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Abstract

Cerebral palsy (CP) is a prevalent motor disorder originating from early brain

injury or malformation, with significant variability in its clinical presentation and

etiology. Early diagnosis and personalized therapeutic interventions are

hindered by the lack of reliable biomarkers. This study aims to identify

potential biomarkers for cerebral palsy and develop predictive models to

enhance early diagnosis and prognosis. We conducted a comprehensive

bioinformatics analysis of gene expression profiles in muscle samples from

CP patients to identify candidate biomarkers. Six key genes (CKMT2, TNNT2,

MYH4, MYH1, GOT1, and LPL) were validated in an independent cohort, and

potential biological pathways and molecular networks involved in CP

pathogenesis were analyzed. The importance of processes such as

functional regulation, energy metabolism, and cell signaling pathways in the

muscles of CP patients was emphasized. Predictive models of muscle sample

biomarkers related to CPwere developed and visualized. Calibration curves and

receiver operating characteristic analysis demonstrated that the predictive

models exhibit high sensitivity and specificity in distinguishing individuals at

risk of CP. The identified biomarkers and developed prediction models offer

significant potential for early diagnosis and personalized management of CP.

Future research should focus on validating these biomarkers in larger cohorts

and integrating them into clinical practice to improve outcomes for individuals

with CP.
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Impact statement

The discovery of reliable biomarkers has the potential to

revolutionize clinical practice by enabling earlier and more

accurate diagnosis of CP, which can lead to timely and

targeted therapeutic interventions. Early identification of

at-risk individuals allows for the implementation of

neuroprotective strategies and tailored rehabilitation

programs, potentially mitigating the severity of motor

impairments and improving long-term outcomes. This

study’s findings set the stage for future research to validate

and refine these biomarkers in larger, diverse populations.

Ultimately, the integration of biomarker-based diagnostics

into routine clinical practice could transform the

management of cerebral palsy, offering new hope for

improved quality of life for affected individuals and

their families.

Introduction

Cerebral palsy (CP) remains one of the most prevalent

childhood motor disorders, affecting approximately 2–2.5 per

1,000 live births worldwide [1]. It encompasses a heterogeneous

group of non-progressive disorders of movement and posture

caused by early brain injury or malformation, with implications

for motor function throughout an individual’s lifespan [2].

Despite extensive research, the etiology of CP often remains

elusive, hindering both early diagnosis and the implementation

of targeted therapeutic interventions.

Skeletal muscles in patients with CP are altered due to

neurological lesions. These brain lesions cause various

neurological symptoms, including dystonia, ataxia,

athetosis, and particularly spasticity [3, 4]. Loss of upper

motor neuron inhibition on the lower motor neurons resulted

in spasticity, altered muscle tone, and increased or impaired

motor unit firing [5]. Although the mechanism is unknown,

spastic muscle often shortens to create muscle contractures,

which is a primary disability of CP that leads to further

complications. CP is the most prevalent non-genetic cause

of secondary dystonia, and its clinical management poses

significant challenges [6]. The primary objectives in treating

dystonia associated with CP are to mitigate dystonic

symptoms, optimize functional capacity, alleviate pain, and

enhance overall care convenience [7]. Oral medications,

physical therapy techniques, chemical neurectomies with

phenol or alcohol, chemodenervation using neurotoxins,

and deep brain stimulation have been utilized to decrease

spasticity and dystonic symptoms among children with CP,

but often yield suboptimal results [8].

Skeletal muscle in patients with CP exhibits distinct

characteristics, including muscle tissue and fiber atrophy,

decreased cross-sectional area, muscle shortening, and

reduced specific tension [9]. Identifying reliable

biomarkers associated with CP is crucial for understanding

its diverse etiologies, facilitating early diagnosis,

prognostication, and targeted therapeutic interventions.

However, the identification of reliable biomarkers and

their translation into clinical practice remain significant

challenges.

This study aimed to address these challenges by

systematically identifying potential biomarkers for CP and

developing robust prediction models. By leveraging advanced

computational algorithms, we sought to uncover biomarkers

that could serve as reliable indicators of CP risk and severity.

In this study, we provided a detailed description of our

methods for the discovery of biomarkers and the

development of predictive models. We discussed the

implications of the findings for clinical practice and

proposed strategies for the future integration of

biomarker-based diagnostics in the management of CP.

Materials and methods

Data acquisition and preprocessing

The data used in this article was obtained from the NCBI

Gene Expression Integration (GEO) database. The following

criteria were used for screening the datasets: (1) inclusion of

samples from CP patients and healthy individuals, (2) focus

on muscle tissue gene expression profiles, (3) availability of

publicly accessible raw or processed data, (4) research

conducted on Homo sapiens, (5) total sample size greater

than 15, and (6) exclusion of samples associated with other

diseases. Two different gene expression datasets were

analyzed in this study: GSE11686 [10] as the analysis set

and GSE31243 [11] as the validation set. Detailed

characteristics are shown in Table 1. To ensure an

adequate sample size and the generalizability of the results,

we included data from different muscle samples and

performed quality control, preprocessing, and statistical

analysis using the limma package in R Studio. The data

analysis workflow is depicted in Figure 1.

Identification of the differentially
expressed genes (DEGs)

DEGs between the CP group and the control group were

identified using the limma package and visualized with a volcano

plot. Genes were selected for further analysis in the network

construction based on the significance analysis of microarrays

(SAM) with adjusted p-value< 0.05 and |log2 fold change (FC)| ≥
1.2. A heatmap of the DEGs that were screened was generated in

R software.
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Gene set enrichment analysis (GSEA)

To provide a clearer representation of the gene expression

level of highly enriched functional pathways, we used the

GSEA software (version 3.0) and downloaded the sub-

aggregate of c2.cp.kegg.v7.4.symbols.gmt. from the

Molecular Signatures Database (DOI:10.1093/

bioinformatics/btr2601 [12]. The minimum gene set was 5,

the maximum gene set was 5,000, and 1,000 resampling was

performed. A p-value of <0.05 was considered statistically

significant.

Functional enrichment analysis

The DEGs were subjected to functional enrichment

analysis using DAVID2. Gene ontology (GO) analysis was

performed to identify distinguishing biological

characteristics, including molecular functions (MF),

biological pathways (BP), and cellular components (CC).

Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis was used to explore the activities of

genes and their connections to high-level genomic

information.

Evaluation and correlation analysis of
infiltration-related immune cells

The infiltration matrix of immune cells was obtained by

filtering 22 types of immune cell matrices using the cell-

type identification by estimating relative subsets of RNA

transcripts (CIBERSORT) website (p < 0.05) [13]. The

Spearman correlation analysis was conducted between

unique diagnostic markers and immune infiltrating cells

using the “ggplot2” package to illustrate the results.

Construction of weighted gene co-
expression network and identification of
significant modules

The weighted gene co-expression network analysis

(WGCNA) is a valuable tool for studying gene set

expression. Data were processed using R-Studio 4.2.2, and

abnormal samples were excluded for reliability. Samples were

clustered to identify outliers, and the network was built using

the automatic network construction function, which

determined the soft threshold power β. Adjacency was

calculated based on co-expression similarity. Hierarchical

clustering created a tree diagram with modules, which

were automatically merged for highly correlated feature

genes (TOM type = “unsigned,” min module size = 30,

merge cut height = 0.25). Genes with similar expression

patterns were grouped into modules, each assigned a

specific color. Module membership (MM) and gene

significance (GS) were calculated for clinically relevant

modules. Gene information from these modules was

extracted for further analysis, and the characteristic gene

network was visualized.

Identification of candidate genes

The Venn diagram shows the intersection of WGCNA

brown modular genes and DEGs, representing disease-related

genes and differentially expressed genes. In total, 45 genes

were identified as candidate genes, and their expression is

shown in Table 2.

Protein-protein interaction (PPI) network
construction and identification of
hub genes

To identify the hub genes of each module, the previously

acquired genes were mapped to the STRING database3, a

platform for searching PPI. The protein interactions of each

module were then constructed and visualized using the

CytoHubba plugin within the Cytoscape software4. The hub

gene was determined as the one with the highest degree of

connection. In this study, the Maximal Clique Centrality

(MCC) method in CytoHubba, known for its accuracy in

predicting essential proteins, was used [14].

Validation of the hub genes expression
and prediction value

To validate the expression differences of the hub genes and

their universality, we utilized gene expression data from

GSE31243, which consists of 20 CP and 20 non-CP muscle

samples. The expression of hub genes in muscle samples from

CP and non-CP patients was analyzed using box plots created

with the “ggplot2” package in R software. The data were

presented as standard deviation. Statistical analysis was

1 http://www.gsea-msigdb.org/gsea/downloads.jsp

2 http://david-d.ncifcrf.gov/

3 https://string-db.org/

4 http://www.cytoscape.org/
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performed using an unpaired independent t-test, with a

significance level set at p < 0.05.

Establishment and validation of prediction
models and nomogram

To establish the prediction model, we utilized logistic

regression analysis. The multivariate model included hub

genes that showed differential expression in both the

training and validation cohorts. Based on the regression

coefficients of the relevant genes in the training cohort, we

developed a nomogram. Model covariates were assigned

points in the range of 0–100, corresponding to their

values. The total points obtained from the predictive

model indicated the risk of CP. We assessed the

performance of the nomogram using the calibration curve

in the training cohort. The predictive ability of the model was

evaluated in both the training and validation cohorts using

the area under the ROC curve (AUC). We generated ROC

curves using SPSS. Genes were considered to have potential

clinical significance if their AUC was greater than 0.6.

FIGURE 1
Flowchart of data preparation and analysis in this study. GEO, Gene Expression Omnibus; WGCNA, weighted gene co-expression network
analysis; GSEA, gene set enrichment analysis; PPI, protein-protein interaction; GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; ROC, receiver operating characteristic; DCA, decision curve analysis.

TABLE 1 Detailed characteristics of the included data sets.

Sample ID Cohort Patients Controls Tissue of sample

Sample size Age (mean ± SD) Sample size Age (mean ± SD)

GSE11686 Training 6 10.3 ± 3.79 2 8.5 ± 2.1 Wrist muscle extensors and flexors

GSE31243 Validation 10 14.8 ± 1.25 10 12.8 ± 1.5 Gracilis and semitendinosus

Note: SD, standard deviation.
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TABLE 2 The gene expression levels of 45 overlap hub genes.

Gene symbol p-Value Log FC Gene title

ACYP1 0.028656 1.273,244 Acylphosphatase-1

ADM 0.017645 −1.225,876 Adrenomedullin

ALCAM 0.018667 1.224,642 Activated leukocyte cell adhesion molecule

AMOT 0.015123 −1.308,099 Angiomotin

ASTN2 0.031953 1.476,799 Astrotactin-2

BDH1 0.033195 −1.561,303 3-hydroxybutyrate dehydrogenase 1

CA8 0.005997 −1.429,715 Carbonic anhydrase VIII

CHAD 0.002794 2.096462 Chondroadherin

CKB 0.008580 −1.320,115 Creatine kinase B-type

CKMT2 0.001798 −1.218,961 Creatine kinase S-type, mitochondrial

CRYM 0.007519 −2.363,445 Crystallin, mu

ESPN 0.006668 −1.604,240 Espin

FABP3 0.009801 −1.800,821 Fatty acid binding protein 3

GOT1 0.013254 −1.301,036 Glutamic-oxaloacetic transaminase 1

GPX3 0.009929 −1.383,203 Glutathione peroxidase 3

HIST1H2BE 0.001751 1.247,343 Histone cluster 1, H2be

KAL1 0.000630 1.337,068 Kallmann syndrome 1 sequence

KCNN2 0.007283 1.591,455 Small conductance calcium-activated potassium channel protein 2

LDHB 0.003401 −1.226,687 Lactate dehydrogenase B

LPL 0.011452 −1.648,013 Lipoprotein lipase

MAP3K7CL 0.010553 1.571,485 MAP3K7 C-terminal like

MMRN1 0.016738 −1.624,806 Multimerin 1

MPC1 0.007283 −1.235,675 Mitochondrial pyruvate carrier 1

MYH1 0.037308 2.365,836 Myosin-1

MYH4 0.001802 2.046775 Myosin-4

NAP1L2 0.005890 1.887,987 Nucleosome assembly protein 1-like 2

NINJ1 0.001699 1.290,459 Ninjurin-1

NKAIN1 0.014994 1.677,495 Na+/K+ transporting ATPase interacting 1

NME3 0.034381 1.597,844 Nucleoside diphosphate kinase 3

NOTCH2NL 0.039355 1.217,319 Notch homolog 2 N-terminal-like protein A

NPTX2 0.019633 −1.319,154 Neuronal pentraxin-2

NSUN5P1 0.028064 1.232,678 Putative NOL1/NOP2/Sun domain family member 5B

OMD 0.008529 1.404,630 Osteomodulin

PEG10 0.006821 1.203,384 Paternally expressed 10

POLI 0.005709 1.571,104 Polymerase (DNA directed) iota

POLM 0.001989 −1.283,703 DNA-directed DNA/RNA polymerase mu

(Continued on following page)
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TABLE 2 (Continued) The gene expression levels of 45 overlap hub genes.

Gene symbol p-Value Log FC Gene title

PPIF 0.004543 −1.211,272 Peptidyl-prolyl cis-trans isomerase F

PREB 0.009929 −1.241,452 Prolactin regulatory element-binding protein

PVALB 0.001802 4.740,443 Parvalbumin alpha

RETSAT 0.000630 −1.540,679 All-trans-retinol 13,14-reductase

SLC12A8 0.036487 −1.651,596 Solute carrier family 12, member 8

SP140L 0.002429 1.601,102 SP140 nuclear body protein like

TGM2 0.001802 −1.509,241 Protein-glutamine gamma-glutamyltransferase 2

TNNT2 0.026367 1.338,269 Troponin T type 2 (cardiac)

TST 0.001802 −1.352,077 Thiosulfate sulfurtransferase

FIGURE 2
Detection of differentially expressed genes and functional enrichment analysis. (A) GSEA analysis; (B) Volcano plot of the 353 DEGs; (C) KEGG
pathway enrichment analysis; (D)GOenrichment analysis; (E) The KEGG-enriched chord diagram shows the genes involved in the KEGG term. DEGs,
differentially expressed genes; FC, fold-change; GSEA, gene set enrichment analysis; GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes.
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Prediction of potential drugs

Based on the biomarkers of CP, the DGIdb database5 was

utilized to predict potential drugs for the treatment of CP. The

network of biomarker-compound pairs was visualized using the

Cytoscape software.

Results

GSEA

GSEA was conducted on both patients with CP and healthy

control subjects to investigate the biological signaling pathway.

The top five terms are shown in Figure 2A. Linoleic acid

metabolism, Huntington’s disease, circadian rhythm, lysosome,

oxidative phosphorylation, and glycerolipid metabolism were

significantly enriched in the patients with CP.

Functional enrichment analysis of DEGs

A total of 353DEGs were identified, including 173 upregulated

and 180 downregulated genes (Figure 2B). We performed

functional analysis to gain a deeper understanding of the

biological functions of the DEGs. In terms of BP, the clusters

were significantly associated with the regulation of biological

quality, chemical homeostasis, and organic acid metabolic

process. In the MF analysis, our results indicate that the DEGs

are significantly associated with anion binding, small molecule

binding, and carbohydrate derivative binding. In the CC

enrichment analysis, the focus was on the extracellular matrix

(ECM), collagen-containing ECM, and contractile fiber

(Figure 2D). In the KEGG pathway analysis (Figures 2C, E),

mineral absorption, tight junction, and protein digestion and

absorption were identified as significant pathways in the DEGs.

Infiltration of immune cells results

The assessment of immune infiltration within the sample was

conducted using robust bioinformatics methodologies,

specifically the CIBERSORT algorithms. Compared to normal

samples, samples from patients with CP generally exhibited a

higher proportion of mast cells (p = 0.013), while Dendritic cells

were relatively lower (p = 0.058, Figure 3A). In particular, CP

patient samples often had a higher proportion of resting mast

cells and T cells follicular helper (p < 0.05), suggesting a potential

regulatory role in the immune response (Figures 3B, C). These

findings highlight the complex interplay of various immune cell

subsets and emphasize the importance of their interactions in

shaping the immune landscape of the analyzed sample.

Identification of co-expression gene
modules in CP

In the CP datasets, after excluding any outliers, we used

WGCNA to identify co-expression gene modules among multiple

genes (Figures 4A, B). To ensure that the network resembled a scale-

free network, we calculated the soft-thresholding power, which was

found to be 8 based on a scale independence of >0.9 (Figure 4C). By
employing hierarchical clustering analysis and dynamic branch cut

methods on the gene dendrograms, we grouped the genes into 26

modules (Figure 4F). The clustering dendrogram of the genes is

shown in Figure 4E, where genes with similar characteristics are

clustered together and represented by the same module color.

Importantly, these modules were found to be independent of one

another. Figure 4D provides a summary of the significance of all

genes in eachmodule with respect to CP. Notably, the brownmodule

exhibited a significant association with CP and was selected for

further analysis (p = 3e-04). The scatter plot in Figure 4G illustrated

the relationship between CP gene significance and module

membership, with a total of 762 genes being significantly

associated with CP.

Extract hub genes from DEGs and the hub
module in WGCNA

Forty-five candidate genes were identified from the intersection

of a venn diagram between two sets of the DEGs and WGCNA

brown module (Figure 5A). To explore the biological features and

significance of these 45 hub genes, GO and KEGG pathway

enrichment analyses were performed (Figures 5D, E). The results

of the analysis revealed that these hub genes were significantly related

to various biological processes such as muscle contraction, carboxylic

acid metabolic process, and phosphocreatine biosynthetic process. In

terms of molecular function, the hub genes are associated with

creatine kinase activity, DNA-directed DNA polymerase activity,

and calcium ion binding. The enrichment analysis of cell component

showed a focus on mitochondrion, muscle myosin complex, and

neuronal cell body. Additionally, the KEGG pathway analysis

indicated that arginine and proline metabolism, cysteine and

methionine metabolism, and metabolic pathways were significant

pathways in these 45 hub genes. These findings suggest that these

genes are significantly enriched in energy metabolism-related

pathways, indicating their potential role in muscular movement.

For further analysis, a PPI network was constructed among the 45

candidate genes using Cytoscape software (Figure 5C). The MCC

method in the CytoHubba plug-in was used to identify potential key

genes. The top 10 Hubba nodes were collected for subsequent5 https://www.dgidb.org/
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analysis (Figure 5B). Among the 45 genes, CKMT2, TNNT2,MYH4,

MYH1, FABP3, PVALB, GOT1, GPX3, TST, and LPL were

identified as the hub genes by the CytoHubba plug-in.

Screening and validation of
diagnostic markers

To further demonstrate the significance of the key genes in the

module of interest, we assessed the expression of 45 candidate genes

using muscle samples from the GSE31243 dataset (Figure 6A).

Comparative analysis between the two samples revealed that

14 genes exhibited statistically significant differences in the CP

sample. When the top 10 hub genes identified by MCC were

analyzed together, we found 6 genes that were statistically

different: CKMT2, TNNT2, MYH4, MYH1, GOT1, and LPL.

This suggests that these six genes are important in relation to CP.

Consequently, we developed a prediction model for CP in the

validation cohort based on the expression of these six genes. The

final model we obtained was as follows: prediction model = 104.2864

+ 0.3745*CKMT2 + 0.8794*TNNT2 + 1.4529*MYH4 −

6.6211*MYH1 − 2.5241*GOT1 + 1.2096*LPL. Additionally, we

created a nomogram to visualize the model and used a calibration

curve to assess its accuracy. The nomogram is presented in Figure 6B,

and the calibration curve is shown in Figure 6E (Mean absolute

error = 0.066). The calibration curve of the nomogram for predicting

CP risk demonstrated good agreement. Furthermore, the Hosmer-

Lemeshow test, which evaluated the model, yielded a Chi-square

value of 12.045 (p = 0.1492 > 0.05), indicating that the predictive

model performed well. In addition, we compared the predictive value

of the model with that of the six individual genes. The ROC curves

revealed that the combined six-gene prediction had a higher value

than the prediction based on a single gene (AUC = 0.905 in the

validation cohort) (Figures 6C, D). Finally, according to the results of

FIGURE 3
Evaluation and visualization of immune cell infiltration. (A) Boxplot of the proportion of four classes of immune cells; (B) Boxplot of the
proportion of 22 types of immune cells; (C) Stacked bar graph of the proportion of 22 types of immune cells. NK, natural killer. *p < 0.05 compared
with the controls.
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the decision curve analysis (DCA), the nomogrammodel provided a

superior clinical benefit (Figure 6F).

Potential drugs targeting the
diagnostic genes

To investigate potential drugs for CP therapy, we conducted a

search in the DGIdb database for drugs targeting the biomarkers.

Our analysis revealed that 28 drugs targeting LPL and 4 drugs

targeting TNNT2 were identified. Subsequently, we generated a

gene-drug network consisting of 34 nodes, which is presented in

Figure 7. Notably, regulatory approval has been granted to

19 drugs targeting LPL and 1 drug targeting TNNT2.

Discussion

This study emphasizes the urgent need for early and accurate

identification of biomarkers for CP to enhance diagnostic

FIGURE 4
Weighted co-expression network related datasets construction. (A) Sample dendrogram and trait heatmap; (B)Gene dendrograms obtained by
average linkage hierarchical clustering; (C) Analysis of network topology for various soft thresholds (β); (D)Module-trait relationships; (E) Clustering
dendrogram of genes; (F)Module eigengene adjacency heatmap; (G) The correlation between themodule membership (MM) and gene significance
(GS) of the disease group of all genes in the brown module. The correlation value represents the absolute correlation coefficient between GS
and MM. CP, cerebral palsy.
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precision and improve patient outcomes. Through rigorous

analysis, several potential biomarkers were identified,

providing insights into the pathophysiological mechanisms

related to CP. Developing predictive models based on these

biomarkers offers opportunities for early diagnosis and

personalized therapeutic interventions for CP. In our research,

we identified 45 potential key genes through differential

expression and WGCNA. Subsequent GO and KEGG analyses

revealed that these genes are primarily involved in energy

metabolism-related pathways in the development of CP,

underscoring their crucial role in muscle movement. Further

dataset validation identified CKMT2 as the key gene most closely

associated with CP. Additionally, we established a predictive

model for CP by combining five other significantly differentially

expressed genes (TNNT2, MYH4, MYH1, GOT1, and LPL).

Previous studies had also identified differential genes and

pathways associated with CP, which share many similarities with

our research. Our study, along with those by Pingel and Robinson

et al., identified genes related to energy production and muscle

function as significant in CP [15, 16]. Genes involved in ECM

structure and turnover have been emphasized in multiple studies.

Increased ECM turnover and net collagen synthesis enable ECM

remodeling as an adaptive response to the increased mechanical

load and functional demands caused by spasticity [17]. Previous

research had shown significantly lower LPL expression and

increased intramuscular fat levels in CP patients, which was

consistent with our findings [18, 19]. Additionally, Pingel et al.’s

study highlighted the importance of calcium homeostasis in

skeletal muscle movement and plasticity, finding distorted

calcium ion handling in CP [11]. Stress, cell death, and

FIGURE 5
Hub genes identification and functional enrichment analysis. (A) The overlap of DEGs andmodule genes was shown as a Venn diagram; (B) The
top 10 hub genes with the most correlations identified using CytoHubba; (C) PPI network of 45 hub genes generated by the Cytoscape software; (D)
Gene ontology enrichment analysis; (E) The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis.

Experimental Biology and Medicine
Published by Frontiers

Society for Experimental Biology and Medicine10

Zheng et al. 10.3389/ebm.2024.10101

https://doi.org/10.3389/ebm.2024.10101


FIGURE 6
Validation of the hub genes. (A) The expression of 45 genes in the validation cohort (GSE31243); (B) A nomogram estimated CP risk in the
training cohort by summing scores from each risk factor and positioning the total on the corresponding bottom line to calculate the probability of
CP; (C) ROC curves of the training cohort; (D) ROC curves of the validation cohort; (E) The calibration curve shows the nomogram-predicted CP
probability (x-axis) versus actual CP probability (y-axis). The diagonal dotted line represents perfect predictions, while solid lines represent
nomogram performance. The closer the solid lines are to the diagonal, the better the prediction accuracy; (F) Decision curve analysis shows the
prediction model’s net benefit (y-axis) against the threshold probability (x-axis), where the harm of false positives exceeds that of false negatives.
Higher net benefit at the same probability indicates better clinical usefulness. CP, cerebral palsy. ****: p < 0.0001, ***: p < 0.001, **: p < 0.01, *:
p < 0.05.
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autophagy also had contributed to the pathology of CP. Each

study provided unique insights into the specific genes and

mechanisms involved in CP pathology, underscoring the

importance of genes related to energy metabolism, muscle

function, and ECM structure in CP.

In our diagnostic model, CKMT2 was identified as the key

gene most closely related to CP. The CKMT2 gene encodes

mitochondrial creatine kinase, an enzyme crucial for energy

metabolism in tissues with high and fluctuating energy

demands, such as the brain and muscles. CKMT2 plays a

primary role in maintaining cellular energy homeostasis by

facilitating the reversible transfer of phosphate groups

between adenosine triphosphate (ATP) and creatine [20].

This process allows for the storage and transportation of

energy within cells, particularly in mitochondria-rich tissues.

Additionally, mitochondrial creatine kinase is believed to be

essential for maintaining mitochondrial morphology by

stabilizing contact sites between the inner and outer

mitochondrial membranes. Impaired activity of

CKMT2 has been associated with the loss of mitochondrial

membrane potential and apoptosis [21]. In the intact rabbit

heart, a rapid and irreversible loss of CKMT2 was observed,

which was directly related to the duration of ischemia. This

loss of CKMT2 correlated with contractile dysfunction

during reperfusion [22].

Further studies have demonstrated that

CKMT2 overexpression protects against cellular oxidative

stress damage, likely due to increased creatine kinase activity

and its role in promoting mitochondrial integrity [23, 24].

CKMT2 is crucial for regulating energy production and

utilization in the brain, ensuring a constant energy supply

essential for neuronal function, neurotransmission, and brain

health. Beyond energy provision, CKMT2 maintains cellular

energy reserves and buffers against energy fluctuations.

Variations or mutations in the CKMT2 gene may contribute

to mitochondrial dysfunction, disrupting energy balance in

neurons and potentially influencing the onset or severity of

CP. Therefore, studying the correlation between

CKMT2 variants and CP clinical features (such as severity,

motor impairment patterns, or associated comorbidities) can

deepen the understanding of disease subtypes and their

pathological mechanisms, providing opportunities for

personalized treatment. Exploring pathways aimed at

regulating mitochondrial function or enhancing energy

metabolism may serve as therapeutic strategies to alleviate

symptoms or prevent the progression of related damage.

Further large-scale genetic studies, functional analyses, and

investigations into mitochondrial function will be essential to

determine their significance in disease development and identify

potential therapeutic targets.

FIGURE 7
Drugs–hub genes interaction network. The red nodes represent genes, yellow nodes represent approved drugs, and blue nodes represent
drugs not yet approved.
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The remaining five genes in the diagnostic model (TNNT2,

MYH4, MYH1, GOT1, and LPL) also contribute to the pathology

of CP through different mechanisms. TNNT2 encodes a

component of the troponin complex critical for muscle

contraction regulation, with variants linked to neuromuscular

disorders [25]. In CP, TNNT2 variations might affect muscle

tone regulation, contributing to motor impairments. MYH4 and

MYH1 encode myosin heavy chain proteins, which are essential

for muscle contraction. Alterations in these genes may impact

muscle fiber composition or contractile properties, potentially

leading to abnormalities in motor function and muscle tone

observed in CP [26, 27]. GOT1 (Glutamic-Oxaloacetic

Transaminase 1) is involved in amino acid metabolism [28].

Although its direct role in CP is not yet clear, disruptions in

amino acid metabolism pathways could potentially affect brain

development or neural function, thus contributing to the

complex etiology of CP. LPL (Lipoprotein Lipase) plays a

crucial role in lipid metabolism, affecting neurodevelopment

and neuronal health [29]. Dysregulation of LPL may lead to

changes in lipid metabolism, which correlates with the previously

observed increase in intramuscular fat levels [18]. In conclusion,

while the roles of TNNT2, MYH4, MYH1, GOT1, and LPL genes

in CP are still under investigation, their involvement in muscle

function, metabolic pathways, and potentially

neurodevelopmental processes could contribute to the diverse

clinical manifestations observed in individuals with CP.

Variations in TNNT2, MYH4, and MYH1 may affect muscle

structure, contractility, or neuromuscular junction function,

contributing to motor impairments and muscle tone

abnormalities. Meanwhile, genes such as GOT1 and LPL,

involved in amino acid and lipid metabolism respectively, may

indirectly affect neurodevelopmental processes and lipogenesis

in muscle. Dysregulation of these pathways could impact

substance synthesis and neuronal health within muscle,

potentially contributing to the multifactorial nature of CP.

Further research is needed to validate the differential

expression of these genes and their direct impact on the

pathogenesis of CP. Experimental models and functional

assays are necessary to elucidate their specific contributions to

neuronal development or muscle function. Additionally,

studying the differential expression of genes and their

potential association with birth complications may provide

valuable insights into the etiology of CP.

Through the DGIdb database, we obtained potential

therapeutic agents targeting the biomarkers. Purpurogallin

(PPG) possesses significant antioxidant properties. By

inhibiting the TLR4/NF-κB pathway and thereby attenuating

endoplasmic reticulum stress and neuroinflammation, PPG

demonstrates potential neuroprotective effects against cerebral

ischemia-reperfusion injury [30]. Insulin, beyond its role in

glucose metabolism, has shown neuroprotective effects and

might influence brain development and neuroplasticity, which

could be relevant in CP management. Lymphokine-activated

killer (LAK) Cells and recombinant lymphokine have

cytotoxic activity against tumor cells when activated in vitro,

but their effects on CP remain unexplored. Levosimendan has a

vasodilatory effect, and its potential impact on cerebral

circulation and muscle tissue blood supply in CP patients

needs further clarification [31]. Statins (Lovastatin,

Pravastatin) have shown neuroprotective and anti-

inflammatory effects, potentially beneficial in managing

neuroinflammation in CP. Diazoxide, a vasodilator and

potassium channel opener, does not have well-documented

effects on CP but might influence blood flow or neural

excitability. Triamcinolone, a corticosteroid, has the potential

to suppress inflammation and immune responses, making it a

potential option for managing inflammation-related aspects of

CP. In a frozen shoulder rat model, the injection of triamcinolone

acetonide has shown effective anti-fibrosis, anti-angiogenesis,

and anti-inflammatory properties [32]. While these drugs

show promise in affecting neurological functions or

mechanisms related to CP, their specific impacts on CP

patients require extensive clinical studies. Considerations such

as dosage, duration, individual variability, and underlying

pathology are crucial when evaluating their effects. Some

drugs’ impacts on CP may not be well-documented or

explored in clinical trials specifically for this condition,

necessitating targeted research or clinical trials to evaluate

their efficacy and safety in this population.

The study used samples from various muscle groups, with

tissue collection sites as potential confounders. Different

muscle groups exhibited unique gene expression profiles

due to their physiological functions and fiber types [33].

Wrist muscles, crucial for fine motor skills and complex

hand movements, showed a high gene expression in

pathways involved in neuromuscular junctions, muscle

contraction, and calcium handling [34, 35]. Conversely,

hamstring and quadriceps muscles, involved in gross

motor functions, exhibited increased gene expression in

ECM tissue and muscle fiber composition for structural

integrity and weight-bearing [36]. Additionally, elevated

expression related to oxidative phosphorylation, muscle

repair, and regeneration supported endurance and adaptive

recovery [37, 38]. These differences highlight the unique

needs of each muscle group and suggest personalized

strategies for treating related diseases. However, obtaining

muscle biopsy tissue from high-risk CP patients is an

unavoidable challenge. Ethical considerations and strict

informed consent procedures, especially for children, must

be given primary consideration. The invasiveness of the

surgery, along with the risks of postoperative infection,

bleeding, and discomfort, may deter participation.

Additionally, the medical fragility and anesthesia risks in

CP patients complicate the procedure. Despite these

challenges, muscle biopsies are crucial for studying the

pathophysiology of CP and subsequently developing
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targeted therapies to improve muscle function and quality of

life. Careful planning and ethical oversight are required,

balancing the need for high-quality data with alternative,

less invasive methods.

The CP prediction model based on hub genes

demonstrates superior predictive power and accuracy

compared to utilizing single genes. However, certain

limitations related to the data must be acknowledged. The

limited size of the cohorts in our dataset was a significant

constraint, restricting the statistical power and robustness of

our findings. Additionally, differences in age and sex between

the control and CP groups represented potential confounding

factors. Age-related gene expression differences and sex-

specific biological variations can impact results, making it

challenging to attribute observed differences solely to CP.

Secondly, variability in the severity of CP may exhibit

different molecular characteristics. Stratifying CP patients

based on detailed clinical data and severity could help

elucidate the relationship between CP severity and

biomarker expression. It is essential to dynamically

monitor changes in gene expression profiles throughout

disease progression in longitudinal cohorts. Furthermore,

variability among different muscle samples needs further

clarification. In CP patients, muscle tissue often exhibits

unique pathological changes such as increased ECM, fat

infiltration, and heightened inflammation, which can affect

gene expression outcomes due to differences in tissue

composition. Isolating specific cell types or using single-

cell RNA sequencing can provide a more precise

understanding of the molecular basis of CP.

Our study highlights the importance of considering

demographic variables, repeated measures, and tissue

composition in biomarker research. Despite the

limitations, our findings provide valuable insights into the

molecular underpinnings of CP. Future research should focus

on using larger, well-matched cohorts and advanced

analytical techniques to improve the accuracy and

applicability of biomarker discoveries. By addressing these

factors, we can enhance the diagnostic and therapeutic

potential of CP biomarkers.

Conclusion

This study provides new insights into identifying potential

biomarkers for CP and developing predictive models for early

diagnosis and personalized treatment. Using comprehensive

bioinformatics approaches, promising biomarkers (CKMT2,

TNNT2, MYH4, MYH1, GOT1, and LPL) were identified, and

robust predictive models for muscle sample markers specific

to CP were developed. The findings highlight the importance

of incorporating biomarker-based diagnostics into clinical

practice to enable early and accurate diagnosis, leading to

timely interventions and improved long-term outcomes.

Future research should validate these biomarkers and

models in larger cohorts and translate them into practical

diagnostic tools and treatment protocols, ultimately

enhancing the quality of life for individuals with CP and

their families.
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