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Introduction: XLH and the role of 
PHEX and FGF23 on bone health

X-linked hypophosphatemia (XLH; OMIM 307800) is a renal 
phosphate-wasting disorder that is the most common herit-
able form of rickets, affecting approximately 1 in 20,000 indi-
viduals.1 XLH is caused by inactivating pathogenic variants in 
the phosphate-regulating endopeptidase homolog X-linked 
(PHEX) gene.2 Primarily expressed in osteoblasts, osteocytes, 
and odontoblasts, PHEX inactivation leads to increased pro-
duction of fibroblast growth factor 23 (FGF23) by osteocytes.3–7 
PHEX also regulates the levels of potent bone mineralization 
inhibitors, including osteopontin (OPN) and matrix extracel-
lular phosphoglycoprotein (MEPE).3,8 Fibroblast growth fac-
tor 23 (FGF23) is released into the circulation and binds the 
Klotho–fibroblast growth factor receptor 1 (FGFR1) complex 
in the renal proximal tubule which induces phosphaturia and 
hypophosphatemia.9,10 FGF23 excess and resulting hypophos-
phatemia have well-known clinical sequelae, including rick-
ets and osteomalacia, short stature, lower limb deformity, 
muscle weakness, bone pain, dental abscesses, and insuf-
ficiency fractures; enthesopathy and spinal stenosis are addi-
tional comorbidities in adults with XLH.11 Craniosynostosis 
is seen in up to 59% of PHEX-positive individuals, with the 

sagittal suture most commonly affected.12,13 The Hyp mouse, 
a murine model of XLH harboring a loss-of-function variant 
in the PHEX gene, also demonstrates craniofacial and cranial 
suture abnormalities, and has been a useful model in explor-
ing the cellular pathology in XLH. However, the mechanisms 
mediating craniosynostosis in XLH have not been completely 
elucidated.2,14

FGF23 regulation and post-
translational modifications

FGF23 is synthesized as a 251 amino acid pro-protein that 
undergoes post-translational modification to regulate its 
activity by cleavage of 24 amino acids to form active FGF23.15 
FGF23 contains a 176RXXR179 motif that is integral for FGF23 
inactivation since active FGF23 is cleaved at this site, releas-
ing C and N terminal fragments. The released C terminal 
fragment may further suppress FGF23 action, as the C ter-
minus can bind Klotho–FGFR1 and impair FGF23 signaling, 
acting as a negative inhibitor of FGF23 activity.16 FGF23 inac-
tivation is dependent on the activity of Family with Sequence 
Similarity 20, member C (FAM20C) and Furin.17 FAM20C 
is a protein kinase that phosphorylates the serine-180 resi-
due immediately adjacent to the 176RXXR179 motif. Furin, 
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Minireview

Impact Statement

Craniosynostosis occurs commonly in patients 
with X-linked hypophosphatemic (XLH) rickets. We 
review and highlight what is known and not known 
about this phenomenon including exploring pos-
sible molecular mechanisms.
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a protease, then cleaves phosphorylated FGF23 into its N 
and C terminus. FGF23 pathogenic variants at the 176RXXR179 
motif cause Autosomal Dominant Hypophosphatemic 
Rickets (ADHR, OMIM 193100), as variants in this proteo-
lytic recognition sequence render FGF23 resistant to cleavage 
and thus lead to persistent biological activity.18 Therefore, 
the 176RXXR179 motif is essential for post-translational modi-
fication and regulation of FGF23 activity. FGF23 undergoes 
O-glycosylation at this motif which protects FGF23 from 
degradation.19 In the absence of O-glycosylation, FGF23 
undergoes excessive cleavage and the loss of full-length, bio-
logically active FGF23 results in familial tumoral calcinosis.20

FGF23 effects on calcium/phosphate 
homeostasis

FGF23 is a phosphaturic hormone that causes renal phos-
phate-wasting; the suppressive effect of FGF23 excess on 
1,25-dihydroxyvitamin D synthesis also impairs gastrointes-
tinal phosphate absorption. FGF23 is primarily secreted by 
osteoblasts and osteocytes;21 other sources of FGF23 include 
odontoblasts. Both phosphate and calcitriol 1,25-dihydrox-
yvitamin D regulate FGF23 levels, although phosphate is 
likely the more critical determinant of FGF23 secretion.22,23 
It has recently been demonstrated that the kidney detects 
phosphate levels through glycolysis, resulting in increased 
FGF23 production.24 FGF23 decreases expression of the type 
IIa and IIc sodium–phosphate cotransporters in the kid-
ney proximal tubule which results in increased renal phos-
phate excretion.10,25,26 FGF23 both inhibits the formation 
of 1,25-dihydroxyvitamin D and increases inactivation of 
25-hydroxyvitamin D. FGF23 inhibits renal 1-alpha-hydrox-
ylase expression, impairing the conversion of 25-hydroxy-
vitamin D to its active form, 1,25-dihydroxyvitamin D.25,26 
Furthermore, FGF23 increases 24-hydroxylase activity to 
convert both 1,25-dihydroxyvitamin D and 25-hydroxy-
vitamin D to their inactive 24-hydroxylated forms.27,28 
Together, the net effect is renal phosphate-wasting along 
with impaired gastrointestinal phosphate and calcium 
absorption, contributing to the hypophosphatemia seen in 
disorders with increased FGF23. Inappropriately, normal or 
low 1,25-dihydroxyvitamin D in association with hypophos-
phatemia is considered a hallmark of FGF23-mediated renal 
phosphate-wasting. This is in contrast to non-FGF23-medi-
ated hypophosphatemia, where 1,25-dihydroxyvitamin D 
is appropriately high in response to low serum phosphate 
levels, resulting in hypercalciuria (as for example, hereditary 
hypophosphatemia with hypercalciuria, a disorder resulting 
from loss of renal sodium–phosphate co-transport, but low 
serum FGF23 levels).29

FGF23 excess causes multiple diseases, including XLH, 
autosomal dominant hypophosphatemic rickets, fibrous 
dysplasia-related hypophosphatemia, linear sebaceous 
nevi syndrome (cutaneous-skeletal hypophosphatemia syn-
drome), and tumor-induced osteomalacia.30,31 XLH is the 
prototype of FGF23-mediated hypophosphatemia, charac-
terized by renal phosphate-wasting and typically inappro-
priately low/normal 1,25-dihydroxyvitamin D.11 This can be 
quantified by calculating the tubular maximal resorption of 

phosphate per glomerular filtration rate (TmP/GFR = plasma 
phosphate−[urine phosphate/urine creatine × plasma cre-
atinine]) with comparison to age- and sex-based norma-
tive ranges.32–35 Phosphate is a necessary component of 
hydroxyapatite along with calcium; as such, hypophos-
phatemia results in osteomalacia at the bone tissue level, 
defined in histomorphometric terms as an increase in osteoid 
thickness associated with prolongation of the mineralization 
lag time. Clinical consequences of osteomalacia include bow-
ing deformity, bone pain, and “looser zones,” also known as 
insufficiency fractures or “pseudofractures.” The latter term 
is falling somewhat out of favor since the bone is indeed 
cracked in osteomalacia-induced looser zones and is corre-
spondingly painful. Hypophosphatemia also interferes with 
mineralization of the growth plate, resulting in rickets which 
is apparent clinically as bowing deformity and poor growth, 
and radiographically typical features that include widening, 
fraying, and splaying of the growth plate.

PHEX and ASARM peptides: inhibition 
of mineralization

PHEX is an endopeptidase that was originally thought to 
degrade FGF23 directly.36 However, it has been demon-
strated that PHEX does not directly cause FGF23 degrada-
tion but rather PHEX degrades the mineralization inhibitors 
(“minhibins”) OPN and MEPE, with PHEX loss of function 
resulting in increased minhibins.3,8 Both OPN and MEPE 
contain acidic-serine-aspartate-rich motif (ASARM) proteo-
lytic peptides which are responsible for the minhibin activity. 
ASARMs bind to hydroxyapatite to impair crystal formation 
and augment osteoclast adhesion to bone, promoting bone 
resorption.21,37–42 ASARMs also inhibit mineralization around 
the osteocyte to create the classic peri-osteocytic lesions 
unique to XLH.43 Mineralization defects are similarly seen in 
Hyp mice where PHEX loss of function results in high serum 
and bone tissue levels of MEPE, OPN, and ASARM peptides, 
and osteomalacia, which is observed as seams of osteoid 
adjacent to mineralized matrix regions on histology.3,44,45 
ASARMs also feedback to inhibit PHEX activity and increase 
FGF23 expression.8 FGF23 is then released into the circula-
tion where it promotes renal phosphate-wasting leading to 
systemic hypophosphatemia and reduced phosphate avail-
ability for hydroxyapatite formation.8 Thus, the PHEX-OPN-
ASARM-FGF23 pathway contributes to local peri-osteocytic 
mineralization defects and systemic hypophosphatemia and 
osteomalacia (Figure 1).

XLH and craniosynostosis

Craniosynostosis is the premature fusion of cranial sutures 
which can occur in isolation or as part of some genetic syn-
dromes.46 Craniosynostosis occurs with a high frequency 
in XLH and the sagittal suture is most commonly affected 
(Figure 2), although there have been reports of multiple 
other suture involvement, including coronal, lambdoid, 
metopic, and pansynostosis.12,13,47,48 Premature fusion of the 
sagittal suture leads to a long and narrow (dolichocephalic) 
skull shape. This may also contribute to the classic skull 
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phenotype of XLH with frontal bossing, posterior protuber-
ance, and lateral narrowing.15 The cranial index is a ratio of 
skull width to length, and a cranial index of 75% or less indi-
cates skull deformity. It would be ideal if a simple external 
measurement such as this could diagnose craniosynostosis 
in these patients. However, some individuals with XLH and 
craniosynostosis have a normal cranial index. Consistent 
with this, several reports have found a normal cranial index 
and absence of dolichocephaly in children with XLH despite 
known synostosis.12,13 It was postulated therefore that these 
children developed craniosynostosis later in childhood, once 
the majority of skull growth was complete.12 Other reports 
have demonstrated craniosynostosis presenting early in 
infancy, evident in a case series of two infants presenting 
by three months of age, before they were diagnosed with 
XLH, and before hypophosphatemia or rickets was appar-
ent.48 Both these children had evidence of skull deformity 
including dolichocephaly, frontal bossing, and endocortical 

scalloping.48 A phenotype–genotype correlation does not 
exist for any of the clinical features in XLH, although trun-
cating mutations are predicted to cause more severe dis-
ease.49,50 A phenotype–genotype correlation has not been 
demonstrated for craniosynostosis in patients with XLH. The 
average age at which craniosynostosis is evident clinically is 
presently unknown, nor whether the condition has its origin 
in utero or whether it tends to develop later in childhood. 
Prospective studies are necessary to determine the preva-
lence and natural history of craniosynostosis in XLH.

Multiple case series and retrospective reviews have 
reported their experience with craniosynostosis in XLH, 
detailing symptoms, and the need for surgical interven-
tion.13,47,51–54 There are frequent reports of craniosynostosis, 
increased intracranial pressure, papilledema, and endocor-
tical scalloping, along with central nervous system (CNS) 
abnormalities, such as Chiari 1 malformation (CM1) and 
syringomyelia. Figure 2 demonstrates craniosynostosis, 

Figure 1. The impact of PHEX loss of function on bone mineralization.
Pathogenic loss of function in PHEX has endocrine and paracrine/autocrine effects. Locally, PHEX loss of function contributes to osteocyte dysfunction, increased 
minhibins, increased FGFR–FGF23 activity, and decreased tissue non-specific alkaline phosphatase (TNALP) activity. This leads to osteomalacia and osteosclerosis; 
alterations in signaling of these pathways are hypothesized to cause craniosynostosis and a skeletal dysplasia phenotype (dashed arrow). PHEX loss of function also 
leads to increased FGF23 and endocrine effects, with subsequent decreased expression of sodium–phosphate cotransporters and decreased production of 1,25 
dihydroxyvitamin D. This contributes to hypophosphatemia and rickets and osteomalacia. Together, the paracrine, autocrine, and endocrine effects of PHEX loss of 
function contribute to the including osteomalacia, leg deformities, bone pain, and impaired growth. FGFR: fibroblast growth factor receptor; FGF23: fibroblast growth 
factor 23; TNALP: tissue non-specific alkaline phosphatase; XLH: X-linked hypophosphatemia.
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endocortical scalloping, and CM1 in XLH. These neurologic 
complications can be severe requiring urgent neurosurgical 
intervention and cranial vault remodeling if not detected in 
a timely fashion.12,47,51,55 Fortunately, the surgical outcomes 
have been positive with the normalization of head shape, 
resolution of ophthalmologic and neurologic symptoms, and 
no reports of mortality (recognizing that the latter point may 
reflect publication bias against unfavorable outcomes). The 
cellular mechanisms are not well understood, although there 
are signaling abnormalities in XLH that may contribute to 

the development of craniosynostosis, such as altered FGFR 
signaling, altered tissue non-specific alkaline phosphatase 
(TNALP) activity, or altered heparan sulfate signaling. The 
potential cellular mechanisms are explored below.

Possible complications of 
craniosynostosis: Chiari 1 
malformations

Chiari 1 malformations are craniovertebral abnormalities 
that are more common in XLH, where the cerebellar tonsils 
protrude out of the foramen magnum into the cervical spinal 
junction. Craniosynostosis has been hypothesized to contrib-
ute to CM1 in XLH, as inappropriate suture fusion restricts 
brain growth leading to downward pressure and protrusion 
of the cerebellar tonsils. The largest study to date reported 
CM1 in 25% of children with XLH, of which 9% required 
neurosurgical intervention.13 Most of these children also 
had craniosynostosis, although one child had CM1 without 
craniosynostosis. CM1 may impair cerebrospinal fluid flow 
as the cerebellum limits flow through the foramen magnum. 
This can result in syringomyelia and cysts around the spinal 
cord. There are case reports of syringomyelia in XLH but 
the prevalence remains unknown. CM1 and syringomyelia 
have been associated with cervical and cranial neuropathy 
including bulbar palsy, papilledema, and hydrocephalus, 
and non-specific symptoms, including headaches and neck 
pain.13,54,56 It is increasingly recognized that XLH has higher 
rates of CNS anomalies. As such, clinicians should monitor 
for neurologic symptoms and pursue diagnostic imaging. At 
our centers, we carry out routine CNS imaging during the 
pediatric years even in the absence of symptoms to detect 
craniocervical abnormalities that require close monitoring 
as the child progresses through adolescence and adulthood.

XLH: a contradiction of osteomalacia 
and osteosclerosis

There is a phenotype of skull calvarium thickening that has 
been reported in XLH. In a description of two infants pre-
senting with craniosynostosis, skull radiographs showed 
diffuse calvarial thickening in one of the patients.48 Other 
reports have commented on areas of thickened calvarium 
interspersed with areas of soft thinned bone.47,48,51 XLH is 
known to cause an osteosclerotic phenotype despite the 
mechanical weakness of the bone.57,58 It is postulated that 
osteocytes sense the mechanical instability that underlies 
XLH and respond with increased trabeculae and bone for-
mation.59 However, the underlying bone remains soft and 
poorly mineralized, further contributing to the pathology. It 
is hypothesized that in addition to craniosynostosis, exces-
sive bone formation and thickening of the skull may contrib-
ute to decreased intracranial space and the CM1. In addition 
to decreased intracranial space contributing to the CM1, it 
may also contribute to endocortical scalloping resulting in 
radiographic features referred to as a “copper-beaten skull” 
or “thumbprinting.” Together, these observations support 
that XLH is a skeletal dysplasia with inherent abnormal bone 
formation, rather than an isolated mineralization disorder.

Figure 2. Craniosynostosis, endocortical scalloping, and Chiari 1 malformation 
(CM1) in XLH patients. (A/C/E) Normal cranial imaging in a 16-year-old female 
with XLH. Skull CT demonstrated normal sutures (A) and no endocortical 
scalloping (C). (E) Brain MRI demonstrated a normal craniocervical junction 
without a CM1. (B/D/E) Abnormal cranial imaging in individuals with XLH. 
(B) Sagittal synostosis in a 15-year-old male with XLH. Note the absence of 
the midline suture (red arrow) with lateral bulging of the skull and shortening 
of the anteroposterior axis. (D) Head CT in an 11-year-old male with XLH 
demonstrating endocortical scalloping. Note the ruffled appearance of the 
interior skull border (red arrows). (F) Brain MRI in a 13-year-old female with XLH 
and CM1. There is a 7-mm tonsillar ectopia (red arrow) through the foramen 
magnum (red line).
Source: Images were obtained with participant consent, University of Alberta 
Research Ethics Board # PRO00088137.
XLH: X-linked hypophosphatemia; CT: computed tomography; MRI: magnetic 
resonance imaging.



Grimbly et al.  FGF23 and craniosynostosis in XLH  2179

Cellular basis of craniosynostosis in 
XLH

The cranial sutures are mechanosensitive spaces between 
two opposing cranial bones that facilitate appositional 
growth of the cranial bones. This process comprises undif-
ferentiated proliferating osteogenic stem cells, some of 
which will differentiate into osteoblasts to form new bone 
along the skull edge.46 Loss of this undifferentiated suture 
space causes craniosynostosis.60 The Hyp mouse has crani-
ofacial abnormalities that are similar to individuals with 
XLH including a shortened and narrow skull, frontal boss-
ing, and synostosis (although the coronal suture is typically 
affected in the Hyp mice, compared with the sagittal suture 
in humans with XLH). Histologically, the sutures of Hyp 
mice show abnormalities as early as three weeks of age (i.e. 
at the time of weaning) with oblique collagen fiber bundles 
and fibroblasts that traverse the sutures. This differs signifi-
cantly from wildtype mice where collagen fibers and fibro-
blasts orient parallel to suture surfaces; these differences 
indicate an altered mechanical environment in the disease 
state, in addition to reduced bone formation.61–63 Despite the 
high frequency of craniosynostosis in XLH, the underlying 
mechanism is incompletely understood. FGFR is present 
in the cranial suture and the majority of syndromic synos-
tosis is due to variants in FGFR1/2/3.46 FGF23 can bind to 
FGFR2/3 and it has been postulated that FGF23–FGFR2/3 
binding at the cranial suture contributes to craniosynostosis, 
like other conditions with activated FGFR2/3.64 Thus, excess 
FGF23 may impair bone apposition at the suture line, medi-
ate craniosynostosis through FGFR2/3 binding and skull 
osteomalacia.

Role of FGFR in craniosynostosis

FGFR activation may play an important role in FGF23 
signaling and formation of craniosynostosis. Hyp mice 
have increased Fgfr1 and Fgfr2 expression, which is pre-
sent before birth. This suggests that FGF/FGFR signal-
ing may be present in utero and persists postnatally.65 
Craniosynostosis is also seen in many genetic syndromes, 
such as Apert (OMIM 101200), Crouzon (OMIM 123500), 
Pfeiffer (OMIM 101600), Muenke (OMIM 602849), and 
Antley–Bixler syndrome (OMIM 207410). These conditions 
are associated with pathogenic variants in FGFR1, FGFR2, 
and FGFR3 with FGF23 mediating effects through each of 
these receptors.15,46 Hence, altered FGF signaling appears 
to be a common mechanism linked to craniosynostosis. 
The deletion of Fgfr1 in Hyp mice partially rescued the 
phenotype. These animals display decreased expression 
of fgf23 in bone, lower serum FGF23, improved phosphate 
and 1,25-dihydroxyvitamin D levels, and increased femur 
length and cortical thickness.66 Fgfr1 deletion in osteocytes 
caused reduced gene expression of MEPE and FGF23, dem-
onstrating that FGFR1 activation plays a role in regulat-
ing minhibins.66 Thus, FGFR signaling abnormalities may 
mediate craniosynostosis in XLH by increasing both min-
hibins and FGF23. This also speaks to the possibility that 
systemic FGF23 might directly affect appositional bone 
growth and bone formation at the sutures.

TNALP and craniosynostosis

TNALP may play an important role in the development of 
craniosynostosis. TNALP is necessary to convert pyrophos-
phate (PPi) into inorganic phosphate (Pi), a key component 
in hydroxyapatite formation and bone mineralization.67 In 
the Hyp mouse model of XLH, elevated FGF23 suppresses 
TNALP expression and causes an accumulation of PPi. 
Blocking FGF23–FGFR3 signaling helps restore normal 
TNALP expression and decreases PPi, permitting mineraliza-
tion of bone matrix.4 Furthermore, the incidence of craniosyn-
ostosis in TNALP-deficient mice correlates with circulating 
FGF23 levels.68 Impaired TNALP activity or expression is 
seen in craniosynostosis conditions, such as hypophosphata-
sia and Crouzon syndrome. Hypophosphatasia is due to a 
loss of function of the ALPL gene, resulting in significantly 
reduced TNALP activity (with infantile hypophosphatasia 
being characterized by the presence of craniosynostosis).69 
The sagittal suture is typically involved in hypophosphata-
sia, similar to XLH, although hypophosphatasia has higher 
reported rates of craniosynostosis (up to 75%) and tends to 
have multi-suture involvement.70,71

Crouzon syndrome is caused by gain-of-function vari-
ants in the FGFR2 gene and thus this condition also has 
impaired and reduced TNALP production.72 A mouse 
model of Crouzon syndrome demonstrated a reduction in 
the craniosynostosis phenotype by increasing serum ALP 
through TNALP gene expression.73 Calcification of fibrous 
tendons (enthesopathies) is a common complication in XLH. 
Tendons express high levels of FGFR3, which mediates 
chondrocyte proliferation and differentiation, and aberrant 
FGFR3 signaling may contribute to inappropriate calcifica-
tion.74 Inappropriate FGFR3-mediated signaling in the skull 
could explain some of the observed phenotypes. The role of 
TNALP in bone mineralization and soft tissue calcification 
may help explain the phenotype of XLH, with impaired bone 
mineralization and calcification of the fibrous layers between 
sutures. It may also explain premature craniosynostosis with 
a local increase in PPi and abnormal calcification of the car-
tilage in the suture space. Further studies should aim to elu-
cidate the PHEX regulation of TNALP and TNALP’s role in 
aberrant calcification and craniosynostosis in XLH.

Heparan sulfate and local FGF23 
expression

Heparan sulfate helps stabilize FGF23–FGFR1 interactions 
and could contribute to stability and signaling of FGF23–
FGFR1.75,76 Loss of heparan sulfate function causes dysfunc-
tional chondrocytes with bony tumors (osteochondromas), 
as seen in Multiple Hereditary Exostoses (OMIM 13370 and 
133701). Autopsies of rachitic skulls have shown osteophyte 
growth and irregular bone surfaces at the suture line.77 This is 
consistent with the inappropriate distribution of FGF23, due 
to the lack of retention by heparan sulfate causing ectopic 
signaling, leading to bony growth at the skull’s growth 
plates. These skull osteophytes form along disorganized 
rachitic growth plates, such as the osteochondroma growth 
seen in Multiple Hereditary Exostoses. Osteophytes could 
potentially bridge the narrow gap between suture spaces, 



2180  Experimental Biology and Medicine  Volume 248  November 2023

contributing to premature fusion. Investigation of heparan 
sulfate signaling in craniosynostosis of Hyp mice or patients 
with XLH could confirm this.

Craniosynostosis in XLH – 
conclusions and future studies

The cellular mechanisms mediating craniosynostosis in 
XLH remain unknown. FGFR may both be an upstream and 
downstream regulator of FGF23 rather than being only the 
downstream regulator of increased FGF23 (as traditionally 
assumed). Loss of TNALP activity or expression may lead to 
increased PPi and altered mineralization, causing craniosyn-
ostosis. Heparan sulfate loss of function can cause growth 
plate osteochondromas and impair the FGF23–FGFR1 inter-
action. This suggests a requirement for precise local regula-
tion of signaling.

Many questions remain about the cellular basis of 
craniosynostosis in XLH. Is craniosynostosis a result of the 
fundamental mineralization defect in XLH, resulting in 
disorganized suture formation and inappropriate miner-
alization? Or perhaps craniosynostosis is caused by altered 
mechanotransduction due to osteomalacia, with compen-
satory calcification fusion in an effort to overcome the lat-
eral expansion of the skull plates, much like enthesopathies 
accommodate for tendon insertion in osteomalacic bone.78 
What is the role of dysfunctional paracrine/autocrine sign-
aling of FGFRs and ASARMs to cause craniosynostosis 
(and further, is craniosynostosis more on the spectrum of a 
skeletal dysplasia rather than a mineralization defect)? It is 
unclear why the sagittal suture is predominantly affected, 
yet some individuals have multiple or even pan-suture 
involvement. Furthermore, the rates of craniosynostosis in 
XLH have been reported to be quite high (up to 59%) yet 
many children do not require neurosurgical intervention; 
what contributes to the severe phenotype associated with 
neurological sequelae in some children, but not in others? 
How does the clinician predict which patients to monitor 
more closely? It remains to be seen if Burosumab, an anti-
FGF23 antibody and novel treatment for XLH, prevents 
craniosynostosis and further, whether prevention efforts 
must start early to be maximally (or even minimally) effec-
tive. Finally, to date, the prevalence of craniosynostosis has 
been limited to retrospective studies at tertiary centers;12,13,47 
whether these prevalences are representative of other cent-
ers with potentially different screening and medical treat-
ment (of hypophosphatemia) practices remain unknown. 
These unanswered questions reflect the necessity for ongo-
ing research in this area to better understand the cellular 
mechanisms implicated in XLH and their clinical sequelae, 
and to guide best practices.

Summary

XLH is due to pathogenic variants causing a loss of func-
tion in PHEX, altering FGF23 expression resulting in inap-
propriately normal or elevated serum FGF23 levels. At the 
same time, ASARMs are increased, which act as potent focal 
inhibitors of mineralization. Thus, while FGF23 is the key 
hormone causing the biochemical abnormalities in XLH 

including hypophosphatemia, renal phosphate-wasting, and 
low/normal 1,25 dihydroxyvitamin levels, elevated FGF23 
in sutures might signal directly through FGFR1–3 leading 
to altered bone formation/remodeling directly. The current 
working models are likely gross simplifications of intricate 
cellular dysfunctions that occur in XLH. Craniosynostosis 
is not only an under-recognized complication of XLH with 
significant clinical sequelae, understanding the cellular 
mechanisms leading to craniosynostosis in XLH may pro-
vide novel options for the management and prevention of 
craniosynostosis.
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