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Abstract

Neurological pain (NP) is always accompanied by symptoms of depression,

which seriously affects physical and mental health. In this study, we identified

the common hub genes (Co-hub genes) and related immune cells of NP and

major depressive disorder (MDD) to determine whether they have common

pathological and molecular mechanisms. NP and MDD expression data was

downloaded from the Gene Expression Omnibus (GEO) database. Common

differentially expressed genes (Co-DEGs) for NP and MDD were extracted and

the hub genes and hub nodes were mined. Co-DEGs, hub genes, and hub

nodes were analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment. Finally, the hub nodes, and genes

were analyzed to obtain Co-hub genes. We plotted Receiver operating

characteristic (ROC) curves to evaluate the diagnostic impact of the Co-hub

genes on MDD and NP. We also identified the immune-infiltrating cell

component by ssGSEA and analyzed the relationship. For the GO and KEGG

enrichment analyses, 93 Co-DEGs were associated with biological processes

(BP), such as fibrinolysis, cell composition (CC), such as tertiary granules, and

pathways, such as complement, and coagulation cascades. A differential gene

expression analysis revealed significant differences between the Co-hub genes

ANGPT2, MMP9, PLAU, and TIMP2. Therewas some accuracy in the diagnosis of

NP based on the expression of ANGPT2 andMMP9. Analysis of differences in the

immune cell components indicated an abundance of activated dendritic cells,

effector memory CD8+ T cells, memory B cells, and regulatory T cells in both

groups, which were statistically significant. In summary, we identified 6 Co-hub
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genes and 4 immune cell types related to NP and MDD. Further studies are

needed to determine the role of these genes and immune cells as potential

diagnostic markers or therapeutic targets in NP and MDD.
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neurological pain, gene expression omnibus (GEO), major depressive disorder (MDD),
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Impact statement

There is a close relationship between Neuropathic Pain (NP)

and major depressive disorder (MDD). The underlying

molecular pathology of NP and MDD is complex and drug

treatments have not yielded satisfactory results, thus further

studies are needed to identify biomarkers and therapeutic

targets. In this study, we identified common differentially

expressed genes (Co-DEGs) for NP and MDD using several

available datasets. Co-DEGs, hub genes, and hub nodes were

analyzed for GO and KEGG enrichment. We also identified the

immune-infiltrating cell component by ssGSEA and analyzed the

relationship. We identified 6 co-hub genes, which included

ANGPT2, EPO, HGF, MMP9, PLAU, and TIMP2. There were

also significant differences in the abundance of activated

dendritic cells, effector memory CD8 T cells, memory B cells,

and regulatory T cells. Overall, this study may lead to new

diagnostic markers and/or therapeutic targets for NP and

MDD diseases.

Introduction

Neuropathic Pain (NP) is caused by a somatic sensory

neurological condition and may be divided into central and

peripheral NP [1, 2]. The prevalence of NP accounts for

6.9%–10.0% of the general population and significantly affects

physical and mental health [3]. However, the underlying

mechanism of NP is complex and clinical drug treatment has

not yet achieved satisfactory results, thus further in-depth

exploration of NP is needed [4, 5].

There is a close relationship between NP and major

depressive disorder (MDD) [6]. Most patients with NP also

have depression and NP may promote adaptive changes in

the expression of depression-related brain network genes [7].

Identifying the common pathological factors for NP and

depression comorbidities will help to identify effective

treatments. Some studies that have examined NP and MDD

have shown that synaptic plasticity and the synaptic

microenvironment may be important to the pathogenesis of

NP and depression [8], where plastic changes in corticolimbic

structures have been shown to be a consequence of the

association of emotion with painful stimuli [9]. Additionally,

the functional and structural changes in neurons due to this

neural plasticity may in turn serve as biomarkers of NP [8].

Growing evidence indicates that neuroinflammation is closely

related to both NP and depression [10, 11], and that immune

system abnormalities mediated by cytokines are strongly linked

to the development of NP [10, 12]. Increasing

neurodifferentiation and restoring the typical morphology of

neonatal dendrites may improve depression-like symptoms in

NP [13]. In addition, NP-induced emotional disorders are

associated with hippocampal (HC) neuroinflammation [14],

whereas abnormal regulation of HC dendritic spines may

explain the link between chronic NP and depression [15, 16].

A potential therapeutic focus for managing complicated

depressive symptoms in NPs may be the LA/BLA-CeA

synapse in the amygdala [17]. Glial cells significantly affect

synaptic plasticity and have a significant impact on the

progression of coexisting NP and depression [18]. Regulating

the P2X7-ROS signaling pathway to inhibit ferroptosis in spinal

cord microglia alleviates rats with pain and depressive behavioral

changes [19]. Although some progress has been made, much

remains unclear regarding the co-pathogenesis of NP and

depression co-morbidities. Therefore, an in-depth study of the

relationship between these two diseases is needed to identify

effective treatments.

We hypothesize that in the pathogenesis of NP and MDD,

the expression and activity of specific co-hub genes and immune

cells may exhibit significant differences between disease and

healthy states, and may play a key role in the common

pathological processes of these two diseases. Identifying

diagnostic markers and treatment targets for NP and MDD

will increase our understanding of the relationship between

these two diseases and guide future clinical practice and

scientific research. It will also assist doctors in accurately

diagnosing NP and MDD comorbidities and provide more

effective treatment options for patients. A biomarker is a

measurable indicator of a biological state, providing

information about disease prognosis and progression [20].

Bioinformatics will facilitate the identification of the co-

occurrence mechanism of NP and depression and identify

potential biomarkers and prognostic indicators to accurately

diagnose and treat NP and depression comorbidities. A recent

analysis screened a set of genes associated with NP-induced

depression; however, it was done with a single dataset

associated with a high false-positive rate [21]. Small sample

sizes and different microarray platforms can introduce

significant bias in the results. Therefore, finding new

therapeutic targets and robust diagnostic markers is required.
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In this study, we screened for Co-hub genes between NP and

MDD by integrating 4 databases and identified the immune cells

associated with the co-morbidity of NP and MDD by analyzing

the differences in the immune cell signatures.

Materials and methods

Data downloads

The Gene Expression Omnibus (GEO) is a public repository

that archives and distributes high-throughput gene expression

and other functional genomics data sets, with web-based tools for

data visualization and analysis [22]. We downloaded the gene

expression datasets, GSE98793 [23] and GSE32280 [24], which

are associated with major depressive disorder (MDD) patients

from the GEO database using the R package GEOquery [25] The

species source for both the GSE98793 and GSE32280 datasets

was Homo sapiens and the data platform was GPL570 [HG-

U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array.

We also downloaded the GSE24982 [26] and GSE30691 [27]

gene expression profiles of Neuropathic Pain (NP) patients, in

which the species source for both was Rattus norvegicus. The data

platform for the GSE24982 dataset was GPL1355 [Rat230_2]

Affymetrix Rat Genome 230 2.0 Array, whereas the data platform

for the GSE30691 dataset was the GPL85 [RG_U34A] Affymetrix

Rat Genome U34 Array.

The chip GPL platform file was used for all dataset probe

name annotations. We selected data from 128 patients with

major depressive disorder (MDD) (MDD group, group:

MDD) and 64 healthy controls (control group, group:

Control) from the GSE98793 datasets of whole blood samples

for inclusion in the analysis. A total of 16 subjects from the

GSE32280 datasets were analyzed, including 8 examples of

peripheral blood lymphocytes from matched healthy controls

(control group, group: Control) and 8 peripheral blood

lymphocyte samples from MDD patients. In addition, in the

Neuropathic Pain (NP) dataset, GSE24982, we used a total of

40 mRNA data samples based on the L4 and L5 Dorsal Root

Ganglion (DRG), including 20 control (group: Control) mRNA

samples and 20 mRNA samples from the spinal nerve ligation

model of neuropathic pain in rats (NP group, group: NP). The

GSE30691 dataset contains mRNA samples from 11 rat

neuropathic pain spinal nerve ligation (Ch) models (NP

group, group: NP) and 9 Sham (SH) control (group: Control)

mRNA data samples. The specific grouping of the information

from these datasets is listed in Table 1. The datasets we selected

are all expression profiling by array, and the sample size is

sufficient to meet our analysis requirements. In addition, to

ensure that our control samples match the experimental

conditions, the healthy control samples and diseased samples

in these datasets are as consistent as possible in terms of sample

collection methods, time, and other experimental conditions to

minimize the impact of confounding factors.

Editing of raw data and differential
gene analysis

The MDD (GSE98793, GSE32280) and NP (GSE24982,

GSE30691) datasets were combined for analysis. To minimize

the variance in sample combinations across batches, we first

standardized the datasets internally using the

ControlizeBetweenArrays function of the R limma package

[28]. We corrected the combined data for batch effects using

the remove batch effect function, which enabled us to obtain the

combined MDD and NP datasets. The MDD datasets contained

136 cases (disease group, group: Case/MDD) and 72 controls

TABLE 1 List of GEO datasets Information.

GSE98793 GSE32280 GSE24982 GSE30691

Platform GPL570 GPL570 GPL1355 GPL85

Species Homo sapiens Homo sapiens Rattus norvegicus Rattus norvegicus

Tissue whole blood peripheral blood lymphocytes L4 and L5 Dorsal Root Ganglion Dorsal Root Ganglion

Samples in
Case group

128 8 20 11

Samples in
Control
group

64 8 20 9

Reference Replicable and Coupled Changes in
Innate and Adaptive Immune Gene
Expression in Two Case-Control
Studies of Blood Microarrays in

Major Depressive Disorder

Blood-based gene expression profiles
models for classification of
subsyndromal symptomatic

depression and major depressive
disorder

Dynamic changes in the microRNA
expression profile reveal multiple

regulatory mechanisms in the spinal
nerve ligation model of neuropathic

pain

Multiple chronic pain states
are associated with a common
amino acid-changing allele in

KCNS1

GEO, gene expression omnibus; MDD, major depressive disorder; NP, neuropathic pain.
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(control group, group: Control). The NP datasets contained

31 cases (disease group, group: Case/NP) and 29 controls

(control group, group: Control). The expression values for the

samples in the MDD and NP datasets were then analyzed using

Principal Component Analysis (PCA) before and after

correction [29].

Differentially expressed genes (DEGs) are a subset of

genes that express differently among experimental

conditions, used to determine biological functions or

predict therapeutic outcomes. To identify the potential

mechanism of action of DEGs in MDD and NP and the

associated biological features and pathways, we performed

a differential expression analysis on the case and control

groups using the R limma package. Genes that met the

criteria |logFC| >0 and p-value <0.05 were considered

DEGs for subsequent studies. |logFC| represents the

absolute log2 value of the fold change in gene expression.

To obtain the common differentially expressed genes (Co-

DEGs) associated with MDD and NP, we selected the DEGs

from the differential analysis of the MDD and NP datasets

DEGs and constructed a Venn diagram. A volcano plot was

generated using ggplot2 of the R package and a heat map was

used to display the results.

Protein-protein interaction
network analysis

A protein-protein interaction (PPI) network is made up of

different proteins that engage with one another to function in a

variety of biological processes, including signaling, regulation of

gene expression, substance metabolism, energy production, and

cell cycle regulation. A database for identifying known proteins

and predicting protein interactions is the STRING database [30].

We constructed a PPI network of Co-DEGs linked to both NP

and MDD disease [minimum required interaction score: middle

confidence (0.400)], which was visualized with Cytoscape [31]

(version 3.9.1). Using the MCODE plugin, we mined the hub

nodes with connections to other PPI network nodes (K score: 2,

Cutoff degree: 2, Cutoff node score: 0.2) [32]. These nodes were

highly interconnected with one another and may play a role in

regulating various biological processes associated with

NP and MDD.

Amolecular complex with a particular biological activity may

be represented by closely connected local areas in the PPI

network. We also used four algorithms to mine the scores of

Co-DEGs in PPI networks that are connected to other PPI

network nodes, which included MCC (Matthews Correlation

Coefficient metric) [33], MNC (the maximal neighborhood

coefficient), EPC (edge percolated component), and Closeness.

According to our rankings of the Co-DEGs. The top 20 Co-DEGs

across the four algorithms were considered as hub genes (hub

genes, mRNA).

GO and KEGG enrichment analysis

Large-scale functional enrichment studies, including

biological process (BP), molecular function (MF), and

cellular component (CC), are frequently carried out using

the Gene Ontology (GO) database [34]. The Kyoto

Encyclopedia of Genes and Genomes (KEGG) is a widely

used database that genomic data for biological pathways,

diseases, and drugs [35]. We conducted GO and KEGG

enrichment analyses for MDD and NP disease-associated

Co-DEGs, PPI network hub nodes, and hub genes in the

PPI network using the clusterProfiler [36]. p values <
0.05 and FDR values (q value) < 0.05, which were

considered statistically significant as a criteria for selection

and Benjamini-Hochberg was used to correct p values.

Identification and correlation analysis of
immune-infiltrating cells

To more precisely measure the percentage of various

immune cells in samples associated with MDD and NP.

Single-sample gene-set enrichment analysis (ssGSEA) was

used to identify highly sensitive and specific differentiation

of the various human immune cells in the tumor

microenvironment (TME). The algorithm generated a set of

28 genes to mark different tumor-infiltrating resistant cell

types from a study of published tumor immune infiltration

articles [37, 38]. The degree of immune cell infiltration in each

sample was represented by an enrichment score computed

by ssGSEA in the GSVA tool of R. The varying abundance

of infiltrating immune cells between the Case (MDD/NP)

group and the Control group are shown using a heat map

and a boxplot for the MDD and NP datasets. We then

calculated the correlation between immune cells and Co-

hub genes in different disease samples by combining the

gene expression matrix of both disease samples. The

correlation heat map was displayed using the R

package heatmap.

Co-hub gene correlation analysis and
differential expression analysis

Finally, the expression of Co-hub genes in the MDD and

NP datasets was examined using the Spearman method. The

results of the correlation analysis were presented by plotting

the correlation heat map. Next, we selected the results for the

Co-hub genes with the same trend and displayed them by

plotting the correlation scatter graph with the R

package ggplot2.

We then established a group comparison graph for the Co-

hub genes in various groups (Case/Control) of the MDD and NP
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datasets. The Receiver operating characteristic (ROC) Curve [39]

is a composite indicator that represents continuous variables of

sensitivity and specificity. We used the R package pROC program

to plot the ROC curves of the Co-hub genes in the MDD and NP

datasets and calculated the Area Under the Curve (AUC) of the

ROC curve to determine the diagnostic significance of the Co-

hub genes. The Receiver operating characteristic (ROC) curve

AUC typically falls between 0.5 and 1. The diagnostic impact

increases as the AUC gets near 1. The AUC exhibits low accuracy

in the range of 0.5–0.7, some accuracy in the range of 0.7–0.9, and

high accuracy in the range of 0.9 or above.

Statistical analysis

R software was used for data processing and analysis in this

paper (Version 4.2.2). We calculated the normally distributed

variables using an independent Student t-test to compare two sets

FIGURE 1
Technology roadmap. MDD,major depressive disorder; NP, Neuropathic Pain; Co-DEGs, Common differentially expressed genes; PPI network,
Protein-protein interaction network; MCODE, Molecular Complex Detection; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; Co-hub genes, Common hub genes; ROC, Receiver operating characteristic curve.
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FIGURE 2
Datasets de-batch processing. (A,B) The boxplot before (A) and after (B) the MDD datasets removes the batch effect treatment. (C,D) The PCA
plots before (C) and after (D) of the MDD datasets removes the batch effect treatment. (E,F) The boxplot before (E) and after (F) of the NP datasets
removes the batch effect treatment. (G,H) The PCA plots before (G) and after (H) of the NP datasets removes the batch effect treatment. MDD,major
depressive disorder; NP, Neuropathic Pain; PCA, Principal Component Analysis.
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FIGURE 3
DEGs analysis of MDD datasets and NP datasets. (A,B) The volcano map of DEGs analysis between the disease group (group: Case/MDD/NP)
and control group (group: Control) in the MDD datasets (A) and NP datasets (B). (C,D) The Venn map of the up-regulation (C) and down-regulation
(D) DEGs in the MDD and NP datasets. (E,F) The complex numerical heat map of Co-DEGs in the MDD datasets (E) and NP datasets (F). MDD, major
depressive disorder; NP, Neuropathic Pain; DEGs, differentially expressed genes; Co-DEGs, Common differentially expressed genes.
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of continuous variables. We used the Mann-Whitney U test to

examine differences among factors with non-normal

distributions (i.e., Wilcoxon rank sum test). If not explicitly

indicated, a Spearman correlation was used to calculate the

correlation coefficients between different molecules. The p

values were two-sided with p < 0.05 being the threshold for

statistical significance.

Results

Dataset pre-processing and differential
gene analysis

The technical route of this study is shown in Figure 1. Using

the ControlizeBetweenArrays function of the limma package, we

normalized the two major MDD datasets (GSE98793 and

GSE32280) and the two NP datasets (GSE24982 and

GSE30691), respectively. The MDD datasets (Figures 2A, B)

and the NP datasets (Figures 2E, F) were obtained through a

batch effect correction of the combined data using the “remove

batch effect” function. The MDD datasets include 136 MDD

samples (group: MDD) and 72 control samples (group: Control).

The NP datasets consist of 31 NP samples (group: NP) and

29 control samples (group: Control). In addition, to convert

mouse to human genes for subsequent analysis, the R package

homologene was used to conduct an ID transformation of the

NP datasets.

To verify the effect of removing the batch effect (Figures

2C, D, G, H), we grouped the MDD, and NP datasets

according to the source of the samples. For the dataset

expression matrix, before, and after the batch effect was

eliminated, we performed a Principal Component Analysis

(PCA). The results indicated that after the batch removal

process, the batch effect was essentially eliminated from the

MDD and NP datasets.

Following Principal Component Analysis (PCA), we

obtained DEGs between different groups of the MDD and

NP datasets. The MDD datasets yielded 21,655 DEGs, of

which 1708 met the criteria. For the Case/MDD group,

there were 824 upregulated DEGs and 884 downregulated

DEGs. The NP datasets yielded 4076 DEGs, of which

2,136 met the criteria. For the Case/NP group,

978 exhibited high expression (low expression in the

Control group with positive logFC), and 1,158 genes

exhibited low expression (high expression in the Control

group with negative logFC). The results for the MDD and

NP datasets are depicted in volcano plots (Figures 3A, B).

TABLE 2 List of Common differentially expressed genes in MDD datasets and NP datasets.

Common differentially expressed genes

UP DOWN

AATK FGD4 P4HB AES HINT1 PPOX

ABCC2 GADD45A PLAU AIFM1 HPCAL4 PTPMT1

ANXA4 GAS7 POU1F1 AKAP1 HSPE1 RBL2

AP1S1 GRB10 POU3F3 AKAP11 HSPH1 RPL30

ARG1 GRIA1 PPAP2B AMIGO1 MCF2L RTN4IP1

ASAH1 HGF PROS1 ANAPC5 MTRF1L S100B

BMP2 HSD3B7 RAB13 ANGPT2 MYCBP2 SCFD1

C3AR1 IL1R1 RHD AP4S1 MYO5B SEPT1

CAPG IL1R2 RNASE4 CAMK4 NDUFB2 SETD6

CD63 INHBA SERPINB2 CHST10 NELL2 TBCE

CEBPA INSR SERPING1 DAO NRCAM TTC37

CSRP3 MAOA SIRPA DUSP5 NUP210 UNC13C

CXCL14 MMP9 SMAD1 EHF OXNAD1 WDR61

CYP1B1 NFIA TIMP2 EVL PIK3IP1 ZADH2

EDNRB OLAH TNFSF13 HADH PMPCB ZNF260

EPO OLR1 VCAN

MDD, major depressive disorder; NP, neuropathic pain.
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To obtain Co-DEGs for MDD and NP, we focused on the

intersection of 48 upregulated and 45 downregulated Co-

DEGs that were presented in a Venn diagram (Figures 3C,

D). The data and annotation for these Co-DEGs is listed in

Table 2. We examined differential expression of 93 Co-DEGs

from the MDD and NP datasets in various groups. Heat maps

were used to display the results of the differential analysis

using the R package heatmap (Figures 3E, F). As shown in

Figure 3, 93 Co-DEGs showed significant differences in

expression between the groups based on the MDD and

NP datasets.

GO and KEGG enrichment analysis of the
Co-DEGs

For the 93 Co-DEGs, we performed a functional

enrichment analysis using the Gene Ontology (GO) and the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

databases (Table 3). The results indicated that 93 Co-DEGs

were primarily enriched in biological processes (BP), such as

fibrinolysis, regulation of inflammatory response, and

developmental maturation. They were also enriched in

cellular component (CC) tertiary granules and complement

and coagulation cascade from the KEGG pathway database.

The results are shown in the form of bubble plots and a

network diagram (Figures 4A, B). We then combined the

logFC values with the enrichment analysis, which generates

a z score by providing the logFC values for the 93 Co-DEGs.

The effects of GO and KEGG enrichment analysis by joint

logFC are shown as circle plots (Figure 4C) and bubble plots

(Figure 4D). The results indicated that the 93 Co-DEGs from

the MDD dataset were primarily located in the BP pathway

(Figures 4C, D).

The MCODE plug-in identifies the
hub nodes

After excluding the Co-DEGs that did not have a connection

with other nodes, we constructed a PPI network (Figure 5A)

consisting of 54 Co-DEGs using the STRING database. We

analyzed the nodes that have connections with other nodes in

the PPI network using the MCODE plugin. We then used the

genes in cluster1 and cluster2 of the results as hub nodes for the

Co-DEG PPI network, in which we obtained an MCODE cluster

network consisting of 6 Co-DEGs (PLAU, TIMP2, HGF,

ANGPT, MMP9, EPO) (Score = 4.8) (Figure 5B) and an

MCODE cluster network (Score = 3) (Figure 5C) consisting of

3 Co-DEGs (RPL30, TTC37, WDR61). The 9 (hub node) genes

included PLAU, TIMP2, HGF, ANGPT, MMP9, EPO, RPL30,

TTC37, and WDR61. These nodes warrant additional study as

they may be important in regulating the entire BP.

On the 9 hub nodes (PLAU, TIMP2, HGF, ANGPT,

MMP9, EPO, RPL30, TTC37, WDR61), we performed GO

and KEGG enrichment analyses (Supplementary Table S1).

The results indicated that the BP, negative regulation of the

apoptotic signaling pathway, was largely abundant in the

9 hub nodes. Enrichment in CC, such as tertiary granules,

and transcriptionally active chromatin as well as MF, such as

serine-type endopeptidase activity, was observed. The KEGG

pathways, including proteoglycans in cancer, PI3K-Akt

signaling pathway, and RNA degradation, were also

enriched. The results are presented using bar graphs in

Figure 5D. In addition, the GO analysis outcomes are

shown for the BP pathway (Figure 5E), CC pathway

(Figure 5F), and MF pathway (Figure 5G) as a network

diagram, whereas the results of KEGG pathway enrichment

analysis are displayed as a circular network

diagram (Figure 5H).

TABLE 3 GO and KEGG enrichment analysis results of 93 Common differentially expressed genes.

Ontology ID Description GeneRatio BgRatio P-value p.adjust qvalue

BP GO:0042730 fibrinolysis 4/90 28/18,670 9.46e-06 0.021 0.018

BP GO:0050727 regulation of inflammatory response 11/90 485/18,670 2.12e-05 0.023 0.020

BP GO:0021700 developmental maturation 8/90 284/18,670 6.85e-05 0.045 0.040

BP GO:0070301 cellular response to hydrogen peroxide 5/90 99/18,670 1.17e-04 0.045 0.040

BP GO:0030195 negative regulation of blood coagulation 4/90 53/18,670 1.23e-04 0.045 0.040

BP GO:1900047 negative regulation of hemostasis 4/90 54/18,670 1.33e-04 0.045 0.040

BP GO:0034614 cellular response to reactive oxygen species 6/90 168/18,670 1.62e-04 0.045 0.040

BP GO:0050819 negative regulation of coagulation 4/90 57/18,670 1.64e-04 0.045 0.040

CC GO:0070820 tertiary granule 6/90 164/19,717 1.06e-04 0.026 0.022

KEGG hsa04610 Complement and coagulation cascades 5/57 85/8,076 3.13e-04 0.048 0.046

GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, kyoto encyclopedia of genes and genomes.
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CytoHubba plug-in identifies the
hub genes

We calculated the PPI network using the cytoHubba plugin

for Cytoscape using four algorithms: MCC (Matthews

Correlation Coefficient metric), MNC, EPC (edge percolated

component), and Closeness. The top 20 Co-DEGs with the

best scores were selected to further identify the hub genes in

the Co-DEGs PPI network (Figures 6A–D). The color of the

dotted blocks in the graph, from yellow to red, represents a

gradual increase in rating. Next, we focused on the intersection of

the top 20 Co-DEGs obtained by each of the four algorithms

FIGURE 4
GO and KEGG enrichment analysis of Co-DEGs. (A,B) The bubble plot (A) and network plot (B) of GO/KEGG enrichment analysis results of Co-
DEGs. (C,D) The circle plot (C) and chord plot (D) of GO function enrichment of Co-DEGs combined with logFC analysis results. The ordinate in the
bubble chart (A) is GO/KEGG terms, and the length of the bubble distance to the Y axis represents the GeneRatio of GO terms. Co-DEGs, Common
differentially expressed genes; GO, Gene Ontology; BP, biological process; CC: cellular component; MF: molecular function; KEGG, Kyoto
Encyclopedia of Genes and Genomes. The screening criteria for GO/KEGG-enriched entries were p value < 0.05 and FDR value (q.value) < 0.05.
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FIGURE 5
MCODE plug-in identifies the hub nodes of GO, and KEGG enrichment analysis and the PPI network. (A) PPI network of Co-DEGs. (B,C) The
MCODE cluster 1 (B) and MCODE cluster 2 (C) networks of the PPI network of Co-DEGs. (D) Histogram of GO/KEGG enrichment analysis results of
hub node. (E–G) The GO function enrichment analysis of Co-DEGs BP pathway (E), CC pathway result (F), MF pathway (G) result network diagram.
(H) Ring network diagram of KEGG pathway enrichment analysis results of Co-DEGs. The ordinate in the histogram (D) is GO/KEGG terms, and
the length of the bar distance from the Y axis represents the padj value of GO terms. Co-DEGs, Common differentially expressed genes; PPI network,
Protein-protein interaction network; MCODE, Molecular Complex Detection; GO, Gene Ontology; BP, biological process; CC, cellular component;
MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes. The screening criteria for GO/KEGG-enriched entries were p value <
0.05 and FDR value (q.value) < 0.05.
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FIGURE 6
CytoHubba plug-in nodenetwork forCo-DEGsPPI network andGOandKEGGenrichment analysis. The top 20nodenetwork of theMCC (A), MNC (B),
EPC (C), Closeness (D) algorithmof thePPI networkofCo-DEGs. (E)The top20nodesof theVenndiagram result from the four algorithmsofMCC,MNC, EPC,
and Closeness in the Co-DEGs PPI network. (F) The bubble plot of GO/KEGG enrichment analysis results of 8 hub genes. (G) The network diagram of GO
enrichment analysis results of Co-DEGs. (H) The ring network diagram of KEGG pathway enrichment analysis results of Co-DEGs. The abscissa in the
bubble chart (F) is GO/KEGG terms, and the length of the bubble distance from the X-axis represents the GeneRatio value of GO terms. Co-DEGs, Common
differentially expressed genes; PPI network, Protein-protein interaction network; MCC, Matthews Correlation Coefficient metric; MNC, the maximal
neighborhood coefficient; EPC, edge percolated component; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function;
KEGG, Kyoto Encyclopedia of Genes andGenomes. The screening criteria for GO/KEGG-enriched entries were p value < 0.05 and FDR value (q.value) <0.05.

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine12

Hu et al. 10.3389/ebm.2024.10129

https://doi.org/10.3389/ebm.2024.10129


FIGURE 7
The PPI network of Co-hub genes. (A) The Venn diagram of the analysis results of the PPI network MCODE plugin and the cytoHubba plug-in
analysis results. (B) The PPI network of Co-hub genes. (C) The histogramof functional similarity analysis results of Co-hub genes. (D) The PPI network
of Co-hub genes based on the GeneMANIA database. PPI network, Protein-protein interaction network; MCODE, Molecular Complex Detection;
Co-hub genes, Common hub genes.
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FIGURE 8
Immune characteristics difference analysis of MDD datasets samples and NP datasets samples. (A,B) Complex heatmap of ssGSEA
immunoinfiltration analysis results for MDD datasets samples (A) andNP datasets samples (B)MDD,major depressive disorder; NP, Neuropathic Pain;
ssGSEA: single-sample gene-set enrichment analysis.
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FIGURE 9
Correlation analysis of immune characteristics of MDD datasets disease samples and NP datasets disease samples. (A,B) Complex heatmap of
ssGSEA immunoinfiltration analysis results for MDD datasets samples (A) and NP datasets samples (B) MDD, major depressive disorder; NP,
Neuropathic Pain; ssGSEA: single-sample gene-set enrichment analysis. (A,B) Grouped comparison plot of ssGSEA immunoinfiltration analysis
results for MDD datasets samples (A) and NP datasets samples (B). (C,D) Correlation heat map of immune cell infiltration abundance and Co-
hub genes expression in MDD datasets disease samples (C) and NP datasets disease samples (D). The symbol ns is equivalent to p ≥ 0.05, which is not
statistically significant; The symbol * is equivalent to p < 0.05; the symbol ** is equivalent to p < 0.01; and the symbol *** is equivalent to p < 0.001.
MDD, major depressive disorder; NP, Neuropathic Pain; ssGSEA, single-sample gene-set enrichment analysis.
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(MCC, MNC, EPC, Closeness) to obtain the hub genes and drew

Venn diagrams to display the results (Figure 6E). We obtained a

total of 8 hub genes, which included ANGPT2, BMP2, CEBPA,

EPO, HGF, MMP9, PLAU, and TIMP2.

We performed GO and KEGG enrichment analyses for

the hub genes (Supplementary Table S2). The results

indicated that the 8 hub genes were primarily enriched in

BP, such as response to hypoxia. They were also enriched in

CC, such as tertiary granules, and MF, such as serine-type

endopeptidase activity. The KEGG pathways identified

included transcriptional misregulation in cancer. We

displayed the findings of the GO and KEGG enrichment

analyses using bubble plots (Figure 6F). We also displayed

the GO gene functional enrichment analysis findings

(Figure 6G) as a network diagram and the KEGG pathway

enrichment analysis results (Figure 6H) as a circular

network diagram.

The PPI network of Co-hub genes

We first obtained Co-hub genes by taking the intersection of

the 9 hub nodes (PLAU, TIMP2, HGF, ANGPT, MMP9, EPO,

RPL30, TTC37, WDR61) and the 8 hub genes (ANGPT2, BMP2,

CEBPA, EPO, HGF, MMP9, PLAU, TIMP2) (Figure 7A). As

shown in Figure 7A, we obtained 6 Co-hub genes, which included

ANGPT2, EPO, HGF, MMP9, PLAU, and TIMP2. We analyzed

their interaction using the STRING database and visualized them

with Cytoscape (Figure 7B). Next, the 6 Co-hub genes (ANGPT2,

EPO, HGF, MMP9, PLAU, TIMP2) were analyzed for functional

similarity. We calculated the semantic similarity among GO terms,

sets of GO terms, gene products, and gene clusters using the R

package GOSemSim. The results of this functional similarity analysis

between the 6 Co-hub genes are presented as a boxplot in Figure 7C.

HGF had the highest value of functional similarity with the other Co-

hub genes among the 6 Co-hub genes.

Using the GeneMANIA database, we constructed a Co-hub

gene PPI network after retaining the nodes with links to the 6 Co-

hub genes (Figure 7D). As shown in Figure 7D, there are five

types of interactions between the nodes of our constructed Co-

hub genes PPI network and the 6 Co-hub genes, including Co-

expression, Pathway, Physical Interactions, Shared protein

domains, and Predicted.

Differences in immune characteristics
between the MDD and NP datasets

The relative infiltration of 28 immune cell types in the disease

group (Case/MDD/NP) and control group samples in the MDD

and NP dataset expression matrix were determined using the

ssGSEA algorithm. We presented the findings for both datasets

using a complex heat map (Figures 8A, B). The results indicated

that among the disease and control group samples of MDD

(Figure 8A) and NP (Figure 8B), the infiltration by the 28 cell

types varied significantly. Next, we used the Mann-Whitney U

test to analyze the differential degree of infiltration of these cells

among the different groups (Case/Control) in the two datasets

and the results are grouped in comparison plots (Figures 9A, B).

The control group exhibited a higher abundance of activated

B cells, effector memory CD8 T cells, memory B cells, and type

1 T helper cells compared with the disease group. In contrast, the

disease group contained a more activated dendritic cells,

macrophages, and regulatory T cells compared with the

control group (Figure 9A).

CD56dim natural killer cells, natural killer T cells, regulatory

T cells, and type 17 T helper cells had higher infiltration in the

NP dataset control group compared with that in the disease

group. In contrast, the disease group had higher infiltration of

activated CD8 T cells, activated dendritic cells, effector memory

CD8 T cells, eosinophils, gamma delta T cells, mast cells, MDSCs,

memory B cells, monocyte neutrophils, plasmacytoid dendritic

cells, T follicular helper cells, and type 2 T helper

cells (Figure 9B).

Figures 9A, B shows that there were statistically significant

differences (p < 0.05) between the relative immune infiltration of

the MDD and NP dataset samples compared with control group

(Case/Control) samples for activated dendritic cells, effector

memory CD8 T cells, memory B cells, and regulatory T cells.

We also calculated the correlation for these 4 immune cell

types with the expression of the 6 Co-hub genes (ANGPT2, EPO,

HGF, MMP9, PLAU, TIMP2) in the MDD and NP dataset

disease samples (Figures 9C, D). The results indicated that the

expression of these 6 genes and the relative abundance of the four

immune cells tended to be significantly positive and less

negatively correlated (p < 0.05) in the MDD dataset samples

(Figure 9C). The results of the correlation analysis between the

infiltration of the 4 immune cells and the expression of 6 the Co-

hub genes in the NP dataset disease samples revealed that there

was a significant positive correlation (p < 0.05) between these

infiltrating cells and the 6 genes. Activated dendritic cells showed

the highest correlation with the expression of these

genes (Figure 9D).

Finally, the expression of activated dendritic immune cells,

memory B cells and the 6 Co-hub genes had a significant positive

correlation in the MDD and NP dataset disease samples (Figures

9C, D). In contrast, the expression of the 6 Co-hub genes was

significantly negatively correlated with the infiltration abundance

of effector memory CD8 T immune cells in these datasets

(Figures 9C, D).

Correlation analysis of the Co-hub genes

The correlation in expression between the 6 Co-hub genes

(ANGPT2, EPO, HGF, MMP9, PLAU, TIMP2) was analyzed in
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FIGURE 10
Correlation analysis of Co-hub genes. A,B, The correlation heat map results of Co-hub genes in MDD datasets (A), NP datasets (B). (C,D) The
correlation scatterplot results of Co-hub genes ANGPT2 and HGF inMDD datasets (C) and NP datasets (D). (E,F) The correlation scatterplot results of
Co-hub genes PLAU and TIMP2 in the MDD datasets (E) and NP datasets (F). p ≥ 0.05, not statistically significant; p < 0.05, statistically significant; p <
0.01, which was highly statistically significant; p < 0.001, which is exceedingly statistically significant. The correlation coefficient (r) in the
correlation scatterplot is strongly correlated if the absolute value is above 0.8; the absolute value is 0.5–0.8 is moderately correlated; Absolute value
of 0.3–0.5 is weakly correlated; absolute values below 0.3 are weak or uncorrelated. MDD, major depressive disorder; NP, Neuropathic Pain.
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the MDD and NP datasets by Spearman correlation analysis and

presented as a correlation heat map (Figures 10A, B). There was a

positive correlation among most Co-hub genes in both datasets;

however, quite a few correlations of Co-hub genes in the NP

datasets did not show a statistical difference (p > 0.05)

(Figures 10A, B).

We selected interaction pairs that were statistically different

(p < 0.05) with the same trend in the MDD and NP datasets for

further analysis. Based on the Spearman algorithm, we generated

scatter plots to show the correlation analysis results for the Co-

hub genes, ANGPT2 and HGF, in the MDD and NP datasets as

well as the correlation analysis result of PLAU and TIMP2 in the

FIGURE 11
Expression differences analysis of Co-hub genes in MDD datasets and NP datasets. (A,B) The correlation heat map results of Co-hub genes in
MDD datasets (A), NP datasets (B). (C,D) The correlation scatterplot results of Co-hub genes ANGPT2 and HGF in MDD datasets (C) and NP datasets
(D). (E,F) The correlation scatterplot results of Co-hub genes PLAU and TIMP2 in the MDD datasets (E) and NP datasets (F). p ≥ 0.05, not statistically
significant; p < 0.05, statistically significant; p < 0.01, which was highly statistically significant; p < 0.001, which is exceedingly statistically
significant. The correlation coefficient (r) in the correlation scatterplot is strongly correlated if the absolute value is above 0.8; the absolute value is
0.5-0.8 is moderately correlated; Absolute value of 0.3-0.5 is weakly correlated; absolute values below 0.3 are weak or uncorrelated. MDD, major
depressive disorder; NP, Neuropathic Pain. (A,B)Grouped comparison plot of Co-hub genes in MDD datasets (A), NP datasets (B) in different groups
(Case/Control). (C–F) ROC curves of Co-hub genes ANGPT2 (C), MMP9 (D), PLAU (E), TIMP2 (F) in different groups of the MDD datasets. (G–J) ROC
curves of Co-hub genes ANGPT2 (G), MMP9 (H), PLAU (I), TIMP2 (J) in different groups of NP datasets. p ≥ 0.05, not statistically significant; p < 0.05,
statistically significant; p < 0.01, whichwas highly statistically significant; p < 0.001, which is exceedingly statistically significant. The closer the AUC in
the ROC curve is to 1, the better the diagnosis. AUC has low accuracy at 0.5̃0.7; AUC has a certain accuracy at 0.7̃0.9; AUC has high accuracy above
0.9. MDD, major depressive disorder; NP, Neuropathic Pain; ROC, receiver operating characteristic curve; AUC, Area Under the Curve.
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FIGURE 12
Differential expression analysis of co-hub genes in independent disease datasets. (A,B) Group comparison charts of co-hub genes in different groups
(Case/Control) in the GSE98793 dataset (A) and the GSE24982 dataset (B). (C–F) ROC curves of ANGPT2 (C), MMP9 (D), PLAU (E), and TIMP2 (F) in different
groups of the GSE98793 dataset. (G–J) ROC curves of ANGPT2 (G), MMP9 (H), PLAU (I), and TIMP2 (J) in different groups of the GSE32280 dataset. (K–N)
ROCcurves of ANGPT2 (K), MMP9 (L), PLAU (M), and TIMP2 (N) in different groups of theGSE24982 dataset. (O–R)ROCcurves of ANGPT2 (O), MMP9
(P), PLAU (Q), and TIMP2 (R) in different groups of theGSE30691 dataset. The symbol ns is equivalent to p≥0.05,without statistical significance; the symbol *
is equivalent to p < 0.05, with statistically significant meaning; the symbol ** is equivalent to p < 0.01, with highly statistically significant meaning; the symbol
*** is equivalent to p < 0.001, with extremely statistically significant meaning. In the ROC curve, the closer the AUC is to 1, the better the diagnostic effect.
When the AUC is between 0.5 and 0.7, there is low accuracy; when the AUC is between 0.7 and 0.9, there is certain accuracy; when the AUC is above 0.9,
there is high accuracy. MDD, major depressive disorder; NP, Neuropathic Pain; ROC, receiver operating characteristic curve; AUC, Area Under the Curve.
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two datasets (Figures 10C–F). Among them, there were negative

correlations between the expression of ANGPT2 and HGF

(R = −0.21, Figure 10C), (R = 0.44, Figure 10D) in both

datasets. Conversely, the expression of PLAU and TIMP2

(R = 0.23, Figure 10E), (R = 0.44, Figure 10F) had a positive

correlation in both datasets.

Differential expression analysis of the Co-
hub genes

For both datasets, we also examined the expression

differences for the 6 Co-hub genes (ANGPT2, EPO, HGF,

MMP9, PLAU, and TIMP2) between the disease group (group:

Case/MDD/NP) and the control group (group: Control). The

results are presented through grouped comparison plots

(Figures 11A, B). Of the 6 common hub genes, only

ANGPT2, MMP9, PLAU, and TIMP2 were statistically

significantly different (p < 0.05) in the different groups of

the MDD datasets. Although MMP9, PLAU, and

TIMP2 expression were all significantly higher in the

disease group of the MDD datasets compared with the

control group, ANGPT2 expression was significantly lower

in the disease group compared with the control group

(Figure 11A). The 6 common hub genes in the NP datasets

were all statistically significantly (p < 0.05) different in the

different groups. Among them, ANGPT2 gene expression was

upregulated in the normal group, whereas EPO, HGF, MMP9,

PLAU, and TIMP2 were upregulated in the disease

group (Figure 11B).

Next, we plotted the ROC curves for the four Co-hub genes

(ANGPT2, MMP9, PLAU, TIMP2) in both datasets (Figures

11C–J). As shown in Figures 11C–F, the expression of ANGPT2

(AUC = 0.594, Figure 11C), MMP9 (AUC = 0.595, Figure 11D),

PLAU (AUC = 0.586, Figure 11E), and TIMP2 (AUC = 0.659,

Figure 11F) all had low accuracy for the diagnosis of MDD

disease, whereas the expression of the Co-hub genes, ANGPT2

(AUC = 0.734, Figure 11G) and MMP9 (AUC = 0.761,

Figure 11H), exhibited a certain accuracy for the diagnosis of

NP disease. In contrast, the expression of PLAU (AUC = 0.663,

Figure 11I) and TIMP2 (AUC = 0.623, Figure 11J) all had low

accuracy for the diagnosis of NP disease.

Differential expression analysis of the Co-
hub genes in independent datasets

To verify the expression differences of 4 co-hub genes

(ANGPT2, MMP9, PLAU, TIMP2) in MDD and NP

datasets, we also used the Wilcoxon rank sum test to

analyze the expression levels of these 4 co-hub genes in

GSE98793 and GSE24982 datasets. The differences between

the disease group (group: Case/MDD/NP) and the control

group (group: Control) were shown through comparison

charts (Figures 12A, B). As shown in Figures 12A, 11B,

MMP9, PLAU, and TIMP2 all had statistically significant

differences (p < 0.05) in different groups of the MDD

datasets. The expression levels of MMP9, PLAU, and

TIMP2 in the disease group of GSE98793 dataset were

significantly higher than those in the control group

(Figure 12A). In the NP dataset, ANGPT2, MMP9, and

PLAU all had statistically significant differences (p <
0.05) between different groups. The expression level of

ANGPT2 was upregulated in the control group while the

expression levels of MMP9 and PLAU were upregulated in

the disease group (Figure 12B).

We then plotted the ROC curves of the 4 co-hub genes

(ANGPT2, MMP9, PLAU, TIMP2) in GSE98793, GSE32280,

GSE24982 and GSE30691 datasets and presented the results

(Figures 12C–R). As shown in Figures 12C–F, the expression

of co-hub genes ANGPT2 (AUC = 0.582, Figure 12C), MMP9

(AUC = 0.600, Figure 12D), PLAU (AUC = 0.602, Figure 12E),

and TIMP2 (AUC = 0.685, Figure 12F) all had low accuracy in

diagnosingMDD in the GSE98793 dataset. Similarly, as shown in

Figures 12G–J, the expression of co-hub genes ANGPT2 (AUC =

0.609, Figure 12G), MMP9 (AUC = 0.578, Figure 12H), PLAU

(AUC = 0.641, Figure 12I), and TIMP2 (AUC = 0.547,

Figure 12J) all had low accuracy in diagnosing MDD in the

GSE32280 dataset.

As shown in Figures 12K–N, the expression of co-hub gene

MMP9 (AUC = 0.948, Figure 12L) had high accuracy in

diagnosing NP in the GSE24982 dataset. The expression of

ANGPT2 (AUC = 0.735, Figure 12K) and PLAU (AUC =

0.857, Figure 12M) had some accuracy in diagnosing NP in

the GSE24982 dataset while the expression of TIMP2 (AUC =

0.605, Figure 12N) had low accuracy in diagnosing NP in the

GSE24982 dataset.

As shown in Figures 12O–R, the expression of common

hub genes MMP9 (AUC = 0.717, Figure 12P), PLAU (AUC =

0.889, Figure 12Q), and TIMP2 (AUC = 0.758, Figure 12R)

had some accuracy in diagnosing NP in the

GSE30691 dataset while the expression of ANGPT2

(AUC = 0.535, Figure 12O) had low accuracy in

diagnosing NP in the GSE30691 dataset. Finally, we

summarized the clinical information of different groups in

the GSE98793 dataset and presented the results in a clinical

data table (Supplementary Table S3).

Discussion

NP is a common chronic pain with a prevalence ranging from

6.9% to 10.0% [3], which significantly reduces the quality of life

for individuals [40]. Approximately 50% of NP patients report

having depression [41] and when NP patients are co-depressed,

they have poor physical, and psychological functioning, which
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results in persistent physical and mental distress [42]. Depression

and NP are often accompanied by many overlapping symptoms,

and antidepressants are used to treat NP, suggesting that they

share many common neural circuits and underlying

mechanisms, such as neuroinflammation [43]. Studies have

found a correlation between the incidence of NP and

depression [44] determining whether NP, and depression

share a common pathological and molecular mechanism is

important for clinical diagnosis and treatment. An

understanding of the molecular pathways of disease initiation

and development using microarray and bioinformatics analysis

will enable us to examine genetic variations and discover novel

diagnostic biomarkers and therapeutic targets.

However, when a single dataset is analyzed, one-sided results

may be obtained, resulting in a higher false-positive rate.

Therefore, in the present study, we combined two datasets for

MMD (GSE98793, GSE32280) and two datasets for NP

(GSE24982, GSE30691). The combined MMD datasets

contained 136 cases and 72 control samples, whereas the NP

datasets contained 31 cases and 29 control samples. In total, after

analyzing both datasets, we identified 6 Co-hub genes, which

included ANGPT2, EPO, HGF, MMP9, PLAU, and TIMP2. The

results indicated that ANGPT2, MMP9, PLAU, and

TIMP2 expression variations in both datasets were statistically

significant. The ROC curves revealed that ANGPT2 and

MMP9 can diagnose NP with some accuracy. In addition, we

found that the abundance of infiltrating activated dendritic cells,

effector memory CD8+ T cells, memory B cells, and regulatory

T cells changed significantly (p < 0.05).

The functional similarity analysis results between the 6 Co-

hub genes indicated that HGF had the highest value compared

with the other Co-hub genes (Figure 7C). HGF is a protein-

coding gene that acts as a growth factor by promoting hepatocyte

regeneration in stem and progenitor cells, which is activated by

binding to the c-MET receptor [45]. As a neurotrophic factor,

HGF/c-MET is essential for the growth of axons, the

development of the central nervous system, and the defense of

neurons [46]. In previous mice studies, HGF was demonstrated

to improve the symptoms of NP and induce functional recovery

and regeneration of neurons [47–50]. By regulating crucial

elements linked to DRG neuropathic pain and lowering the

spinal microglia activity, HGF produces analgesic effects.

Additionally, in a cross-sectional, multicenter investigation of

diabetic individuals with neuropathic pain, HGF was linked to

increased pain levels [51]. In MDD, psychiatric symptoms, such

as anxiety and depression, are also significantly associated with

cerebrospinal fluid HGF levels [52]. Downregulation of HGF/

c-MET signaling in the hippocampus may be associated with

methylation alterations in MET during MDD pathophysiology

[53]. Several studies on depression across various groups have

also demonstrated a significant relationship between changes in

HGF levels and depression [54, 55], and HGF may be useful in

assessing the severity of depression-related symptoms [56].

Combined with our results, neuropathic pain, and melancholy

conditions may be significantly influenced by HGF. In both the

MDD and NP datasets, we found a negative association between

the expression of ANGPT2 and HGF (Figures 10C,D).

ANGPT2 belongs to the angiopoietin family of growth factors

that are upregulated in a variety of inflammatory diseases and are

associated with direct control of inflammation-related signaling

pathways. Based on our results, the expression of ANGPT2 has a

low accuracy for the diagnosis of MDD (Figure 11C) and a

certain degree of accuracy for the diagnosis of NP (Figure 11G);

however, there are currently no studies related to ANGPT2 in NP

or MDD, thus we are the first to discover that ANGPT2 may also

play a key role in these diseases.

In numerous models of central and peripheral nerve damage,

EPO exhibits a variety of neuroprotective benefits [57, 58]. EPO

can alleviate neuropathic pain brought on by peripheral nerve

damage by regulating the production of AQP-2 through the

AMPK/mTOR/p70S6K pathway [59]. EPO and non-

erythropoietic derivatives have also shown potential pro-

cognitive effects in psychiatric disorders [60]. The non-

erythropoietic derivative ARA290 can reduce inflammation

and depression, which prolongs stress in rodents [61]. Studies

have found that MDD may be related to neuronal plasticity

damage8. Additionally, the neurotrophic and neuroprotective

benefits of EPO and brain-derived neurotrophic factor (BDNF)

can restore neural plasticity [62]. EPO and non-erythropoietic

compounds, such as carbamoylated EPO, increase the

production of BDNF in the hippocampus of rats [63].

Additional evidence indicating that EPO acts on the brain

through neurotrophic and synaptic plasticity mechanisms has

been derived from a bioinformatics study [64]. These studies are

consistent with the results of our data mining in which EPO is a

Co-hub gene for NP and MDD.

PLAU is a serine protease that converts plasminogen into

plasmin, which is crucial for breaking down the extracellular

matrix and encouraging fibrinolysis [65]. UPA, a PLAU

expression product, can activate or suppress the inflammatory

reaction through the AMPK and PI3K/Akt pathways [66]. A

previous study identified PLAU as a hub gene of NP [67], which

is consistent with our results; however, no studies have associated

PLAU with MDD. Our study is the first to show that PLAU

expression has low accuracy for the diagnosis of both NP and

MDD (Figures 11I,E).

We found that MMP9 expression had a certain accuracy for

the diagnosis of NP disease and low accuracy for the diagnosis of

MDD (Figures 11D,H). In addition, TIMP2 expression has low

accuracy for the diagnosis of NP and MDD occurrence (Figures

11J, 12F). It also plays a role in angiogenesis, axon growth, and

neuroplasticity [68, 69]. MMP9, as a mediator of

neuroinflammation, influences the onset and progression of

NP by stimulating DRG and microglia in the spinal cord,

participates in the regulation of oxidative stress and the

inflammatory response, affects the maturation of
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inflammatory cytokines and may be directly involved in the

development and maintenance of NP [70]. MMP9 may also

cause a proBDNF/mBDNF (brain-derived neurotrophic factor)

imbalance by influencing the process by which proBDNF is

converted into mBDNF, leading to depression [71]. Decreased

MMP9 levels result in decreased neuronal differentiation in the

hippocampus andmay cause increased anxiety in mice [72]. Four

TIMPs(TIMP1, TIMP2, TIMP3, TIMP4) are physiological tissue

inhibitors of MMPs, of which TIMP2 can indirectly affect NP

and MDD processes by inhibiting MMP9 activity [73, 74]. These

studies confirm the results of our database analysis that

MMP9 and TIMP2 have some diagnostic value for

NP and MDD.

Our finding that immune cells are associated with the

emergence, maintenance, and cure of NP and MDD is

consistent with previous studies [75–77]. As shown in Figures

9A,B, the difference in abundance of infiltrating immune cells,

including activated dendritic cells, effector memory CD8+ T cells,

memory B cells, and regulatory T cells, in the disease, and control

group of the MDD datasets and NP datasets was statistically

significant. It is worth noting that, the infiltration abundance of

Activated dendritic cells is significantly increased in both NP and

MDD disease groups. However, the infiltration abundance of

Effector memory CD8+ T cells andMemory B cells is significantly

increased in the NP disease group, but significantly decreased in

the MDD disease group. Conversely, the infiltration abundance

of Regulatory T cells is significantly decreased in the NP disease

group, but significantly increased in the MDD disease

group. Effector memory CD8+ T cells are a type of memory

T cell that can rapidly respond to re-infection and are capable of

secreting cytokines and killing target cells [78]. Activated

dendritic cells are dendritic cells that have captured and

processed antigens and have undergone phenotypic and

functional changes [79], they are able to more effectively

activate T cells and secrete a variety of cytokines to regulate

immune responses. Activated dendritic cells and effector

memory CD8+ T cells were found to be significantly

upregulated in NP [80], which is consistent with our findings.

Sun et al. found that the proportion of CD8+ T cells in MDD

patients is low, and they are divided into 2 subtypes: a subtype

with a higher proportion of CD8+ T cells and a subtype with a

lower proportion of CD8+ T cells. In the subtype with a higher

proportion of CD8+ T cells, the expression levels of genes related

to autophagy, immune response, and apoptosis are higher.

Reducing the apoptosis of CD8+ T lymphocytes can reduce

the level of inflammatory factors and improve the immune

microenvironment of depressed mice [81]. These results

suggest that effector memory CD8+ T cells may play an

important role in the pathogenesis of NP and MDD. In this

study, activated dendritic cells had the highest infiltration

associated with the expression of key genes (Figure 9D).

Maganin et al. found that dendritic cells cause NP by

promoting the kynurenine metabolic pathway [82]. Wang

et al. concluded that dendritic cells cause NP by sensitizing

nociceptor sensory neurons through paracrine factors [83].

Stiglbauer et al. found that obesity and MDD patients have

fewer dendritic cells and effector memory CD8+ T cells

compared with normal-weight patients who were not

depressed [84]. Ciaramella et al. found that the decrease in

dendritic cells is associated with the severity of depressive

symptoms in Alzheimer’s disease patients [85]. These studies

and our results consistently suggest that changes in the number

and function of dendritic cells may be involved in the common

pathophysiology of comorbid NP and MDD. Memory B cells are

formed within the germinal center after the primary infection

and play an important role in the secondary immune response

[86]. Combining Figures 9C, D, it is evident that the expression of

activated dendritic cells, memory B cells, and the 6 Co-hub genes

are positively correlated in the MDD and NP datasets disease

samples. A previous bioinformatics analysis also found that

memory B cells correlated with MDD diagnostic marker genes

[87]. The role of memory B cells in NP is currently unclear, and

there is no rigorous evidence to show the relationship between

memory B cells and NP. The discovery of increased infiltration

abundance of memory B cells in NP is a new finding in this study,

and further research is needed to explore the role of memory

B cells in the comorbidity of NP and MDD. Regulatory T cells

control the body’s immune response to harmful invaders and

prevent overreaction [88]. A study indicated that regulatory T

-cells can prevent pain-induced hypersensitivity reactions caused

by microglia [89]. In depressed patients, there is a decrease in

regulatory T cells [76]. Taken together, there is an immune-

activated microenvironment in NP andMDD comorbidities, and

immunity, and inflammation may play an important role in NP

and MDD comorbidities. Activated dendritic cells, effector

memory CD8+ T cells, memory B cells, and regulatory T cells

have the potential to be therapeutic targets for NP and MDD.

However, articles researching the relationship between these

immune cells and NP or MDD are very limited. Their specific

roles in the comorbidity of NP and MDD are not clear, and more

research is needed to explore the biological significance behind

these immune changes.

There are some limitations to this study. First, the study

integrates human whole blood samples and peripheral blood

lymphocyte chip data on the same sequencing platform for

analysis. While it can provide valuable information regarding

cell type comparison, immune response analysis, cellular

interactions, disease-related analysis, and the identification

of potential biomarkers, contributing to a deeper

understanding of immune system functionality and the

mechanisms underlying related diseases, this approach also

has limitations and challenges such as sample heterogeneity,

differential gene expression, signal dilution, and technical

variations. To overcome these limitations, future research

can consider strategies such as cell sorting, single-cell

sequencing, and experimental validation to help overcome
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these challenges and provide a more focused and accurate

analysis of lymphocyte-specific gene expression changes.

Secondly, compared to MDD, the sample size of NP is

relatively low. In the future, the reliability of the results

should be evaluated through hypothesis testing based on

sample size, cross-validation, and other methods. Thirdly,

the MDD sample is human-sourced, while the NP sample

is animal-sourced, and this species difference may have an

impact on the results’ generalizability. In addition, although

batch-effect correction was performed, it is important to note

that residual batch effects may still persist in the analysis due

to variations in sample processing, experimental conditions,

or other technical factors that could not be entirely eliminated.

In the future, Emerging machine learning algorithms, such as

deep neural networks, can also be used for data mining and

analysis to better understand the relationships and trends

between samples. Future studies should also explore the role

of various immune cells in the co-morbid mechanisms of NP

and MDD, and search for therapeutic targets of NP and MDD

through anti-inflammatory pathways.

In conclusion, after screening 93 Co-DEGs, and performing

GO and KEGG enrichment analyses, we identified 6 Co-hub

genes, which included ANGPT2, EPO, HGF, MMP9, PLAU, and

TIMP2. We also found that between the disease group and the

control group for NP and MDD, there were significant

differences in the abundance of activated dendritic cells,

effector memory CD8+ T cells, memory B cells, and regulatory

T cells. The possible diagnostic or therapeutic value of these

immune cells and genes in NP and MDD warrant further study.
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