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Abstract

This review outlines some of themany approaches taken over a decade ormore

to repair damaged hearts. We showcase the recent breakthroughs in organ

regeneration elicited by reprogramming factors OCT3/4, SOX2, KLF4, and

C-MYC (OKSM). Transient OKSM transgene expression rejuvenated

senescent organs in mice. OKSM transgenes also caused murine heart cell

regeneration. A triplet alanine mutation of the N-terminus of Serum Response

Factor’s MADS box SRF153(A3), termed STEMIN, and the YAP mutant, YAP5SA

synergized and activatedOKSM andNANOG in adult rat cardiacmyocytes; thus,

causing rapid nuclear proliferation and blocked myocyte differentiation. In

addition, ATAC seq showed induced expression of growth factor genes

FGFs, BMPs, Notchs, IGFs, JAK, STATs and non-canonical Wnts. Injected

STEMIN and YAP5SA synthetic modifying mRNA (mmRNA) into infarcted

adult mouse hearts, brought damaged hearts back to near normal

contractility without severe fibrosis. Thus, STEMIN and YAP5SA mmRNA may

exert additional regenerative potential than OKSM alone for treating heart

diseases.
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Impact statement

The induction of reprograming factors, OCT3/4, SOX2, KLF4, and C-MYC (OKSM),

truly stands out from a myriad of regeneration studies, for their rejuvenation of senescent

organs, such as the adult heart. However, long term treatment of OKSM, as with

adenoviral expression, elicited cancers. Short term transfections of a regenerative

cocktail STEMIN, and YAP5SA synthetic mmRNA induced OKSM plus Nanog, and

rejuvenated infarcted hearts. Short-term treatments with STEMIN and YAP5SAmmRNA

delivery may become a safer strategy to treat debilitating human cardiac diseases.
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Introduction

We showcase breakthroughs in stem cell factor [1, 2] and

STEMIN and YAP5SA [3, 4] in heart regeneration. Human adult

heart lacks the intrinsic regenerative capacity to self-repair after

cardiac injury, such as a myocardial infarction (MI). Many of the

patients with ischemic heart disease not only undergo the acute

phase of MI, but also develop ischemic cardiomyopathy, due to

the loss of cardiomyocytes, and decreased cardiac function

culminating in heart failure [5]. Due to the low regenerative

capacity of cardiomyocytes, the damaged myocardium is

replaced by fibrotic scar tissue, which further reduces

pumping and circulatory function of the heart. Subsequently,

the cardiac remodeling process results in further fibrosis, loss of

cardiomyocytes, decrease cardiac function, and eventually

resulting in heart failure, the leading cause of death

worldwide [6].

Protecting the heart from progression to fatal heart failure

continues to be focus of treating ischemic heart diseases [7, 8].

Cardiac intervention via revascularization by thrombolysis, and

bypass surgeries to improve blood supply can salvage the injured

ischemic myocardium. Medications such as angiotensin-

converting enzyme inhibitors, angiotensin receptor-neprilysin

inhibitors, mineralocorticoid-receptor antagonists, and β-
blockers were proven to be effective on decreasing heart

failure mortality [6, 9, 10]. Patients could benefit from these

cardioprotective therapies targeting the remodeling process in

the failing hearts. However, efficacious therapies for advanced

cardiac remodeling in the later stages of heart failure are limited

[11]. Mechanical support therapies such as cardiac

resynchronization therapy and the application of left

ventricular assist devices show beneficial contributions to end-

stage heart failure patients [12], but the only treatment to end-

stage heart failure with definitive effects is heart transplantation,

which is limited by the lack of donor hearts [13].

Virtually the complete supply of human cardiomyocytes is

established within the first month of life, and there is a dramatic

drop in regenerative capacity within the first few days after birth

[14]. Naqvi et al. [15] showed that the IGF-1/IGF-1-R/Akt

pathway can be activated by a thyroid hormone surge in

juvenile mice and initiated a brief but intense cardiomyocyte

proliferative burst. Cardiomyocyte proliferation contributes to

developmental heart growth in children. The number of

cardiomyocytes in the left ventricle increased 3.4-fold

between the first year and 20 years of age [16]. Adult human

myocytes still maintain the ability to renew at approximately

1% per year, which was revealed by carbon-14 dating

experiments [17]. Therefore, the poor regenerative capacity

of adult human cardiomyocytes severely limits myocardial

repair after a cardiac scenario. This review will survey

potential therapies for the promotion of cardiomyocyte

endogenous regenerative capacity towards cell replacement

and cardiac repair.

Cell cycle regulation

Cell cycle regulators were among the first factors reported to

be sufficient for driving adult cardiomyocyte through cell cycle,

long before the trans-differentiation methods were published. In

2004, CNNA2 was reported to induce cardiac enlargement by

cardiomyocyte hyperplasia, when expressed from embryonic day

8 into adulthood [18]. Intramyocardial delivery of adenoviral

vector expressing CNNA2 could induce myocardial regeneration

and enhance cardiac function in injured heart [19] and

constitutive expression of CNNA2 could limit ventricular

dilation while enhancing cardiac function [20]. Besides

CNNA2, other cyclins such as CNND1, CNND2, and

CNND3 were also proved to promote cardiomyocyte cell cycle

activity [21, 22]. A discrete combination of cell cycle regulators

besides cyclins were reported to efficiently unlock the

proliferative capacity in cardiomyocytes that have terminally

exited the cell cycle. Overexpression of four factors cyclin-

dependent kinase 1 (CDK1), CDK4, CNNB1, and

CNND1 indicated as 4F could drive robust cell proliferation

in post-mitotic mouse, rat, and human cardiomyocytes, whereas

CDK1 and CNNB can be substituted by small molecules

SB431542 and MK1775 [23].

Growth factor stimulants

Growth factors were also described to have the ability to

stimulate mature cardiomyocytes entry into cell cycle. FGF1/

p38 MAP kinase inhibitor treatment after acute myocardial

infarction in 8 to 10-week-old adult rat could increase

cardiomyocyte mitosis. FGF1/p38 MAP kinase inhibitor

treatment of 4 weeks resulted in reduced scar tissue and

improved heart function [24]. However, a randomized clinic

trial did not support the strategy of p38 MAPK inhibition in

patients hospitalized with myocardial infarction. Losmapimod, a

selective, reversible, competitive inhibitor of p38 MAPK, did not

reduce the incidence of recurrent major adverse cardiovascular

events in patients hospitalized with acute myocardial infarction

[25]. In a swine model, IGF-1/HGF therapy was able to improve

cardiac function in chronic myocardial infarction heart, and

further increases can be observed by using an improved new

delivery method, UPy hydrogel [26]. Nevertheless, treatments of

growth factors not only stimulate the capacity of cardiomyocytes

to re-enter cell cycle, but also fibroblasts to enter the

cell cycle [26].

Manipulate signaling pathways

Signaling pathways involved in cardiogenesis and

cardiomyocyte maturation were also investigated for their

ability to promote cardiomyocyte regeneration. Meis1 deletion
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in mouse cardiomyocytes was sufficient to extend the

proliferative window of postnatal cardiomyocytes and

reactivate cardiomyocyte mitosis in adult mouse heart without

deleterious influences [27]. Paracrine factors such as Fgf16 were

also reported to be potential regulatory factors in promoting

myocardial repair [28]. GATA4 regulates neonatal heart

regeneration through regulating expression of FGF16, and

overexpression of FGF16 via adeno-associated virus in Gata4-

ablatedmice heart could partially rescue cardiac hypertrophy and

improve cardiac function after injury. Tbx20 overexpression in

adult cardiomyocyte directly represses cell-cycle inhibitory genes

Meis1, Btg2, and p21, hence promotes adult cardiomyocyte

proliferation and preserves cardiac function after myocardial

infarction [29]. Hippo signaling pathway has appeared to be a

key regulator of cardiomyocyte proliferation [30–33].

MicroRNAs such as miR302-367 cluster have been shown to

regulate cardiomyocyte proliferation [34]. miR590 and miR199a

were reported to act as key regulators of cardiomyocyte

proliferation [35].

Cell reprogramming

In the past decade, with the advent of iPSC technology,

numerous cell differentiation methodologies have been

developed [36–38]. Somatic cell reprogramming of adult

murine cardiac fibroblasts into beating cardiac-like myocytes

in vitro were first established by the introduction of four

transcription factors, GATA4, HAND2, TBX5, and MEF2C

[39]. Also, microRNAs were proven to mediate somatic cell

transdifferentiation into cardiomyocyte-like cells. For example,

a combination of microRNAs (miR-1, miR-133, miR-208, and

miR-499) could induce direct cellular reprogramming of

fibroblasts to cardiomyocyte-like cells both in vitro and in

vivo. [40] The authors demonstrated that a single transient

transfection of the miRNAs was able to mediate

reprogramming confirmed by expression of mature

cardiomyocyte markers, exhibition of cardiomyocyte

spontaneous calcium flux characteristic, and sarcomeric

organization. Wang et al. [40] demonstrated that the

introduction of “GMT” factors Gata4, Mef2c, and Tbx5 could

mediate the resident non-cardiomyocyte in the murine heart to

be reprogrammed into cardiomyocyte-like cells in vivo. Islas et al.

[41] reported that mammalian mesoderm posterior (MESP)

homolog and v-ets erythroblastosis virus E26 oncogene

homolog 2 (ETS2) can reprogram primary human dermal

fibroblasts into cardiac progenitor cells, whereas Nam et al.

[42] showed that four human cardiac transcription factors,

GATA4, Hand2, T-box5, myocardin, and two microRNAs,

miR-1 and miR-133, can activate cardiac specific marker

expression in both neonatal and adult human fibroblasts.

Purely chemical means by introduction of small molecules

and chemical cocktails were soon discovered to conduct direct

reprogramming of fibroblasts to functional cardiomyocytes.

Treatment of a combination of nine compounds termed 9C to

can reprogram human fibroblasts to uniformly contracting

induced cardiomyocyte-like cells [43]. Bypassing the use of

viral-derived factors, automatically beating cardiomyocyte-like

cells could be generated from mouse fibroblasts only by addition

of chemical cocktails instead of transcription factors [44]. The

studies of purely chemical means replacing viral-derived factors

laid foundations for potential safer treatment for heart failure.

Reprograming factors, OKSM

Recently, short-term in vivo transgene induction of

reprogramming factors OCT3/4, SOX2, KLF4, and C-MYC

(OKSM) for less than a week generated partial reprograming,

rejuvenated senescent organs, and extended mouse lifespans [1].

Transgenic expression of OSKM in vivo improves recovery from

metabolic disease and muscle injury in older wild-type mice.

Partial reprogramming may, lead to rejuvenating effects in

different tissues, such as the kidney and skin [45]. The

rejuvenating effects were associated with reduced expression

of genes involved in inflammation, senescence and stress

response pathways. Mechanistically, epigenetic chromatin

remodeling occurs during shorter term OKSM treatment

which coincides with anti-aging. But, long term transgene

expression by adenoviruses may cause tumorgenesis [45].

Indeed, a recent study showed that in vivo expression of

OKSM transgenes caused murine heart cell regeneration [2].

Short-term expression of OKSM did not cause cancer but was

sufficient to induce cell replication and rejuvenation. However,

long term treatment of OKSM, as with adenoviral expression,

elicited cancer like transformation. Thus, to rejuvenate senescent

myocytes and expand their number after a cardiac infarct, adult

myocytes may need to be taken backwards to a primitive

replicative state driven by stem cell factors for short term

expression. Avoidance of long term expression from viral

vectors provide a strong rationale of the use of synthetic

mode RNA for short term transfections into cardiac myocytes.

Synthetic RNA delivery to
cardiac myocytes

The idea of gene transfer by mRNA as a method to transfer

somatic genes into mammalian tissue was first introduced, by

Bhargava and Shanmugam [46]. Wolff et al. [47] injected vectors

expressing mRNA encoding luciferase, chloramphenicol

acetyltransferase, and β-galactosidase into mouse skeletal

muscle in vivo. Protein expression was detected for all the

genes, which marked the opening for the use of mRNA as a

method to somatic gene transfer method into mammalian tissue.

However, this method had limited use because of the immune
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response that mRNA elicited [48]. Unmodified mRNAs can be

recognized by the innate immune system of the cells via toll-like

receptors [49], thus promoting the degradation of the

unmodified mRNA. Fortunately, modified mRNA was made

to bypass toll-like receptors. Modifying mRNA’s (mmRNA)

secondary structure, substituting uridine with pseudouridine,

and replacing cytosine with 5-methyl-cytosine can all lead to

less recognition by nucleases and toll-like receptors [49].

STEMIN and YAP5SA induced OKSM

A schematic diagram of STEMIN and YAP5SA synthetic

mmRNA induction of the cardiac myocyte regeneration

pathway. STEMIN and YAP5SA synergize by the activation of

the stem cell factors OCT4, KLF4,SOX2 and C-MYC (OKSM) +

Nanog, shown in Figure 1. Evidence provided by Chen et al. [2]

and Xiao et al. [3, 4] showed that OKSM treatment of adult

cardiac myocytes has a fundamental role in inducing replication

and the inhibition of myocyte differentiation, taking cardiac

myocytes backwards to a more primative developmental state.

Xiao et al. [3] discovered that a triplet alanine mutation of

N-terminus of SRF’s MADS box SRF153 (A3), termed

STEMIN, showed powerful activation of stem cell factors, and

inhibited the induction of sarcomere assembly factors and

cardiac myocyte specific genes. The triplet alanine mutation at

aa153, aa154, and aa155 of the N-terminus of SRF’s MADS box

blocked the interaction of Nkx2.5 and GATA4 required for

facilitating SRF DNA binding to CArG boxes; thus, blocking

myocyte differentiation. Xiao et al. [3] showed the ability for

STEMIN to be the “myogenic driver” was completely abrogated

in the SRF null ES cells. The mutation of aa154 lysine to an

alanine in the MADS box severely weakened SRF153(A3)

transcription of many CArG-dependent cardiac-specified

FIGURE 1
Schematic diagram of STEMIN and YAP5SA synthetic mmRNA induction of the cardiac myocyte regeneration pathway. STEMIN and YAP5SA
synergize by the activation of the stem cell factors OCT4, KLF4,SOX2 andC-MYC (OKSM) +Nanog. Evidence provided by Chen et al. [2] and Xiao et al.
[3, 4] showed that OKSM treatment of adult cardiac myocytes has a fundamental role in inducing replication and the inhibition of myocyte
differentiation, taking cardiac myocytes backwards to a more primative developmental state. In addition, Xiao et al. [3, 4] showed that STEMIN
and YAP5SA growth factor pathways plus telomerase maintence gene activities repaired infarcted mouse hearts and the potential for blocking
cell death.
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genes. Rescue of SRF null ES cells with lentiviral expressed triplet

SRF mutant, STEMIN inhibited the induction of several cardiac

myocyte specific genes, such as those encoding sarcomeric actins,

heavy and light chain myosins, ion channels, and structural

proteins. And caused powerful activation of stem cell marker

genes, such as Egr1, Rex1, Nanog, Oct4, Zic3, Dppa2, Dnmt1,

Dnmt2, and proliferin [3].

Constitutive YAP1 activity by
mutant YAP5SA

Transcription co-activator YAP can be an effective target to

manipulate due to its function, as the key regulator in Hippo

signaling pathway. Zhao et al. [50] generated and active form of

YAP, termed YAP5SA, by mutating all the LATS1/

2 phosphorylation sites. The phosphorylation sites mutation

of YAP prevents 14-3-3 binding, thus preventing YAP protein

degradation. YAP5SA enters nucleus and binds with TEAD to

regulate nuclear targets. Recently, YAP5SA has been proven to

partially reprogram the highly differentiated adult mouse

cardiomyocytes to a more primitive proliferative state [51].

The mutual role of STEMIN and YAP5SA synthetic

mmRNA was tested in adult rodent cardiomyocytes. Xiao at

al [3]. showed adult cardiomyocytes entered the mitotic cell cycle

24 h post-transfection. Their synthetic mmRNA declined by at

least 90%within 24 h and was undetectable by 48 h supported the

notion of the rapid turnover of mmRNA. We then asked, how

does STEMIN and YAP5SA activate nuclear replication so

quickly? Azeez Muili, a recent doctoral student, discovered

that transfection of neonatal rat ventricular myocytes

(NVRM) with STEMIN mmRNA for 24 h revealed the

induction of NANOG by anti-NANOG staining, and

significant induction of NANOG and OCT4 RNA, but not

KLF4, SOX2 and C-MYC transcripts assayed by quantitative

PCR and by RNA sequencing [3]. In fact, in comparison to

transfected YAP5SA, NANOG, and OCT4 transcripts were

induced to a greater extent with STEMIN, while YAP5SA

upregulated C-MYC. Together STEMIN and YAP5SA

synergized and induced KLF4 and SOX2 and the stem cell

program similar to short term OKSM transgenic expression [2].

Next, the expression of cyclins appeared to be repressed in

murine ES cells in the absence of SRF. Rescue with wild-type SRF

caused activation of cyclins, CNNB1, CNND1, CNNC, and

CNNE1, while STEMIN strongly induced CNNA2, CNNB1,

and CNNE1. Note the induction of CNNA2 fostered

myocardial regeneration and enhance cardiac function in

injured heart [19, 20]. Most of the crucial genes involved in

DNA replication in the replisome pathway, such as ORC2,

MCM2, CDC45, and CLASPIN, were significantly increased

by STEMIN and YAP5SA mmRNA in the G1 phase of the

cell cycle. Mitotic genes such as, Bub1, Bub1b, Cenpe, Ndc80,

CcnB1, and Dync1 was observed by 32 h and the appearance of

DNA packaging genes, which mark the S phase of the cell cycle,

including histone 1 genes, such as Hist1h1a, Hist1h1b, and

Hist1h2ba, by 40 h post transfection. Upregulation of crucial

cell cycle genes such as Plk1 and Anln suggested that STEMIN

and YAP5SA promoted several steps of cell-division cycle of

cardiomyocyte. In addition, DIAPH3 was localized to multiple

regions between and surrounding dividing nuclei [3, 4].

DIAPH3 marks anaphase of the cell cycle and induced F-actin

to help assemble a contractile ring during cytokinesis. By 40 h

post-STEMIN and YAP5SA treatment, many cardiac-specified

genes including Actc1, Myh6, Myocd, and Mef2C were

downregulated. Thus, STEMIN and YAP5SA mmRNA is a

potent activator of stem cell gene activity of OKSM plus

Nanog, cell replication and inhibitor of cardiac-specific

gene activity.

A new molecular technology named ATAC seq (Assay for

Transposase-Accessible Chromatin using sequencing) accesses

remodeled open chromatin DNA with an hyperactive mutant

Tn5 Transposase that inserts sequencing adapters into open

regions of the genome [52]. Sequencing TnT5 bound DNA

revealed regions of increased accessibility and maps

transcription factor binding sites. To identify the underlying

mechanism of how STEMIN works as a novel transcription

factor, we used ATAC-seq to create a bioinformatics

topography of interactomes of STEMIN, wildtype SRF, and

YAP5SA. Xiao et al. [3] findings suggest a complementary

effect of YAP5SA and STEMIN interactions with known and

novel co-factors.

SRF has several tissue-specific regulatory cofactors, such as

Nkx2.5 and GATA4, that control SRF activity by interacting with

SRF’s MADS box [3]; whereas, YAP does not directly bind to

DNA or bind directly to SRF [53]. ETS factors bind well to

wildtype SRF as previously shown [54–56] and to mutant

STEMIN [3]. TEAD1 or TEF1, one of SRF’s cofactors shown

by our previous studies [57, 58] to physically interact with SRF,

may also serve as a bridge between YAP5SA and STEMIN to

implement their synergy. STEMIN’s interactome prefers

recruitment by ETS factors, and CTCF, SP1, RBPJ, NFAT5,

and TEAD1. In addition, we found many new YAP5SA

cofactor associations with DNA binding cofactors ETS1, SP2,

SP1, JUNB, FOS, CTGF, IRF3, MEF2C, and RBPJ, as well as its

well-known cofactors RUNX1, SMAD3, and TEAD1 [3].

YAP5SA interactomes also revealed considerable association

with SRF and its cofactors, previously not shown. Thus,

STEMIN and YAP5SA share interactive associations with

many more transcription factors than previously imagined,

providing a powerful spectrum of transcription regulators that

are strongly pro-replicative.

ATAC-seq also revealed chromatin remodeling of many

growth factors and signaling pathway genes, including FGFs,

BMPs, Notchs, and Wnts. [3] Activation of non-canonical

WNT5A/B and WNT11, stimulates cardiomyogenic

proliferation [59–61]. WNT5A/WNT11 inhibits
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CTNNB1 signaling and promotes cardiac progenitor

development in differentiating embryonic stem cells.. Signaling

pathways that express STATS and JAKS, such as STAT5 and

JAK3, have key roles in cellular growth [62]. In addition, YAP

signaling has a strong impact on inducing IGF1, IGF2, and their

binding proteins and gene remodeling to enhance cell growth

and resist apoptosis [63].

Co-expression of STEMIN and
YAP5SA repaired infarcted adult
mouse hearts in vivo

We tested the treatment combination of STEMIN and

YAP5SA mRNA in vivo by injecting directly into the left

ventricles of adult mice after myocardial infarction [4]. The

mmRNA injection method with the co-transfectant agent,

Lipofectamine MessengerMAX, delivered STEMIN and

YAP5SA mmRNA together into 5 precise injection sites

surrounding the infarct in the mouse left ventricle proved to

be an effective, precise, and leak-free method. In the short-term

experiments, we were able to detect incorporated 5-ethynyl-2′-
deoxyuridine (alpha-EdU) into DNA of transfected myocytes,

which co-stained with anti-SRF and anti-YAP antibodies, around

the needle tracts in the mRNA treatment groups. Co-staining

with Tnnt and pH3 antibodies marked replicated cardiac

myocyte nuclei in response to STEMIN and YAP5SA mRNA

injection [4]. Bioinformatic analysis revealed the upregulation of

multiple cell cycle gene clusters with co-expression of STEMIN

and YAP5SA, while gene clusters associated with cardiomyocyte

differentiation (GO: 0055007), sarcomeric assembly and cardiac

muscle contraction (GO: 0060048) were profoundly down

regulated. We further illustrated the improvement in mouse

cardiac function in long-term experiments for 4 weeks. Mice

cardiac function evaluated by echocardiography, revealed

improved cardiac pumping function by STEMIN and

YAP5SA mRNA co-injection.

STEMIN and YAP5SA may block
cardiac apoptosis

Induced myocyte proliferation may not be the only program

responsible for the maintenance and or growth of cardiac mass;

could the concomitant STEMIN and YAP5SA-induced

upregulation of pro-survival and anti-apoptotic miRNAs, as

observed from our ATAC-sequencing data [3], be responsible?

Preliminary studies revealed transfected STEMIN and YAP5SA

mRNAs alone and or in combination in cardiac myocytes for

24 h significantly inhibited CASP3 transcripts by over 65%–90%

and inhibited TP53 transcripts primarily with YAP5SA by over

50% (study in preparation). Thus, chromatin remodeling data

directed us to hypothesize that the inhibition of cell death may

also come into play in the viability of the cardiomyocytes. Studies

are underway to determine whether STEMIN and YAP5SA

might induce anti-apoptotic miRs through the

induction of OKSM.

Conclusion

Finally, synthetic mRNA may be used as a safe and efficient

gene delivery vehicle in adult hearts. Compared to viral vectors,

the transient gene expression that mmRNA provides is far more

controllable, which makes the mmRNA gene-delivery method a

safer option to deliver therapeutic factors for cardiac

regeneration. In fact, adenovirus delivery of stem cell factors

is initially curative for regenerating cardiac function, but it

causes cardiac rhadomyosarcomas in the long term [64]. Given

the post-transcription nature of mRNA, mmRNA does not

require transfer to the nucleus to get the expression of the

target protein. Besides, mmRNA-based gene delivery can

deliver gene combinations with different ratios specifically

tailored to patients with a different course of the disease.

Our data suggest that synthetic mmRNA may be used to

deliver STEMIN and YAP5SA into adult cardiac myocytes

both in vitro and in vivo to achieve high transfection

efficiency with little biosafety concern. Inducing tissue

regeneration by short-term treatments with STEMIN and

YAP5SA mRNA may become a useful and safer strategy to

treat debilitating human cardiac diseases.
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