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Abstract

The focus of this study was to identify risk factors for severe and critical COVID-

19, evaluate local respiratory immune responses to SARS-CoV-2 infection, and

develop a prognostic tool for COVID-19 severity using accessible early

indicators. Using nasopharyngeal swab samples from hospitalized patients

with COVID-19 of varying severity during the first wave of the pandemic

from March to May 2020 in Louisiana, we evaluated the association

between COVID-19 severity and viral load, respiratory immune mediators,

and demographic/clinical factors. We found that the SpO2/FiO2 ratio at

triage, total comorbidity burden (represented by Charlson Comorbidity

Index), and gender were significantly associated with COVID-19 severity.

Using these early significant indicators, we developed a prognostic tool for

COVID-19 severity that is simple and convenient. Additionally, our study

demonstrated that elevated levels of respiratory immune mediators,

including IL-10, IL-6, MCP-1, and MCP-3, were significantly associated with

COVID-19 severity. We also found that viral load at the time of admission was

associated with disease severity. Our findings highlight the feasibility and

importance of evaluating the humoral component of local mucosal immune

responses and viral load at the infected site using convenient nasopharyngeal

swab samples, which could be an effective method to understand the

relationship between viral infection and immune responses at the early
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stages of infection. Our proposed prognostic tool has the potential to be useful

for COVID-19management in clinical settings, as it utilizes accessible and easy-

to-collect variables at the time of admission.
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Impact statement

Early identification of COVID-19 severity indicators is vital

for managing severe cases, allowing timely interventions to

minimize complications and fatalities. Our study devised a

practical prognostic tool for clinical settings, utilizing easily

accessible admission variables like oxygen saturation, Charlson

Comorbidity Index, and gender. Furthermore, we highlighted the

feasibility of evaluating the humoral component of local mucosal

immune responses and viral load using routine nasopharyngeal

swab samples. This approach offers valuable insights into

infection onset and informs targeted interventions, ultimately

reducing COVID-19 related complications and mortality.

Introduction

The virus that causes the COVID-19 disease, SARS-CoV-2,

has caused significant morbidity and mortality worldwide, with

over 776 million cases and 7 million deaths attributed to the virus

globally as of September 2024 [1]. The initial outbreak in

Louisiana, which began in March 2020, caused a tremendous

strain on the healthcare system [2, 3], leading to efforts to identify

early indicators of COVID-19 severity to manage critical cases

effectively. Rapid deterioration of respiratory function,

dysregulated host response, and subsequent multiple organ

failures are hallmarks of severe COVID-19 and are associated

with a highmortality rate [4]. The treatment of severe COVID-19

continues to be challenging and arduous. Timely intervention

based on early indicators of COVID-19 severity is essential to

reduce mortality and COVID-19-related complications [5, 6].

During the first pandemic wave (from 24th February to 31st

July, 2020), certain co-morbidities were indicated as primary risk

factors for hospitalization and severe disease outcomes, including

diabetes, obesity, COPD/smoking, and chronic kidney disease [7,

8], with additional demographic risk factors based on age and

race [7, 9].

Since the emergence of the COVID-19 pandemic,

understanding the relationship between viral load and disease

severity has also been a critical research topic. Several studies

have investigated this association, and the results have been

mixed. It was suggested that viral load, often proxied by the

qRT-PCR cycle threshold (CT or CQ value), is correlated with

disease severity and/or presentation across several studies

[10–19]. For example, one study found that higher viral load

in patients was correlated with a loss of smell/taste, though there

was no significant difference in the presentation of other

symptoms [20]. Other studies demonstrated a higher load in

severe vs. mild patients [14, 21, 22], or with the risk of

death [23–27].

However, the association between viral load and disease

severity or symptoms was not observed in other studies of

COVID-19, as several studies reported no difference in viral

load between asymptomatic patients and symptomatic patients

[28–32], or between severity of disease, gender, race identity, or

age groups [33–35]. One study found higher viral loads in non-

hospitalized patients [36]. Thus, no clear or consistent

association between viral load and disease state has emerged.

In addition to co-morbidities and viral loads, lymphopenia

elevated inflammatory markers in peripheral blood have been

consistently identified as biomarkers for COVID-19 severity.

Studies have shown that greater levels of

NLRP3 inflammasome activation in peripheral blood

corresponded with more severe COVID-19 [37], that low

expression of the IFNAR2 gene (an IFN 1 receptor subunit)

was associated with critical illness in COVID-19 patients [38],

that loss-of-function mutations in an another IFN I receptor

subunit (IFNAR1) was associated with severe COVID-19 cases

[39], and that auto-antibodies to IFN I were identified as a

potential factor for severe COVID-19 [40]. It is evident that

increased circulating IL-10, IL-6, IFN-gamma-inducible protein

10 (IP-10), and monocyte chemoattractant protein-1 and -3

(MCP-1 and MCP-3) are significantly associated with

COVID-19 severity [41–47]. However, these circulating

biomarkers are often observed during the late acute phase of

the disease and usually result from the disease severity [44–47].

The evaluation of the immune responses in the peripheral blood

compartment during the later phase of the disease may not

accurately reflect the early responses of local mucosal

immunity – the upper respiratory tract, which is essential for

the first-line defense against SARS-CoV-2 and shaping adaptive

immune responses. There is a need to better characterize the local

innate immune responses to SARS-CoV-2 during the early stage

of the disease. At the beginning of this first wave in March 2020,

we pivoted our academic research lab into a CLIA-approved

testing facility and partnered with local and state-wide facilities to

provide enhanced testing capabilities [2]. During this time, we

received nasopharyngeal swab samples from hospitalized

patients with a full spectrum of COVID-19 severity (from

mild, moderate to severe, and critical), spanning the first wave
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of the pandemic. Such cohorts allowed us to investigate the

tripartite problem of how individual risk factors and co-

morbidities, early local immune responses to SARS-CoV-

2 infection, and relative viral load are associated with disease

presentation and outcomes during the first wave of hospitalized

patients as this represents the emergence phenomenon.

Materials and methods

Study approval

Our retrospective study was conducted at River Road Testing

Lab [2], Louisiana State University (LSU), Pennington

Biomedical Research Center, and Our Lady of the Lake

Regional Medical Center. The study protocol was reviewed

and approved by LSU Health Sciences Center [IRB#20-979

and exempt under 45CFR46.104 (d), category 4] on May 14,

2020. The protocol was conducted in accordance with relevant

guidelines and institution policies. Because remnant

nasopharyngeal swab samples received during routine care

from SARS-CoV-2 infected patients were utilized in our

study, informed consent was waived. All study sites worked

under their approved biosafety protocols for handling SARS-

CoV-2 specimens. Additionally, the authors vouch for the

accuracy of the data reported.

Study participants

Because age is a significant predictor for COVID-19 severity,

a random stratified sampling scheme was applied whereby

patients were classified according to age using the following

categories: 18–59, 60–79, 80+. However, the youngest patient

FIGURE 1
Summary of the studied population.
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was 22 years of age. The SARS-CoV-2 infection was laboratory-

confirmed by quantitative reverse transcription PCR (qRT-PCR)

using FDA-approved CDC SARS-CoV-2 panel two [45]. Patients

were randomly selected from within each group for a target of

95–97 per group. This resulted in 287 unique individuals during

the period of March –May 2020.While demographic and clinical

information were successfully collected from all 287 patient

samples, leftover nasopharyngeal swab samples were available

from 218 patients. The leftover nasopharyngeal swab samples for

these 218 patients were used to evaluate immune and metabolic

mediators at the site of infection–the nasal mucosa. Viral loads

were determined in the samples from 174 patients.

Multiplex cytokine, adipokines assays, and
qRT-PCR for viral loads

Nasopharyngeal swab samples were not available from all

patients in our cohorts. Our available data are detailed in

Figure 1. Cell-free supernatants from nasopharyngeal swab

samples were incubated at 56°C for 20 min to deactivate

SARS-CoV-2 virions [48]. Then, heat-treated supernatants

were subjected to electrochemiluminescence-based multiplex

assays according to the manufacturer’s protocol (MSD). The

following analytes were measured: C-peptide, GLP-1, Glucagon,

Insulin, IP-10, Leptin, PYY, G-CSF, GM-CSF, IFN-α2a, IFN-γ,
IFN-β, IL-10, IL-12p70, IL-13, IL-15, IL-17A, IL-18, IL-1β, IL-1α,
IL-22, IL-23, IL-29, IL-33, TSLP, IL-4, IL-5, IL-6, MCP-1, MCP-

2, MCP-3, MCP-4, MDC, MIP-1α, MIP-1β, MIP-3α, MIP-3β,
and MIP-5. Samples with analytes concentrations below the limit

of detection (LOD) of the assay are replaced by a value equal to

the LOD divided by the square root of 2 [49]. The data

summaries are shown in Supplementary Table S1.

Quantitative reverse transcriptase PCR for
viral loads

Viral RNA nasopharyngeal swab samples were extracted,

transcribed, and amplified as previously described [50]. The

results were interpolated from an internal standard curve,

produced by identical processing of serial dilution of a known

copies-number of SARS-CoV-2 RNA stock (EDX, #COV019),

hereafter referred to as the viral load.

Data collection and coding

To investigate risk factors, anonymized clinical, paraclinical,

and demographic data from patients admitted to Our Lady of the

Lake (OLOL), were extracted into a REDCap database. To

anonymize information from patients, the remnant

nasopharyngeal swab samples from OLOL were relabeled with

lab sample’s ID before being sent to our lab. The lab’s sample ID

was used to communicate between OLOL and our lab.

Patient disposition was defined as “severe” if the patient was

admitted to the intensive care unit (ICU) or “deceased” if the

patient died due to COVID-19 during the hospitalization and

within 30 days of discharge. All other patients were coded as

“less severe.” Obesity was determined by body mass index

calculated from weight and height in the medical record,

based on the CDC adult definition of “obese” [51]. Biological

sex, age, and race were obtained from the medical record. Race

was collected as African American (AA), Caucasian, Asian,

and Other.

Patient cardiac, renal, pulmonary, hepatic, vascular, cancer,

diabetes, and connective tissue comorbidities, as well as age at

infection were also collected. To evaluate the combined impact of

these comorbidities on COVID-19 severity, we used weighted

Charlson Comorbidity Index (CCI) [52], a sum of weighted

scores for each comorbidity.

Statistics

The data are described using standard descriptive statistics. The

relationship of demographic, clinical, virological, and

immunological variables with the outcome of disease severity

(non-severe, severe, and deceased) was examined using ordered

logistic regression. The effect of variables on the development of

severe and deceased COVID-19 was represented as an unadjusted

odds ratio (ORs) with 95% confidence interval (CI). Severity was

tested for association with age, viral load, immune mediators,

demographical variables, and obesity status with ordinal logistic

regression while multinomial and bivariate logistic regression were

employed to test for association between viral load and race and sex,

respectively. Correlation matrixes for analytes was conducted using

non-parametric Spearman correlation with two-tailed p-values and

95% confidence interval (95% CI).

We use an exploratory approach to ensure a final model for

predicting COVID-19 severity. The initial multivariable ordered

logistic regression model included only variables with P ≤
0.05 from the bivariate analyses. Because continuous variables

were collected in different metrics, we used standard deviation

units to standardize all variables [53]. Details regarding the

selected variables are provided in Supplementary Table S1. A

final ordered logistic regression model retained only variables

with P ≤0.05.
Then, we used the final ordered logistic regression model to

calculate the coefficients of a formula to predict a logit

transformation of the probability of severe and critical

COVID-19, respectively. Thus, the logarithm of the odds is

log [P(Y ≤ j)/P(Y > j)] = logit [P(Y ≤ j)] = αj - ∑βiXi [54].

With Y is an ordinal outcome with J the degree of disease severity

(j = 1 for non-severe, j = 2 for severe, and j = 3 for deceased), P

(Y ≤ j) is the cumulative probability of Y less than or equal to a
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specific degree of disease severity. X is the value of the particular

predictors included in the final model. There are i = 3 predictors

in our parsimonious model (i = 1, 2, and 3). αj is the intercept for
specific (j) degree of disease severity; βi is the vector of regression

coefficient or the effect of the individual (i) predictors on the

specific outcome Y – degree of disease severity.

Statistical significance was assessed at the α = 0.05 level. The

associations were evaluated using odds ratios (OR) with 95%

TABLE 1 Demographic and clinical characteristics of enrolled COVID-19 patients.

Characteristics Deceased (n = 72) Severe (n = 59) Non_severe (n = 156) P-value

Age (Median [IQR]) 70.00 [58.75, 82.50] 64.00 [54.50, 74.00] 61.00 [48.00, 73.25] 0.002

LOS (Median [IQR]) 8.00 [4.00, 12.25] 7.00 [4.00, 13.50] 3.00 [1.00, 5.00] <0.001

ICU LOS (Median [IQR]) 2.00 [0.00, 6.00] 3.00 [2.00, 7.50] 0.00 [0.00, 0.00] <0.001

BMI (Median [IQR]) 28.82 [25.91, 37.42] 32.22 [27.86, 39.70] 31.06 [25.03, 37.19] 0.346

Temperature at triage (Median [IQR]) 99.25 [98.30, 100.38] 99.95 [99.03, 101.22] 99.00 [98.35, 100.30] 0.004

Heart rate at triage (Median [IQR]) 99.00 [89.00, 110.00] 98.00 [86.00, 111.25] 93.00 [80.00, 106.00] 0.112

Respiration rate at triage (Median [IQR]) 22.00 [18.00, 28.00] 20.00 [18.00, 23.25] 19.50 [18.00, 21.25] 0.004

SBP at triage (Median [IQR]) 125.00 [106.00, 135.50] 122.50 [110.00, 140.25] 127.50 [115.00, 141.00] 0.15

DBP at triage (Median [IQR]) 71.00 [63.00, 83.00] 72.00 [63.00, 83.50] 75.00 [66.00, 83.25] 0.381

SpO2 at triage (Median [IQR]) 95.00 [91.00, 97.00] 96.00 [93.00, 98.00] 97.00 [94.00, 99.00] 0.003

Sex (%) <0.001
Female 25 (34.7) 36 (61.0) 106 (67.9)

Male 47 (65.3) 23 (39.0) 50 (32.1)

Race (%) 0.386

African American 51 (70.8) 45 (76.3) 100 (64.1)

Caucasian 17 (23.6) 13 (22.0) 49 (31.4)

Others 4 (5.6) 1 (1.7) 7 (4.5)

Ethnicity (%) 0.581

Hispanic 0 (0.0)1 (1.7)2 (1.3)

Non_hispanic 72 (100) 58 (98.3) 154 (98.7)

Obesity (%)* (missing 10 data points) <0.001
Healthy 14 (19.7) 6 (10.2) 48 (32.7)

Obesity 33 (46.5) 33 (55.9) 67 (45.6)

Overweight 24 (33.8) 17 (28.8) 29 (19.7)

Underweight 0 (0.0) 3 (5.1) 3 (2.0)

Significant comorbidities present

Chronic pulmonary disease (%) 9 (12.5) 4/55 (6.8/93.2) 2/154 (1.3/98.7) 0.049

Mild liver disease (%) 2/70 (2.8/97.2) 0/59 (0.0/100.0) 0/156 (0.0/100.0) 0.049

Peripheral vascular disease (%) 3/69 (4.2/95.8) 1/58 (1.7/98.3) 0/156 (0.0/100.0) 0.043

Acute kidney injury = Checked/Unchecked (%) 22/50 (30.6/69.4) 11/48 (18.6/81.4) 25/131 (16.0/84.0) 0.038

Congestive Heart Failure = No/Yes (%) 50/16 (75.8/24.2) 47/5 (90.4/9.6) 126/18 (87.5/12.5) 0.042

COPD = No/Yes (%) 55/11 (83.3/16.7) 47/5 (90.4/9.6) 137/7 (95.1/4.9) 0.019

Liver Disease (%) 0.008

Mild 2 (3.0) 1 (0.7) 3 (5.8)

Moderate to Severe 3 (4.5) 0 (0.0) 0 (0.0)

None 61 (92.4) 143 (99.3) 49 (94.2)

Diabetes Mellitus (%) 0.003

End-organ damage 19 (28.8) 13 (25.0) 25 (17.4)

None or diet-controlled 27 (40.9) 25 (48.1) 98 (68.1)

Uncomplicated 20 (30.3) 14 (26.9) 21 (14.6)

Definition of abbreviation: IQR, interquartile range; LOS, length of stay; ICU, intensive care unit; BMI, bodymass index; SBP and DBP, systolic and diastolic blood pressure; SPO2, oxygen

saturation; COPD, chronic obstructive pulmonary disease.
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confidence interval (95% CI) and *p ≤ 0.05, **p ≤ 0.01, ***p ≤
0.01, and ****p ≤ 0.0001 as statistically significant. All statistics

were performed in R (version 4.0.4) in R Studio (1.4.17) and

SPSS (IBM).

Results

Characterization of the study cohort

We included 287 COVID-19 patient samples in our study.

These patients were admitted to local hospitals in Baton Rouge

from March 2020 to May 2020 with a range of COVID-19

severity, including 72 deceased, 59 severe, and 156 non-severe

patients (Table 1). Patients with severe COVID-19 were

hospitalized for significantly more days compared to patients

with less severe COVID-19 (Table 1). While race and ethnicity

are not significantly different between the three groups, age and

gender were not uniformly distributed across the three groups

(Table 1). Although body mass index (BMI) as a continuous

variable is not associated with COVID-19 severity, the BMI-

based obesity classification is significantly different among the

three groups (Table 1). We also evaluated the relationship of

more than 20 significant comorbidities with COVID-19

severity (Supplementary Table S1). Among these

comorbidities, the preexisting conditions related to hepatic,

renal, cardiac, and pulmonary diseases were significantly

associated with COVID-19 severity (Table 1). To evaluate

the total burden of these comorbidities on COVID-19

severity, we used the Charlson Comorbidity Index (CCI)

FIGURE 2
Vital signs at triage are associated with COVID-19 severity. The early vital signs at triage were compared between COVID-19 patients with non-
severe (n = 156) and severe symptoms (n = 59) and deceased patients (n = 72) and are represented as violin plots. (A) Total comorbidity burden; (B)
Temperature; (C) Respiratory rate; and (D) SpO2/FiO2 rate. Themedian is represented by themiddle line. Significance was determined using Kruskal-
Wallis non-parametric with post-hoc Dunn’s multiple comparison test. P ≤ 0.05 is considered as significant. ns: non-significant.
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(53). Accordingly, the clinical severity significantly worsened as

CCI increased (Figure 2B).

The early vital signs at triage are associated
with COVID-19 severity

To explore early predictors of disease progression, we next

examined the relationship of vital signs at triage with disease

severity. At triage, patients with severe COVID-19 or deceased

COVID-19 patients exhibited significantly higher body

temperature and respiratory rate as compared to patients with

non-severe COVID-19 (Figures 2B, C). Also, oxygen saturation

to fraction of inspired oxygen ratios (SpO2/FiO2) at triage were

significantly greater in non-severe COVID-19 patients compared

to their severe or deceased peers (Figure 2D). There was no

significant difference in either systolic (SBP) or diastolic blood

pressure (DBP) among the three groups studied (Table 1).

Local mucosal inflammatory responses
and respiratory viral load associated with
COVID-19 severity

To evaluate the local mucosal inflammatory responses, we

subjected remnant nasopharyngeal swab samples to

FIGURE 3
Patients with more severe COVID-19 exhibited greater levels of respiratory cytokines, adipokines, and viral load. Cytokines [IL-6 (A), IL-10 (B)],
chemokines [MCP-1 (C), MCP-3 (D)], adipokines [insulin (E)], and viral load (F) from samples collected at admission were compared between patients
with non-severe (n = 110), severe (n = 49), and deceased (n = 59) COVID-19. (A) Total comorbidity burden; (B) Temperature; (C) Respiratory rate; and
(D) SpO2/FiO2 rate. Viral load data were available from 89, 35, and 50 patients from the non-severe, severe, and critical COVID-19 groups,
respectively. The comparison are illustrated as violin plots. The median is represented by the middle dashed line. Significance was determined using
Kruskal-Wallis non-parametric with post-hoc Dunn’s multiple comparison test. P≤0.05 is considered as significant. ns: non-significant.

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine07

Vu et al. 10.3389/ebm.2024.10193

https://doi.org/10.3389/ebm.2024.10193


electrochemiluminescence -based multiplex assays examining

7 adipokines and 38 cytokines and chemokines. These analytes

cover a wide range of inflammatory and metabolic pathways. We

found increased levels of respiratory IL-6 and IL-10 in patients with

more severe COVID-19 compared to less severe patients (Figures

3A, B). Similarly, patients with severe and critical COVID-19

exhibited significantly higher levels of monocyte chemoattractant

protein −1 and −3 (MCP-1 and MCP-3) (Figures 3C, D). Although

respiratory levels of insulin were significantly higher in severe

compared to non-severe patients, there was no difference

between severe and deceased patients regarding insulin levels

(Figure 3E). We found that the distributions of viral load were

significantly different between non-severe vs. deceased and severe vs.

deceased (Figure 3F).

FIGURE 4
SARS-CoV-2 load significantly correlates with respiratory IL10, MCP-1 and MCP-3. The heat maps illustrate the Spearman rank correlation
coefficient (Rho), varying from positive to negative correlation; green-white-dark yellow). The multiple comparison problems were controlled by
adjusted False-discovery rate-adjusted P values with significant: P ≤ 0.05 (uncrossed squares) and non-significant P> 0.05 (crossed squares). BMI:
body mass index; RR: respiratory rate; CCI: CCI: Total comorbidity burden – Charlson Comorbidity Index.

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine08

Vu et al. 10.3389/ebm.2024.10193

https://doi.org/10.3389/ebm.2024.10193


SARS-CoV-2 load significantly correlates
with respiratory IL-10, MCP-1, and MCP-3

We next examined the relationship between viral load, local

mucosal immune mediators, and early clinical indicators. To

avoid the multiple comparisons problem, we only included

variables significantly different between disease severity groups

(Figure 4). We found that viral load was differentially correlated

with immune response markers depending on whether data were

aggregated over all patients or stratified based on disease severity

(Figure 4). The pattern of correlation was not homogenous. In

general, viral load was significantly and positively correlated with

MCP-1, MCP-3, and IL-10. When we stratified for the degree of

disease severity, several analytes were associated with viral load in

one but not the other groupings. For example, IL-10 was

positively and significantly correlated with viral load in

deceased or non-severe patients but not in severe patients. Of

note, there is no significant correlation between viral load and all

other variables (Figure 4). Indeed, when we binned individuals

into categories, ordered logistic regression revealed no

association between increasing age group and viral load [OR:

0.86, 95% CI: (.73, 1.01)] (Supplementary Figure S1).

Next, we investigated whether viral load in this population

was associated with being African American (“AA”) vs. not

African American “(non-AA”). Logistic regression showed no

association between viral load and identification as AA vs. not

AA (Supplementary Figure S1). Similarly, we tested for an effect

of biological sex (male vs. female) and found none

(Supplementary Figure S1). On the other hand, viral load was

significantly and positively correlated with age and CCI in

deceased patients (Figure 4).

We observed a significant positive correlation among MCP-

1, MCP-3, and IL-6 regardless of the degree of disease severity

(Figure 4), suggesting common immune responses to SARS-

CoV-2 infection. Although IL-10 and IL-6 were not correlated

within the group of patients with severe COVID-19, they were

directly proportional in deceased and non-severe groups.

Among early clinical and demographic indicators, we

consistently observed a strong positive correlation between age

at infection and CCI in all studied groups. In contrast, respiratory

rate and SpO2/FiO2 ratio were not correlated with other variables

regardless of disease severity. Intriguingly, in general, body

temperature at triage was significantly correlated with

BMI (Figure 4).

Male individuals with reduced SpO2/
FiO2 ratio and increased CCI are at greater
risk of developing severe and critical
COVID-19

Having demonstrated the association between clinical and

immunological factors with COVID-19 severity, we next sought

to evaluate their potential predictability for disease severity.

First, the relationship of individual factors with the severity of

disease was assessed using ordered logistic regression

(Figure 5A). To establish parsimonious models, we only

tested the relationship of the severity of disease with factors

that are not uniformly distributed among studied groups (non-

severe, severe and deceased groups). We found that female

(OR, 0.35; 95% CI, 0.19–0.64) individuals with high SpO2/FiO2

ratio at triage (OR, 0.37; 95% CI, 0.27–0.51) are at 2.86- and

2.7 fold lower risk of developing severe/critical COVID-19,

respectively (Figure 5A). In contrast, higher CCI, age at

infection, viral load, respiratory IL-10, and respiratory rate

at triage were the drivers of worse clinical outcome. There was

no significant association of other variables with COVID-19

severity by ordered logistic regression (Figure 5A). However, it

is noteworthy that BMI-based obesity was significantly

different among the three groups of patients (Non-severed

vs. Severe vs. Deceased) with greater numbers of overweight

and obese individuals classified as severe (33 obese,

17 overweight, 6 healthy weight) or deceased (33 obese,

24 overweight, 14 healthy weight) as compared to healthy

weight and this is reflected in Table 1.

Among these 7 variables (gender, SpO2/FiO2 ratio at triage,

CCI, respiratory IL-10, viral load, respiratory rate at triage,

and age at infection), only CCI, SpO2/FiO2 ratio at triage,

gender, and respiratory rate at triage were retained as

potential risk factors in the final ordered logistic

regression (Figure 5B). Because respiratory rate and SpO2/

FiO2 ratio are clinically similar variables, only SpO2/FiO2

ratio, CCI, and gender were included in developing the

parsimonious model. The combined influence of gender,

SpO2/FiO2 ratio at triage, and CCI in the final ordered

logistic regression model is illustrated in Figure 6. With

the same levels of three risk factors, the probability of

patients with non-severe COVID-19 developing severe

disease (non-severe that escalates to severe) is higher than

the probability of patients with severe COVID-19

progressing to more critical COVID-19 (severe that

escalates to death). The effect of CCI and SpO2/FiO2 ratio

at triage on the development of severe and deceased COVID-

19 was greater in patients identifying as male. For example, a

female patient with SPO2/FiO2 ratio of 224 at triage and CCI

of 10 has a 14.9% probability of developing severe COVID-19

(if admitted without severe symptoms) and a 4.6%

probability of progressing to critical/deceased COVID-19

(if admitted with severe symptoms). These probabilities

will be significantly higher for male patients. For a male

patient with the same SpO2/FiO2 ratio of 224 at triage and

CCI of 10, the probabilities increase to 30.2% (non-severe

progressing to severe) and 10.7% (severe progressing to

critical/deceased). Therefore, males with reduced SpO2/

FiO2 ratio and increased CCIs are at greater risk of

developing severe and critical/deceased COVID-19.
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Discussion

Our current study demonstrated that SpO2/FiO2 ratio at

triage, CCI, and gender are significant risk factors for developing

severe and critical COVID-19 (Figure 5B). By leveraging these

early indicators, the study established a practical prognostic tool

for COVID-19 severity (Figure 6). As the variables included in

our model are readily available and easily collected upon

admission, this tool could prove valuable for COVID-19

management in the clinical setting and possibly other acute

respiratory distress syndrome (ARDS) scenarios.

Using the residual nasopharyngeal swab samples, our study

demonstrates the significant association between respiratory

immune mediators (including IL-10, IL-6, MCP-1, and MCP-

3) and COVID-19 severity (Figures 3A–D). In addition, our data

reveal that viral load at the time of admission is associated with

disease severity or mortality among hospitalized patients during

the first wave of SARS-CoV-2 in Louisiana, USA (Figure 3F).

This contributes to the growing evidence that viral load is a

potential indicator of COVID-19 severity and a prognostic

marker [10–19].

Numerous studies have proposed prediction models for

COVID-19 severity [55–59]. In these previous studies,

immune mediators in peripheral blood were used to predict

the outcome of COVID-19. Although these immune mediators

are strongly associated with COVID-19 severity and were shown

as independent indicators for the progression of COVID-19, they

were detected during the late acute phase of the disease (day

5–20 post-symptoms onset) and more likely resulted from

developing severe disease [55–59]. Moreover, these immune

mediators are not always easily accessible in clinical settings

or available in a timely manner. These limitations hinder the

predictability of immune-related variables in forecasting

COVID-19 severity. In contrast, our study employs early and

common clinical indicators, including SpO2/FiO2 ratio at triage,

CCI, and gender, to create straightforward and convenient

prognostic model for COVID-19 severity (Figure 6).

Considering the complexity and dynamic nature of COVID-

19 progression, which rapidly changes throughout the disease

course, we designed our model to calculate the probability of

non-severe patients developing severe COVID-19 and the

probability of severe patients developing more critical/

deceased symptoms separately. As a result, our model offers a

supplementary tool for assessing the risk of developing severe

and critical/deceased COVID-19 in clinical settings at the time of

admission without the need for additional paraclinical

parameters. Additionally, we provide a method for designing

parsimonious prognostic models for other viral respiratory

infection diseases (Figure 5). However, due to the moderate

sample size (n = 174), it is necessary to validate the predictive

capacity of our proposed model in larger, independent cohorts.

Our current study also examined immunological mediators

and viral load from remnant nasopharyngeal swab samples. It is

evident that the exacerbated pro-inflammatory responses to

FIGURE 5
SARS-CoV-2 load, respiratory IL10, SPO2/FiO2 ratio, respiratory rate, gender and CCI at admission are significant risk factors for more severe
COVID-19. Plots of risk factors for the development of more severe and critical COVID-19, using ordered logistic regression of individual factors (A);
and the combining effects for these potential risk factors (B). The vertical line represents an odds ratio of 1. Odds ratios were represented as median
with 95% confidence interval. P ≤ 0.05 is considered as significant.
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SARS-CoV-2 are significantly associated with more severe

COVID-19 immunopathology [41–47]. While studies have

provided insights from immune mediator levels in peripheral

blood following SARS-CoV-2 infection, the immune responses in

the peripheral blood compartment may not accurately reflect the

local immune responses at a more relevant infected site. Herein,

we demonstrated the significant association between elevated

levels of respiratory immune mediators (including IL-10, IL-6,

MCP-1, andMCP-3) and COVID-19 severity. MCP-1 andMCP-

3, produced mainly by cells such as airway epithelial cells,

endothelial cells, and myeloid cells, were found to be

monocyte chemotactic proteins for myeloid and lymphoid

cells [60]. The increased MCP-1 and MCP-3 in more severe

COVID-19 reinforce the pathogenic role of the exacerbated pro-

inflammatory responses in COVID-19.

Using remnant nasopharyngeal swab samples, which are

more accessible and less invasive than peripheral blood

collection, we not only reinforce the previous findings on the

association of increased circulating immune mediators and more

severe COVID-19 [41–47, 61, 62] but more importantly

demonstrate the feasibility of evaluating the humoral

component of local mucosal immune responses and viral load

FIGURE 6
The combined influence of CCI, SpO2/FiO2 ratio at triage and gender on the development of more severe COVID-19 using ordered logistic
regression. Considering Y is an ordinal outcome with J the degree of disease severity (j = 1 for non-severe, j = 2 for severe and j = 3 for deceased), P
(Y ≤ j) is the cumulative probability of Y less than or equal to specific degree of disease severity. Therefore, the odds of being less than or equal to
specific degree of disease severity is P(Y ≤ j)/P(Y > j). Accordingly, the logarithm of the odds is log [P(Y ≤ j)/P(Y > j)] = logit [P(Y ≤ j)]. With X is value
of the particular predictors included in the final model. There are i = 3 predictors in our parsimonious model (i = 1, 2,3). αj is the intercepts for specific
(j) degree of disease severity; βi is the vector of regression coefficient or the effect of individual (i) predictors on the specific outcome Y–degree of
disease severity. In this context, logit [P(Y ≤ j)] = αj -∑βiXi. In the final ordered logistic regression model: α (non-severe vs. severe) = 1.34; α (severe vs.
deceased) = 2.62; β(male) = 0.901; β(CCI) = 0.15; β(SPO2/FiO2) = −0.95.
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at the infection site. This method allows us to evaluate the viral

load and mucosal immune responses at the site of SARS-CoV-

2 infection at the same time point, helping understand the

relationship between viral infection and mucosal immune

responses at the early of infection. Increased MCP-1 has been

shown to be significantly and negatively correlated with the

inhibition of interferon regulatory factor 3 (IRF3) pathway in

patients with severe COVID-19 [63]. It is evident that the SARS-

CoV-2 spike and Nsp12/6 proteins attenuate the host’s innate

immune responses by suppressing IRF3-induced type 1 IFN

production [64–66], suggesting the mechanism of immune

evasion to facilitate the viral replication and COVID-19

severity. Together these data suggest that increased MCP-1

levels are significantly and negatively correlated with

attenuated type 1 IFN production and, therefore, positively

correlated with elevated viral load. Indeed, we found that

increased viral load is associated with more severe COVID-19

and significantly, positively correlated with IL-10, MCP-1, and

MCP-3 (Figures 3F, 4). Our data confirm the previous studies on

the positive association of excessive cytokines and increased viral

load with COVID-19 severity.

However, unlike data on peripheral cytokine responses,

findings on viral load in association with COVID-19 severity

are highly inconsistent among studies [18, 22] due to several

factors. First, the disparities in the timing of sample collection

contribute to inconsistency, as viral replication kinetics rapidly

change over the course of the disease due to host immune

responses. Controlling for varying degrees of different stages of

the disease is essential for interpreting viral load data. However,

these confounding effects were often not examined in

numerous studies [10–27]. When available, the peak of viral

load in longitudinal samples can be used to standardize the

findings across studies. Second, viral load data were determined

in different specimens, including respiratory [21] and plasma

samples [67]. It has been shown that viremia is associated with

severe and critical COVID-19 and is often under the limit of

detection in asymptomatic and less severe patients [68]. The

viremia in severe and critical COVID-19 patients is not

comparable with viral load in respiratory samples, which is

available in patients with a full spectrum of the disease severity

(from asymptomatic to critical).

Our current study has certain limitations. During the first

wave of COVID-19 (from March to May 2020), there was an

extremely urgent need to identify the SARS-CoV-2 infected

patients among patients with respiratory-related illnesses

using nasopharyngeal swabs. Early in the pandemic, most

COVID-19 patients at our institution were in isolation,

making it difficult to collect longitudinal specimens and all

relevant patient information, such as the day of symptom

onset. We are aware that the single-time point respiratory

sample collection in our study only represents a snapshot of

changes in local immune responses. Because viral replication

and immune responses to viral infection change throughout

the disease, it is clear that the temporal profiles of infection

need to be considered to get a clear picture of the relationship

between viral load and immune responses. Nevertheless, our

data demonstrate that even using remnant nasopharyngeal

swab samples collected at admission and stored frozen for

several months, we are able to observe early local mucosal

responses to SARS-CoV-2 at the infected site. Once again, our

study emphasizes the importance of considering the

relationship between viral load and immune responses as

investigating the mechanism of COVID-19 pathology. It

also shows the value of early detection of risk factors and

potential prognostic markers for clinical management.

Nonetheless, the study also notes the need for validation in

larger cohorts.
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