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Abstract

Fructose and lactate are present in high concentrations in uterine luminal fluid,

fetal fluids and fetal blood of ungulates and cetaceans, but their roles have been

ignored and they have been considered waste products of pregnancy. This

review provides evidence for key roles of both fructose and lactate in support of

key metabolic pathways required for growth and development of fetal-

placental tissues, implantation and placentation. The uterus and placenta of

ungulates convert glucose to fructose via the polyol pathway. Fructose is

sequestered within the uterus and cannot be transported back into the

maternal circulation. Fructose is phosphorylated by ketohexokinase to

fructose-1-PO4 (F1P) by that is metabolized via the fructolysis pathway to

yield dihydoxyacetone phosphate and glyceraldehyde-3-PO4 that are

downstream of phosphofructokinase. Thus, there is no inhibition of the

fructolysis pathway by low pH, citrate or ATP which allows F1P to

continuously generate substrates for the pentose cycle, hexosamine

biosynthesis pathway, one-carbon metabolism and tricarboxylic acid cycle,

as well as lactate. Lactate sustains the activity of hypoxia-inducible factor alpha

and its downstream targets such as vascular endothelial growth factor to

increase utero-placental blood flow critical to growth and development of

the fetal-placental tissues and a successful outcome of pregnancy. Pregnancy

has been referred to as a controlled cancer and this review addresses similarities

regarding metabolic aspects of tumors and the placenta.
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Introduction

Proliferating cells, such as cancer cells and activated lymphocytes, are metabolically

different from nonproliferating cells as they are programmed to utilize either anaerobic or

aerobic glycolysis, the Warburg effect, depending on the availability of oxygen [1].

Glucose and fructose are hexose sugars that provide glycolytic intermediates for

further metabolism via the pentose cycle, tricarboxylic acid cycle (TCA), one-carbon

metabolism and hexosamine biosynthesis pathway. Glycolysis is a physiological response
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of tissues to hypoxia, a low oxygen environment, with cells of

tumors taking up glucose and producing intermediate products

of glycolysis (including fructose-6-phosphate, F6P) and

significant amounts of lactate. By switching from oxidative

phosphorylation to glycolysis, cells rapidly generate ATP as

compared with oxidation of glucose and activation of the

TCA cycle. Further, glycolytic intermediates are substrates for

other metabolic pathways required to meet demands for

proliferation, migration, and differentiation of cells [2–5].

This review focuses on the metabolism of glucose and

fructose, two molecules present in great abundances in

conceptuses (embryo and extra-embryonic membranes; fetus

and placenta) of ungulates and cetaceans throughout

pregnancy [see [6]; Figure 1]. Fructose and lactate have been

considered metabolic wastes, so their functional roles in

conceptus development have not been established. The

following sections of this review evidence for important roles

of fructose and lactate in conceptus development. Thus, the focus

of this review is on contributions of glucose and fructose to the

major metabolic pathways required for development of

conceptuses under oxygenated and low oxygen conditions,

expression of enzymes for production and metabolism of

fructose from glucose, and characterization of lactate synthesis

and transport throughout pregnancy.

Another focus of this review is the role of fructose in

uncontrolled growth of cancers, as Burton et al. [7] reported

similarities between metabolism in placentae and in malignant

tumors while acknowledging that growth of the placenta is

regulated. They note that the availability of oxygen controls

placental development and tumor behavior as both develop in

a low oxygen environment, and both need to stimulate vascular

development to deliver nutrients and oxygen sufficient to support

high rates of cell proliferation. Thus, glycolysis is common in

support of growth and development of both placentae and

tumors. Glycolysis, rather than oxidative phosphorylation, has

the advantage of maintaining carbon skeletons for the synthesis

of nucleotides, cell membranes and organelles, as well as

protecting the conceptus from adverse effects of free radicals.

Fructose metabolism and cancer (see
Krause and Wegner)

The link between cancer and altered glucose metabolism was

discovered by Otto Warburg over 100 years ago. A connection

between cancer and fructose metabolism was also discovered as

fructose, like glucose, affects growth, proliferation, and survival

of cancer cells [8, 9]. Cancer cells express solute carrier family

FIGURE 1
Placentae of ungulates include the amnion, allantois and chorion with the latter two membranes forming the chorioallantois. The majority of
blood flow is via placentomes composed on the caruncle on the maternal side (green portion) and the cotyledon on the fetal side (blue). There are
also areolae associated with the openings of uterine glands that form a “pocket” into which secretions are delivered and transported across the
chorioallantois intothe fetal-placental circulation. The amnion is filled with amniotic fluid that is basically isosmotic to fetal serum and contains
nutrients such as glucose and fructose. The allantoic sac is filled with allantoic fluid of which changes in are dynamic manner throughout gestation.
Although allantoic fluid is hypoosmotic with respect to fetal fluids it is enriched in nutrients transported for support of fetal-placental tissues or
cleared through the kidney into the bladder for delivery back into the allantoic sac via the urachus. Thus, allantoic fluid is a nutrient reservoir for the
developing conceptus.
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member 5 (SLC2A5), the fructose transporter, and upregulation

of SLC2A5 is indicative of a poor prognosis for cancer patients

that experienced an increase in cancer cell proliferation, colony

growth, and metastasis [10]. There is over-expression of

SLC2A5 for glioblastoma, colon, liver, lung, breast, and

prostate cancers [11, 12].

The polyol pathway involves two steps for conversion of

glucose to fructose [13–15]. Glucose is reduced to sorbitol by

aldose reductase (AKR1B1) that requires nicotinamide

adenine dinucleotide phosphate hydrogen (NADPH), and

sorbitol is oxidized to fructose by sorbitol dehydrogenase

(SORD) yielding nicotinamide adenine dinucleotide

hydrogen (NADH) from nicotinamide adenine dinucleotide

(NAD). The conversion of glucose to fructose may enhance

glycolysis with conversion of fructose to fructose-1-PO4 (F1P)

by ketohexokinase (KHK) occurring mainly in the liver [16,

17]. KHK is also frequently expressed in tumors [18–20] that

also produce fructose 1-P endogenously from fructose (a

product of glucose). This reaction bypasses the rate-

limiting step in glycolysis at the level of

phosphofructokinase (PFK), which is inhibited by high

levels of ATP, citrate and low pH. Naked mole rats also

increase the production of fructose and F1P to increase

their survival under low oxygen levels and even anoxia

because fructose supports glycolysis and generation of ATP

and substrates for other major metabolic pathways [21]. Low

concentrations of oxygen inhibit oxidative phosphorylation

that lowers pH and inhibits PFK. Thus, metabolism of

fructose to F1P by KHK bypasses the PFK feedback

inhibition by low pH, whereas glaceraldehyde-3-PO4

(GAP) and dihydroxyacetone-PO4 (DHAP) enter glycolysis

downstream of PFK.

Most tumors develop initially in a hypoxic and acidic

environment [22]. A direct link between polyol pathway

activity and cancer was reported by Schwab et al. [23] who

found a strong correlation between expression of AKR1B1and

epithelial-to-mesenchymal transition (EMT) in patients with

lung cancer and in an EMT-mediated colon cancer mouse

model. They also found that AKR1B1 knockdown decreased

EMT in cancers. Knockdown of expression of SORD also

suppressed EMT in the cancer cell line. Schwab and

colleagues [23] reported that glucose metabolism via the

polyol pathway controls EMT via transforming growth factor

beta (TGFB) autocrine stimulation and that expression of TGFB

decreased following knockdown of AKR1B1 and SORD while

EMT markers were rescued by TGFB [23]. There is also a link

between the polyol pathway, particularly

AKR1B1 overexpression, and development of breast, ovarian,

cervical, and rectal cancers [24]. For colorectal cancer cells,

AKR1B1 affects cellular proliferation and cell cycle

progression, cell motility and expression of nuclear factor

kappa-light-chain-enhancer of activated B cells (NFKB)

resulting in a poor prognosis for colorectal cancer patients [25].

There is considerable evidence for endogenous production of

fructose via the polyol pathway in cancer cells and

phosphorylation of fructose to F1P by KHK in tumors of

humans. This pathway for glycolysis is clearly advantageous as

it bypasses PFK regulation to allow endogenously produced

fructose to be used to produce F1P and substrates from the

glycolytic pathway to support of cancer cells in a low oxygen, low

pH environment that include the hexosamine biosynthesis

pathway [26], the pentose cycle (PC) [27], de novo lipogenesis

[28], one-carbon metabolism [29], and the TCA cycle [29].

The polyol pathway, fructose
synthesis, and pregnancy

The polyol pathway involves two steps for conversion of

glucose to fructose [13–15] as reviewed in Fructose Metabolism

and Cancer. But the first report of fructose in tissues of

conceptuses was in 1855 by Bernard [30]. Between that time

and 1956, numerous reports confirmed the presence or absence

of fructose in blood, amniotic fluid and allantoic fluid of

ungulates and other species (see Goodwin [31]). Due to

confusion about the presence or absence of fructose in fetal

blood among species, Goodwin [31] measured fructose in blood

from ungulates (ox, goat, horse, pig), cetaceans (fin, humpback

and blue whales), and nonungulates (guinea pig, rabbit, rat, dog,

cat, ferret) and cited work indicating the absence of fructose in

blood from newborn human babies. Thus, he divided common

mammals into two groups: those with detectable fructose

(ungulates and cetaceans) and those with very low or

undetectable fructose in fetal blood (nonungulates and

humans). It was also noted that samples of fetal blood and

amniotic fluids from ungulates and cetaceans had much

greater concentrations of fructose than glucose.

There are species with invasive implantation and either

hemochorial (humans, monkeys and rodents) or

endotheliochorial (carnivores) placentae with close apposition

between maternal and blood and fetal blood for efficient

transport of glucose. Species with those types of placentae

have little or no fructose in fetal blood or fetal fluids.

However, species with noninvasive implantation have either

epitheliochorial placentae (pigs, horses, cetaceans) or

syndesmochorial placentae (cows, sheep, goats) with five or

six layers of cells between maternal and fetal blood. Those

species have fructogenic placenta with fructose being the most

abundant hexose sugar in blood and fetal fluids of those species.

Fructose is present in fluid of the extra-embryonic coelom of

human conceptuses in early gestation [32], but it is a minor sugar

compared with glucose. Fructose is also a minor sugar in fetal

blood and fetal fluids of dogs, cats, guinea pigs, rabbits, rats,

and ferrets [31].

Studies of pregnant ewes [see [6, 33, 34]] revealed that: 1)

injection of glucose into ewes to make them hyperglycemic
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resulted in a rapid increase in fructose in fetal blood; 2) injection

of glucose into the fetal vasculature increased glucose in maternal

blood and the fetus experienced hyperfructosemia indicating that

glucose, but not fructose, could be transported from the fetal-

placental vasculature to maternal blood; 3) the placenta is

responsible for converting glucose to fructose; and 4) the flux

of glucose from maternal blood to fetal blood may reach 70 mg/

min in hyperglycemic ewes. Radiolabeled glucose was also shown

to be converted to radiolabeled fructose by placentae of pigs. One

may speculate about four main points. First, in species with

hemochorial and endotheliochorial placenta, the chorion is in

very close proximity to maternal blood for highly efficient

exchange of glucose and other nutrients, as well as gases. The

number of tissue layers separating maternal blood and chorion is

three in species with hemochorial placenta, four in species with

endotheliochorial placenta, but six in species with

syndesmochorial and epitheliochorial placenta. Second, species

with hemochorial placenta do not have an allantois as it regresses,

like the yolk sac, early in gestation. For carnivores with

endotheliochorial placenta, there is an allantoic sac, but it is

not well developed. However, for ungulates, a well-developed

allantois is characteristic of the placenta. The allantois forms a sac

that is a reservoir of water and nutrients (e.g., fructose and

glutamine) in storage and available to be recycled into the fetal-

placental circulation. Third, the rate of uterine blood flow to

support a human pregnancy is estimated to be 0.5 L per minute

[35] compared to 2.5 L per minute for pigs [36], 5.95 L per

minute for cows [37] and 2 L per minute for sheep during late

gestation. The high rates of uterine blood flow for pregnant

ungulates are critical for delivery and exchange of sufficient

nutrients and gases to support fetal growth and development.

Fourth, the placentae of ungulates convert glucose to fructose

that is sequestered within the pregnant uterus and unavailable to

maternal tissues. Rather, it is metabolized via glycolysis after

being phosphorylated at carbon number 1 to F1P. This

fructolysis pathway is not inhibited by low pH, citrate or ATP.

Fructose in conceptuses of sheep and pigs has been ignored

by fetal physiologist using those animal models in biomedical

research although fructose is 15- to 30-fold greater than glucose

in allantoic fluid of sheep (see Figure 2), as well as blood of ovine

fetuses (data not shown). A review by Battaglia and Meschia [38]

on fetal and placental metabolism does not mention fructose.

Fructose was considered a waste product since it was not

metabolized via the classical glycolytic pathway [38–42] even

though it is 11- to 33-times more abundant than glucose in blood

and allantoic fluid of fetal lambs [33]. The literature indicates the

following: 1) fructose can be used for synthesis of nucleic acids

and generation of reducing equivalents in the form of NADPH in

fetal pigs [43] and in HeLa cells [44]; 2) neither fructose nor

glucose is metabolized via the PC by the ovine placenta [45]; 3)

fructose and glucose are equivalent substrates for the synthesis of

neutral lipids and phospholipids in heart, liver, kidney, brain, and

adipose tissue of fetal lambs [46]; 4) activities of glucose-6-

phosphate (G6P) dehydrogenase, malic enzyme, and acetyl-

CoA carboxylase in liver are stimulated by glucose to increase

lipogenesis [47]; and 5) fructose enters adipocytes by both

insulin-independent and insulin-insensitive mechanisms [48].

These lines of evidence indicated that both glucose and fructose

are metabolic substrates utilized by mammalian conceptuses.

Unique attributes of fructose as a
metabolic substrate supporting
growth and development of ungulate
and cetacean conceptuses

Fructose is 15- to 30-fold greater in abundance than glucose

in fetal fluids and plasma throughout pregnancy in sheep, for

example, highlighting the facts that ungulate placentae are

fructogenic and that fructose, but not glucose, is sequestered

within fetal blood and fetal fluids [[49–51]; Figure 2]. The

following are key findings from research on metabolism of

fructose in ungulates. First, cell-specific, and temporal changes

in expression of enzymes involved in the metabolism of glucose

and fructose in ovine and porcine conceptuses throughout

pregnancy are well characterized [6, 34, 52–59]. Second, cell-

specific and temporal expression of KHK isoforms for conversion

of fructose to F1P provide a substrate for metabolism via the

fructolysis pathway that bypasses the regulatory step at PFK in

glycolysis for unimpeded production of key substrates for the PC

(G6P) [54], hexosamine biosynthesis (F6P) [6, 59], one-carbon

metabolism and serine synthesis (3-phosphoglycerate) [53], and

TCA cycle (pyruvate) [54]. Third, the glycolytic pathway

generates abundant lactate that is not likely used for

gluconeogenesis by ovine conceptuses as they do not express

the required enzymes for gluconeogenesis; glucose-6-

phosphatase (G6Pase) or phosphoenolpyruvate carboxykinase

(PCK) [54]. Fourth, ovine conceptuses do express aldolase, an

enzyme that converts glyceraldehyde-3-phosphate (GAP) and

dihydroxyacetone phosphate to F-1,6-P. The latter is

dephosphorylated to F6P, which is converted to G6P via

phosphoglucoisomerase (PGI) for metabolism via the PC and

glycogen synthesis [54]. Fifth, there is expression of O-linked

N-acetylglucosaminyltransferase (OGT) mRNA in placentomes

of sheep throughout gestation and OGT glycosylates and

activates proteins such as AKT (protein kinase B) to inhibit

silencing of TSC2 (tuberous sclerosis complex 2) and activate

mechanistic target of rapamycin (mTOR) that stimulates

expression of mRNAs and proteins involved in cell

proliferation and migration [59]. Sixth, F6P and glutamine are

required for synthesis of UDP-GlcNAc (UDP-N-acetyl-D-

glucosamine) that uses OGT to activate the mTOR pathway

in ovine [59] and porcine [6] conceptuses by transferring a

carbohydrate moiety to a serine or a threonine residue [59].

Like fructose, glutamine is also unusually abundant in

conceptuses of ungulates. For example, concentrations of
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glutamine in ovine allantoic fluid are approximately 25 mM at

Day 60 of gestation [60].

Fructose synthesis by sheep and pig
conceptuses

The period of conceptus development between fertilization

and implantation in mammalian species is critical for setting

the stage for placental and fetal development. The

trophectoderm and endoderm of pre-implantation ovine

and porcine conceptuses undergo rapid elongation that

involves proliferation, migration, and cytoskeletal

modifications of trophectoderm cells. These complex events

occur in a low oxygen intrauterine environment supported by

nutrients and gases either transported or secreted into the

uterine lumen. The conceptus utilizes glucose provided by the

mother to initiate metabolic pathways that provide energy and

substrates for other metabolic pathways. In ugulates, most

available glucose is converted to fructose via the polyol

pathway (see Figure 3). As noted previously, even

subterranean rodents living in a low oxygen environment,

switch to fructose-driven metabolism in very low oxygen

environments [21] and cancer cells also produce and

metabolize fructose as an adaptation to low oxygen

environments [61].

FIGURE 2
Fructose (A), the most abundant hexose sugar in fetal fluids and fetal blood of ungulates such as sheep, is present at concentrations from 4 to
5 mg between Days 30 and 90 of gestation, the period of rapid placental development, as compared to concentrations of glucose (B) of about
0.2 mg/mL. Thus, the concentrations of fructose are some 20- to 30-fold greater than for glucose and, as reported, a unique feature of fructose-1-
PO4 it its metabolism to yield ATP, as well as substrates for the pentose cycle, serine for one-carbon metabolism and the hexosamine
biosynthesis pathway.
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The cell-specific and temporal expression of enzymes required

for synthesis and metabolism of fructose in sheep and pig

conceptuses include those for the polyol pathway (SORD and

AKR1B1) and glucose and fructosemetabolism (HK1,HK2,G6PD,

OGT, KHK, and FBP), but not those required for gluconeogenesis

(G6Pase or PCK) [52, 57]. Ovine placentomes also expressmRNAs

for SORD, AKR1B1, HK1, and OGT, as well as two isoforms of

ketohexokinase, (KHKA and KHKC). The KHKA and KHKC

isoforms are expressed in ovine conceptuses from Day 16 of

pregnancy and placentomes throughout pregnancy in a cell

specific manner. KHKA is most abundant in trophectoderm

and cotyledons of placentomes, while KHKC is more abundant

in endoderm of Day 16 conceptuses and chorionic epithelium of

placentomes. Expression of KHK mRNAs in placentomes is

greatest at Day 30 of pregnancy in sheep, but not different

among days later in gestation.

FIGURE 3
The metabolic pathways for a metabolism of glucose via the classical hexosamine pathway has a rate-limiting step at phosphofructose kinase
(PFK1) that is inhibited by ATP, low pH and citrate. However, the conversion of glucose to fructose and fructose to fructose-1-PO4 by ketohexokinase
allows for an uninhibited pathway for generation of substrates for all major metabolic pathways required for growth and development of the
conceptus. Please see the list of abbreviations for each of enzymes noted in this figure [6, 59, 61].
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Fetal fluids and uterine flushings from pigs contain higher

concentrations of fructose than glucose, but fructose is not

detected in maternal blood. As noted for sheep, fructose is

derived from glucose via enzymes of the polyol pathway,

AKR1B1 and SORD, transported across cell membranes by

solute carriers SLC2A5 and SLC2A8, and converted to F1P by

KHK [58]. For pigs, progesterone up-regulates

SLC2A8 expression in uterine luminal (LE) and glandular

(GE) epithelia during the peri-implantation period of

pregnancy and in chorion and blood vessels after Day 30 of

gestation. Progesterone up-regulates SLC2A5 mRNA in uterine

LE and GE after implantation, and the chorion expresses

SLC2A5 between Days 30 and 85 of gestation in pigs.

AKR1B1 and SORD are expressed by uterine LE during the

peri-implantation period, but expression switches to chorion by

Day 20 and is maintained through at least Day 85 of pregnancy.

Expression of AKR1B1 mRNA in the uterus is downregulated by

estrogen. KHK is expressed by trophectoderm/chorion

throughout gestation. Enzymes for conversion of glucose to

fructose and for fructose transport are present at the uterine-

placental interface of pigs [57, 58]. The shift in expression from

uterine LE to chorion during pregnancy suggests that free-

floating conceptuses of ungulates are supported initially by

fructose synthesized by the uterus, but after implantation, the

chorion becomes self-sufficient for fructose synthesis and

transport in pigs and sheep [57].

Fructose and the hexosamine
biosynthesis pathway

A porcine trophectoderm cell line (pTr1) was used to

demonstrate that both fructose and glucose increase cell

proliferation by increasing phosphorylated-RPS6K, -EIF4EBP1,

and -RPS6 over basal levels within 30 min; an effect sustained for

120 min [6]. Those effects were inhibited by specific inhibitors of

RPS6K, EIF4EBP1, PI3K and MTOR. In the same study, the

biosynthesis of hyaluronic acid from glucose and fructose was

investigated [59]. Inhibition of glutamine-fructose-6-phosphate

transaminase 1 (GFPT1) by azaserine (an inhibitor of GFPT1)

and GFPT1 siRNA, revealed that MTOR-RPS6K and MTOR-

EIF4EBP1 signaling in response to fructose is mediated via

GFPT1 activation and the hexosamine pathway. Further, both

glucose and fructose are utilized for the production of hyaluronic

acid via GFPT1 and the hexosamine biosynthesis pathway.

Hyaluronic acid, also known as hyaluronan, is an anionic

nonsulfated glycosaminoglycan found as a major component

of the extracellular matrix in many tissues, including cancers and

in placentae it is known as Wharton’s Jelly [62–64]. During

placental development hyaluronic acid is an abundant

extracellular matrix component responsible for tissue

hydration and hydrodynamics, cell migration and

proliferation, cell adhesion, supporting blood vessels and

enhancing angiogenesis, and it serves as a niche for stem

cells [65–67].

Partial degradation products of sodium hyaluronic acid,

specifically fragments of 4 and 25 disaccharides in length,

elicit angiogenesis in chick chorioallantoic membranes,

whereas the intact high molecular weight hyaluronic acid does

not induce angiogenesis [68]. Vallet et al. [69] reported that

hyaluronic acid in the placenta of pigs increases between Days

25 and 45 of gestation and remains high throughout gestation,

while expression of hyaluronoglucosaminidases 1 and 2 also

increased with advancing gestation in pigs. Thus, through its

role as a substrate for the hexosamine biosynthesis pathway for

synthesis of hyaluronic acid, fructose influences angiogenesis and

development of microscopic folds of the placenta [69].

Both glucose and fructose can be metabolized to fructose-6-

P, as noted previously. Glutamine:fructose-6-P transaminase

(GFPT1) then converts glutamine and fructose-6-P into

glucosamine-6-P, which is a common substrate for the

formation of all aminosugars and glycoproteins in animal

cells. Fructose and glucose, in cooperation with glutamine,

may affect proliferative behavior of conceptus trophectoderm/

chorion via activation of the Akt-TSC2-MTOR signaling cascade.

The phosphorylation for activation of this cascade is mediated by

O-GlcNAcylation from UDP-N-acetylglucosamine, a primary

product of the hexosamine biosynthesis pathway. Key roles of

fructose in cellular functions equivalent to those of glucose are to

activate integrated cell signaling pathways affecting proliferation

of trophectoderm cells through metabolism via the nonoxidative

hexosamine biosynthesis pathway to produce GlcN-6-P by

GFPT1, increase O-GlcNAcylation of cellular proteins/

enzymes by OGT, and increase phosphorylation of the Akt-

TSC2-MTOR cell signaling cascade [59]. Fructose and glucose

stimulate proliferation of ovine trophectoderm cells at 4 mM, but

concentrations of fructose of 11.1–33.3 mM may have much

greater effects than glucose at concentrations of only

0.6–1.1 mM. The hexosamine biosynthesis pathway yields

UDP-GlcNAc for cytosolic and Golgi-mediated O- linked

glycosylation (O-GlcNAcylation) of proteins and

glycosylphosphatidylinositol anchors proteins to the outer

plasma membrane. The O-GlcNAcylation is the process

whereby β-D-N-acetylglucosamine is added to serine or

threonine residues of proteins, and OGT is required for this

process affecting proliferation and adhesion of oTr1 cells as well

as activation of the Akt-TSC2-MTOR signaling cascade.

Knockdown of translation of OGT mRNA in oTr1 cells using

a morpholino antisense oligonucleotide (MAO) and inhibiting

OGT by alloxan both significantly decreased fructose-induced

total protein O-GlcNAcylation and cell proliferation and

fructose-induced phosphorylation of MTOR, P70S6K, and

4EBP1. In addition, the synthesis of glucosamine-6-P is highly

active in tumor cells, which are known to extensively use

glutamine for OGT and mTOR activation, as well as cell

growth and development (Figure 5) (Akella et al. 2019). Thus,
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there is evidence for fructose-induced cell proliferation and

activation of MTOR cell signaling being regulated by

O-GlcNAcylation.

Fructose metabolism supports the PC and
TCA cycle

The culture of ovine conceptus homogenates with
14C-labeled glucose and/or 14C-labeled fructose under

oxygenated and low oxygen conditions was conducted to

assess contributions of glucose and fructose to the PC, TCA

cycle, synthesis of glycoproteins and the synthesis of lipids [54].

Both glucose and fructose contributed carbons to each of those

pathways, except for lipid synthesis, and both hexose sugars were

metabolized to pyruvate and lactate, with lactate being the

primary product of glycolysis under both oxygenated and low

oxygen conditions. The ovine conceptus tissue preferentially

oxidized glucose over fructose and incorporation of fructose

and glucose at 4 mM each into the PC by Day 16 conceptus

homogenates was similar in the presence or absence of glucose,

but incorporation of glucose into the PC was enhanced by the

presence of fructose. The incorporation of fructose into the PC in

the absence of glucose was greater under oxygenated conditions,

and incorporation of glucose into the PC under low oxygen

conditions was greater in the presence of fructose. These results

indicate that both glucose and fructose are important metabolic

substrates for metabolism via the PC, TCA cycle, and synthesis of

glycoproteins [see [34, 54]].

Fructose metabolism supports one-
carbon metabolism

Conceptuses of sheep and pigs, for example, undergo

incredibly rapid increases in elongation during the peri-

implantation period of pregnancy requiring rapid increases in

proliferation and migration of trophectoderm that requires

equally rapid increases in metabolic reactions that generate

nucleic acids for synthesis of DNA and RNA, but also for

other vital pathways such as those that generate ATP,

reducing agents, or intermediates for subsequent reactions [55,

70, 71]. However, for survival during the peri-implantation

period of pregnancy, the conceptus is entirely reliant upon the

histotroph secreted and/or transported by uterine epithelia into

the uterine lumen including glucose that is rapidly metabolized to

fructose. A key amino acid for 1C metabolism is serine, the

second most abundant amino acid (following glycine) in uterine

flushings from pregnant ewes that increases 6.2-fold between

Days 10 and 16 of gestation [60]. Also, with advancing stages of

gestation, serine is the most abundant amino acid in fetal blood

and allantoic fluid of sheep [72]. Serine can also be synthesized

from glucose and/or fructose via the serinogenesis pathway in

which 3-phosphoglycerate (3PG, a glycolytic intermediate) is

converted to serine by the sequential enzymatic conversions of

phosphoglycerate dehydrogenase (PHGDH), phosphoserine

aminotransferase 1 (PSAT1), and phosphoserine phosphatase

(PSPH) [73]. The conversion of both sugars into serine requires

glutamate, a metabolite of glutamine via phosphate-activated

glutaminase. The 1C metabolism pathway uses serine as a

substrate for transferring 1C units (i.e., methyl groups) linking

together the folate cycle that also provides 1C units and the

methionine cycle that recycles components of the folate cycle in

healthy tissues [74] and cancerous tissue [75]. Ultimately, the

production of 1C units via the folate cycle is for the production of

formate required for the synthesis of adenine, guanidine, and

thymidine nucleotides [76]. Also, 1Cmetabolism is important for

generation of S-adenosylmethionine (SAM) through the

methionine cycle and SAM is required for methylation of

nucleic acids and proteins for epigenetic modifications [77].

(NADPH generated via 1C metabolism also impacts

mitochondrial redox control, particularly under conditions of

low oxygen [77].

One-carbon metabolism is critical for metabolism in cancer

cells [78, 79]. As cancer cells are highly proliferative under low

oxygen conditions like developing conceptuses of ungulates

during the peri-implantation period of pregnancy, cancer cells

maintain a proliferative state while oxygen deprived by

upregulating serine catabolism and 1C metabolism [7, 78].

Therefore, conceptuses of livestock species undergoing

extensive cellular proliferation and rapid elongation likely

utilize similar metabolic pathways but must rely on

extracellular nutrients secreted and/or transported from

maternal blood into the uterine lumen, such as glucose,

fructose, and serine for 1C metabolism for production of

formate during the peri-implantation period of pregnancy.

An experiment was conducted to demonstrate that in

addition to free serine available to the conceptus in utero,

glucose and fructose can generate serine via the serinogenesis

pathway in ovine conceptuses for production of formate required

for synthesis of purines and thymidine for nucleic acid synthesis

[53]. Ovine conceptuses from Day 17 of gestation were cultured

in medium containing either: 1) 4 mM D-glucose + 2 mM [U-
13C]serine; 2) 6 mM glycine + 4 mM D-glucose + 2 mM [U-13C]

serine; 3) 4 mM D-fructose + 2 mM [U-13C]serine; 4) 6 mM

glycine + 4 mM D-fructose + 2 mM [U-13C]serine; 5) 4 mM

D-glucose + 4 mMD-fructose + 2 mM [U-13C]serine; or 6) 6 mM

glycine + 4 mM D-glucose + 4 mM D-fructose + 2 mM [U-13C]

serine to determine production of formate. The ovine

conceptuses produced both 13C- and 12C-formate, indicating

that the [U-13C] serine, glucose, and fructose were utilized to

generate formate, respectively. Greater amounts of 12C-formate

than 13C-formate were produced, indicating that ovine

conceptuses utilized more glucose and fructose than serine to

produce formate. These results were the first to demonstrate that

both 1C metabolism and serinogenesis are active metabolic

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine08

Bazer et al. 10.3389/ebm.2024.10200

https://doi.org/10.3389/ebm.2024.10200


pathways in ovine conceptuses during the peri-implantation

period of pregnancy, and that both glucose and fructose are

substrates for generating formate required for synthesis of

nucleotides and SAM in rapidly proliferating

trophectoderm cells.

Fructose and production of lactate via
glycolysis

Lactate, an abundant molecule in fetal fluids and blood of

mammalian species is, like fructose, overlooked as a metabolic

waste product generated during pregnancy. The metabolism of

both glucose and fructose by ovine conceptuses generates

significant amounts of lactate. Moses et al. [80] characterized

lactate production by ovine conceptuses throughout gestation, as

well as expression of mRNAs and proteins involved in lactate

metabolism. Lactate in the uterine lumen of sheep increases

during the preimplantation period of pregnancy and is

significantly more abundant than pyruvate (see Figure 4).

Also, concentrations and total amounts of lactate in allantoic

and amniotic fluids increase with advancing days of gestation and

most abundant on Day 125 of pregnancy. Lactate dehydrogenase

(LDH) subunit A (converts pyruvate to lactate) and subunit B

(converts lactate to pyruvate) are expressed by ovine conceptuses

throughout gestation. Lactate is transported via monocarboxylic

acid transporters (MCT) 1 and 4, both of which are expressed by

the conceptus throughout gestation. Additionally, the inter-

placentomal chorioallantois from Day 126 expresses

MCT1 and MCT4 for transport of lactate. Hydrocarboxylic

acid receptor 1 (HCAR1) is the receptor for lactate localized

to the uterine LE and sGE, as well as conceptus trophectoderm of

pregnant ewes throughout gestation [80].

Lactate receptors

The G-protein-coupled receptors for lactate, GPR81

(hydroxycarboxylic receptor 1), GPR109A (hydroxycarboxylic

receptor 2) and GPR109B (hydroxycarboxylic receptor 3) share

high sequence homology and are designated HCAR1,

HCAR2 and HCAR3 [81, 82]. HCAR1 is activated by lactate

whereas HCAR2 is activated by the ketone body 3-hydroxy-

butyric acid, and HCAR3 is activated by 3-hydoxy-octanoic acid

(an intermediate in β-oxidation of octanoate). Lactate binding to

HCAR1 stimulates GTPγS-binding with an EC50 of 1.3 mM.

However, HCAR1 cloned from tissues of mice, rats, dogs, pigs,

cows, monkeys, and Zebra fish responds to physiological

concentrations of lactate at 0.5–2.0 mM, as well as 10–20 mM

lactate. HCAR1 is expressed in human pituitary, adipocytes, and

brown adipose tissue, as well as uterine epithelia and conceptus

trophectoderm of sheep [see [80]]. In tumor cells, lactate

regulates expression of HCAR1 mRNA via STAT3 (signal

transducer and activator of transcription factor 3) cell

signaling. In non-immune cells, lactate-HCAR1 cell signaling

activates protein kinase A (PKA) and ERK (extracellular signal-

related kinases) pathways, and plasmacytoid dendric cells are

induced to express interferon alpha (IFNA) in response to

calcium mobilization and calcium-calmodulin dependent

protein kinase II (CaMKII) and calcineurin (CaN)

phosphatase [82]. HCAR1 protein is expressed by uterine LE

and sGE, as well as trophectoderm, but not GE, myometrium

FIGURE 4
Total recoverable lactate in uterine flushings increases significantly between Days 9 and 18 of gestation, while pyruvate is barely detactable
suggesting that lactate dehydrogenase A that converts pyruvate to lactate is themost active isoform. Changes in total recoverable lactate in amniotic
and allantoic fluids are also shown with respect to day of gestation and fetal fluid compartment.
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from sheep on Day 17 of pregnancy, as well as all cell types of the

uterus on Days 30, 70, 90, 110, and 125 of gestation [80].

Lactate as a cell signaling molecule

Expression of hypoxia inducible factor 1 (HIF1A) may occur

under both hypoxic and normoxic environments; however, if

HIF1A proline residues are hydroxylated by prolyl-4-

hydroxylase (PHD) HIF1A is ubiquitinated by the von

Hippel-Landeu protein and degraded. But, in the presence of

lactate, PHD is inhibited and HIF1A is not subject to degradation

[see [83]]. Tumor-derived lactate activates endothelial cells and

stimulates angiogenesis through both HIF1A-dependent and

HIF1A-independent pathways [84, 85]. In the HIF1A-

dependent pathway, MCT1 transports lactate into endothelial

cells to inactivate PHDs and stabilize HIF1A that then induces

expression of vascular endothelial growth factor (VEGF) to

promote angiogenesis in tumor cells under normoxic

conditions [86]. Lactate may also induce angiogenesis via a

HIF1A-independent mechanism by binding directly to N-Myc

downstream-regulated protein (NDRG3) and preventing HIF1A

degradation by PHD [87]. NDRG3 promotes angiogenesis under

conditions of low oxygen and high concentrations of lactate by

binding to c-Raf and activating Raf-ERK signaling in tumor cells

to sustain HIF1A activity required for tumorigenesis.

Constitutive HIF1A is detectable in non-hypoxic cancer cell

lines in response to lactate and pyruvate as evidenced by the

accumulation of HIF1A protein in many cancer cell lines due

primarily to lactate that prevents degradation of HIF1A [88].

Lactate, HCAR1, and pregnancy

HIF1A is important for the establishment and maintenance of

pregnancy in mammals as conceptuses develop in a low oxygen

environment and respond to changes in oxygen tension,

hormones, and other molecules. For example, expression of

HIF1A is upregulated by progesterone in the uterus [89, 90],

while HIF2A is upregulated by estrogen [90]. In sheep, HIF1A

mRNA is induced by progesterone in the endometrium and

HIF2A is upregulated in response to progesterone and IFNT

[89]. Lactate is a ligand for HCAR1 in mammary tumors and

is designated an orphan G-protein coupled receptor [91]. Lactate

interactions with HCAR1 in cancer cells [92] promote

angiogenesis [91], tumor growth [93], and chemoresistance

[94], and proliferation and migration of normal cells [92].

Lactate produced via glycolysis is used potentially as: 1) an

energy source for mitochondrial respiration; 2) gluconeogenic

precursor; and 3) cell signaling molecule at physiological

concentrations of lactate from 0.5 to 20 mM and when the

lactate/pyruvate ratio ranges from 10 to greater than 500 mM

under conditions such as vigorous exercise and stress [81]. Lactate

acting via HCAR1 in adipocytes inhibits lipolysis by decreasing

mitochondrial fatty acid uptake via malonyl-CoA and carnitine

palmitoyltransferase I in muscle [84].

The high lactate and low pH environment in the uterine

lumen during early pregnancy is created by lactate produced by

blastocysts in mice [see [95–97]]. Lactate and low pH increases

expression of mRNAs for VEGFA, HCAR1, SLC2A4 (also known

as glucose transporter member 4), transcription factor p65

(RELA), MCT1 and snail (SNAI1) involved in epithelial to

mesenchymal cell transition in Ishikawa cells. Lactic acid also

increases migration of decidualized stromal cells in uteri of mice

without changing the extent of decidualization. Further, human

umbilical vein endothelial cells (HUVEC) form tubes when

treated with 5 mM lactic acid as evidence of an angiogenic

effect of lactic acid. Garner [95] reported that mammalian

blastocysts use aerobic glycolysis as do cancer cells to create a

microenvironment in which the pH is low to increase

angiogenesis, vascular permeability, tissue disaggregation

through breakdown of the extracellular matrix associated with

increases in expression of matrix metalloproteinases 1 and 2

(MMP1 and 2) from blastocysts and MMP9, transforming

growth factors beta 1 and 2 (TGFB1, TGFB2), cathepsin B

and hyaluronic acid. The increase in hyaluronic acid is

suggested to increase hydration of the endometrium due to

facilitate implantation. Also, there was a decrease in

expression of tissue inhibitors of metalloproteinases (TIMPs)

and an increase in NFKB in that study [95]. Lactate also increased

Treg cells, conversion of macrophages from M1 (inflammatory)

to M2 (anti-inflammatory) phenotypes, and expression of VEGF

in macrophages. Gardner [95] suggests that post-implantation

conceptuses become more dependent on glycolysis to produce

lactate and maintain a low pH environment that mimics hypoxia.

Comline and Silver [98] reported concentrations (mg/

100 mL) of lactic acid in fetal umbilical vein blood at 9, 5 and

1 day prepartum to be 16.7, 16.8, and 19.1, respectively, as

compared to values in blood from the maternal uterine vein

of 11.2, 9.8 and 9.8. In comparison, concentrations (mg/100 mL)

of fructose in fetal umbilical vein blood at 9, 5, and 1 day

prepartum were 74.3, 77.8, and 67.7, respectively, but not

detectable in maternal blood samples. The concentrations of

glucose in umbilical vein blood were 13.3, 12.7, and 19.1 mg/

100 mL at 9, 5 and 1 day prepartum, respectively as compared to

57.6, 58.0, and 68.0 mg/100 mL in maternal uterine vein blood.

Thus, concentrations of fructose in fetal umbilical vein blood

were 5- to 6-fold greater than those for glucose in that study [98].

Summary

The literature documents that the intrauterine environment

for mammalian conceptuses is hypoxic relative to normal air [95,

99–102] and that is also true for developing tumors [61].

Accordingly, the polyol pathway is active in conceptuses of
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ungulates such as pigs [57] and sheep [54] and even humans [32].

The polyol pathway generates fructose and the metabolism of

fructose via frutolysis is sustained for conceptuses of pigs [57]

and sheep [33] throughout gestation, but not for human

conceptuses [32]. We speculate that species with invasive

implantation and hemochorial or hemoendothelial placenta

with fewer layers of tissue separating maternal and fetal blood

do not require high rates of blood flow to the uterus or a well-

developed allantois to serve as a reservoir of nutrients. The

various species of ungulates have superficial implantation of

the blastocyst/conceptus and high rates of uterine blood flow

to ensure a sustained delivery of high amounts of nutrients

[concentration of nutrient X uterine blood flow] for transfer

to the fetal-placental vasculature, as well as a well-developed

allantois in which nutrients not utilized immediately can

accumulate and be recycled to ensure that the conceptus is

well nourished.

Adaptation of the polyol pathway and fructolysis in the

placenta has several advantages for ungulates (see Figure 5).

First, the trophectoderm/chorioallantois rapidly converts

available glucose to fructose that cannot be transferred to the

maternal vasculature, it is a sequestered hexose sugar. Second,

fructose is phosphorylated at carbon 1 to F1P that is then

committed to the fructolysis pathway for further metabolism to

substrates that support the pentose cycle, TCA cycle, hexosamine

biosynthesis pathway, and one-carbon metabolism. Third, the

fructolysis metabolic pathway is not inhibited by low pH, ATP

or citrate as is the case for the hexosamine-dependent pathway for

glycolysis. Fourth, the fructose in fetal blood is excreted in urine

during the first 24–48 h after birth so that does not cause insulin-

insensitivity [102] as piglets fail to survive on synthetic diets

containing only fructose [103, 104]. Failure of newborn piglets

to survive on fructose-based synthetic diets further validates the

unique role of fructose and the fructolysis pathway used by fetal-

FIGURE 5
Mechanisms responsible for glutamine and fructose metabolism to stimulate the growth of both normal and malignant tissues in humans and
animals. Glutamine is degraded via multiple pathways to generate glutamate, aspartate, alanine, ornithine, citrulline, arginine, glucosamine, and CO2,
purines, and pyrimidines. Ornithine and arginine are substrates for the synthesis of polyamines (putrescine, spermidine, and spermine), whereas nitric
oxide (NO) is formed from arginine oxidation. Glutamate is required for the production of glutathione as the most abundant low-molecular-
weight antioxidant. Amino sugars (which deriving the carbohydrate moiety from fructose-6-phosphate, a product of fructose) are required for the
generation of glycoproteins as essential components of membranes, cytoplasm, and the extracellular matrix. Purine and pyrimidine nucleotides are
precursors of DNAs and RNAs that are necessary for protein synthesis. Furthermore, both glutamine and fructose activate the mTOR cell signaling
pathway to stimulate protein synthesis and inhibit protein degradation, leading to protein accretion in cells. NO (a major vasodilator to promote
blood flow and nutrient supply), polyamines, protein accretion, and redox balance are crucial for angiogenesis and the growth of both normal and
malignant tissues in humans and animals. Abbreviations: F-6-P, fructose-6-phosphate; GlcN-6-P, N-acetylglucosamine-6-phosphate; mTOR,
mechanistic target of rapamycin. The enzymes that catalyze the indicated reactions are: (1) phosphate-activated glutaminase; (2) glutamine:
fructose-6-phosphate transaminase; (3) glucosamine-phosphate N-acetyltransferase, phosphoacetylglucosamine mutase, UDP-GlcNAc
pyrophosphorylase, and UDP-GlcNAc 4-epimerase; (4) a series of enzymes for purine and pyrimidine syntheses; (5) glutamate-oxaloacetate
transaminase; (6) glutamate-pyruvate transaminase; (7) pyrroline-5-carboxylate synthetase and ornithine aminotransferase; (8) ornithine
carbamoyltransferase; (9) ornithine decarboxylase; (10) argininosuccinate synthase and argininosuccinate lyase; (11) nitric oxide synthase; (12)
arginine decarboxylase; (13) agmatinase; (14) spermidine synthase; (15) spermine synthase; (16) a series of enzymes for glutamate oxidation
(including glutamate transaminases and glutamate dehydrogenase); (17) γ-glutamyl-cysteine synthetase and glutathione synthetase; (18)
glutathione-dependent antioxidative enzymes (including glutathione peroxidase, glutathione S-transferase, and thioltransferase); (19) a series of
enzymes for incorporation of amino sugars into proteins; (20) aldose reductase and sorbitol dehydrogenase; (21) fructokinase and hexokinase; and
(22) a series of enzymes for DNA and RNA syntheses. The sign (+) and (−) denote activation and inhibition, respectively.
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placental tissue of ungulates. Further, it is now becoming apparent

that lactate, a product of fructosemetabolism, likely acts via its own

receptor (HCAR1) to influence implantation and placentation, as

well as sustain expression ofHIF1A and its downstream genes such

as KHK and VEGF [105–107]. On-going and future research will

further expand knowledge of the roles of fructose and lactate in

fetal-placental development and cancer as they represent rapidly

developing tissues that share many metabolic profiles.
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