picture is depicted by the performance analysis on UIC

dataset, specially 3 mm, clearly identifying different DR stages

from control groups indicating VPI as a better choice of potential

biomarker for DR patients.

Overall, in light of the comparative analysis performed on both

datasets, SSIM values were higher for OCT500 rather than UIC

indicating the inclusion of the prior dataset affecting the quality of

the generated images. Similar scenarios can be observed from FID

scores, OCT500 having lower value hence better resemblance to

the GT-OCTA images. However, PCQI scores for both datasets

(OCT500 and UIC) indicates the TR-OCTA images are almost the

same as the GT-OCTAs in terms of contrast and sharpness which

is supported by our analysis that some features (BVT, VPI) show

better performance across both FoV. Although, feature values for

BVC and VPI showed slight variation, they were still in close

proximity for both OCT500 and UIC. BVT, however, is found

having almost consistent values for both dataset in all cases. BVD,

on the other hand, shows bigger variation between TR-OCTA and

GT-OCTA for UIC compared to OCT500, an expected outcome

similar to SSIM, as density features tend to be affected by local

vasculature more than the vessel features.

Despite a better performance from the TR-OCTA across the

datasets, our study has some inherent limitations. One limitation

being the scarcity of the publicly available data, restricting the

ability to perform extensive and varied analyses. Additionally, the

dataset used in this research is relatively small, particularly when

considering cross-pathological studies. This limited sample size

can hinder the generalizability of the findings. Furthermore, our

data distribution is unequal across different patient categories and

pathologies, potentially introducing bias and affecting the

robustness of our conclusions. Another significant challenge is

the inconsistency in image quality and signal strength. Not all

OCTA images have the same signal strength or quality, which can

adversely impact the performance of translated OCTA in both

quantitative and qualitative assessments. These limitations

highlight the need for more comprehensive datasets and

improved image acquisition standards to enhance the reliability

and applicability of OCTA feature studies. Although similar

studies have been conducted [12, 14] on OCTA features, to our

knowledge, this is the first study conducted on quantitative

characterization and extensive comparative analysis of retinal

features for TR-OCTA images. We tried to establish the idea

that while the translation model holds promise in reproducing

retinal vasculature across various conditions, there exist minor

variations in the accuracy of vascular metrics between TR-OCTA

and GT-OCTA images. These discrepancies underscore the

necessity for ongoing enhancements to the translation model to

achieve higher precision in vascular representation, particularly for

pathological conditions where accurate vascular depiction is

critical for clinical diagnosis and monitoring.

This study showcases the potential of AI to bridge the gap

between OCT’s inability to visualize blood flow information and

leveraging generative-adversarial learning frameworks for image

translation to capture that information. Our findings suggest that

AI-driven translation models can generate high-quality OCTA

images from OCT data (demonstrated using SSIM, FID and

PCQI metrics) and the quantitative features generated in TR-

OCTA follow a similar trend as in GT-OCTA. This has the

potential to significantly improve the accuracy and efficiency of

diagnosing and monitoring retinal diseases through OCTA

imaging, emphasizing the need for further research and

development in this area.

In summary, this study demonstrates the potential of

generative AI in enhancing OCT imaging for ophthalmic

diagnostics. By validating quantitative features to check the

viability of TR-OCTA, this research addresses significant

limitations in widespread adoption of OCTA in clinical

settings. Despite facing challenges such as generalization for

different retinal diseases and difficulty in capturing detailed

vascular networks, our study lays a solid foundation for future

advancements in multi-modal OCT based retinal disease

diagnosis and monitoring. The incorporation of AI not only
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promises to reduce the dependence on costly OCTA devices but

also opens new avenues for accessible and accurate retinal

healthcare solutions. Moving forward, it is imperative to refine

these AI models to improve the resolution and accuracy of

translated OCTA images, ensuring they can reliably support

clinical decision-making and contribute to the broader

understanding of retinal pathologies.
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SUPPLEMENTARY FIGURE S1
(A–D) show BVC, VPI, BVT, and BVD feature values for the 3 mm dataset
(OCT500) with different patient conditions. a(i-iv) are AMD patients,
b(i-iv) are CNV patients, c(i-iv) are DR patients. d(i-iv) are Normal
patients. (E–K) show feature values for the 6 mm dataset (OCT500) with
different patient conditions. e(i-iv) are AMD patients, f(i-iv) are CNV
patients, g(i-iv) are CSC patients, h(i-iv) are DR patients, i(i-iv) are RVO
patients, j(i-iv) are patients with other retinal pathologies, k(i-iv) are
Normal patients.

SUPPLEMENTARY FIGURE S2
(A–D) show BVC, VPI, BVT and BVD for the UIC 3mm scans with different
patient conditions. a(i-iv) shows Control group, b(i-iv) Mild, c(i-iv)
Moderate, d(i-iv) Severe patient scans. Similarly, (E–H) show BVC, VPI,
BVT and BVD for the UIC 6 mm scans with different patient conditions.
e(i-iv) for Control group, f(i-iv) for Mild, g(i-iv) for Moderate, h(i-iv) for
Severe patient scans.
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