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Introduction

Osteosarcoma, accounting for 60% of primary bone tumors, 
is a major form of primary bone malignancy in young adults 
and children.1–3 Even after aggressive surgical strategies, 
chemotherapy, and radiotherapy, patients with osteosar-
coma still have highly malignant and metastatic conditions 
with a poor prognosis.4 Therefore, it is important to prevent 
the progression of osteosarcoma and develop targeted thera-
peutic strategies.

Osteosarcomas mostly develop from mesenchymal 
stem cells (MSCs). As cells inside the bone begin to divide 
uncontrollably, osteosarcoma occurs and can be extremely 
aggressive and has distal metastatic properties.5,6 Apoptosis, 
autophagy, necrosis, and pyroptosis are regular forms of cell 
death.7 Ferroptosis, a new form of cell death, is mediated 

by intracellular iron and is clearly distinguished from other 
forms of cell death forms.8,9 Recently, emerging evidence 
has highlighted that aberrant cellular iron metabolism can 
induce overproduction of reactive oxygen species (ROS) and 
trigger lipid peroxidation (LPO). However, aberrant genera-
tion of ROS and LPO would cause DNA and RNA damage, 
thereby inducing the hallmarks of ferroptosis and non-apop-
totic programmed cell death.10,11 The hallmarks of ferroptosis 
including dysmorphic mitochondria, decreased mitochon-
drial cristae, and diminished mitochondrial membrane.12

In addition, various studies have found that ferroptosis 
can be regulated by glutathione peroxidase 4 (GPX4), the 
mevalonate pathway, lipid synthesis, the transcription fac-
tor nuclear factor E2–related factor 2 (Nrf2/NFE2L2) path-
way and other factors.13,14 GPX4 is an enzyme that removes 
lipid peroxide. In addition, Nrf2 can regulate GPX4 and free 
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Curcumin, an antitumor agent, has been shown to inhibit cell growth and metastasis 
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and glutathione abilities, and protein levels were detected by cell counting kit-8, flow 
cytometry, wound healing, transwell assay, respectively. Nrf2 and GPX4 expressions 

were detected using an immunofluorescence assay. Nrf2/GPX4-related protein levels were detected using western blotting. The 
results showed that curcumin effectively decreased cell viability and increased apoptosis rate. Meanwhile, curcumin inhibited tumor 
volume in the xenograft model, and Nrf2/GPX4-related protein levels were also altered. Interestingly, the effects of curcumin were 
reversed by liproxstatin-1 (an effective inhibitor of ferroptosis) and bardoxolone-methyl (an effective activator of Nrf2). Our results 
indicate that curcumin has therapeutic effects on osteosarcoma cells and a xenograft model by regulating the expression of the 
Nrf2/GPX4 signaling pathway.
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Curcumin was an antitumor agent to inhibit cell 
growth and metastasis in osteosarcoma. This 
study aimed to investigate the effects and potential 
mechanisms of curcumin on osteosarcoma both in 
vitro and in vivo. It can provide some evidence for 
curcumin to become a potential therapy drug for 
osteosarcoma in the future.
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iron content, thereby regulating ferroptosis. Studies have 
revealed that some clinical drugs induce ferroptosis in can-
cers, thereby inhibiting the progression of cancer.15

Curcumin, a natural phenolic compound extracted from 
Curcuma longa exhibits various pharmacological activities, 
including antitumor, antioxidant, and anti-inflammatory 
activities, via modulation of intracellular signaling path-
ways.16,17 Studies have shown that the anticancer effects 
of curcumin have been found in various cancer types, 
including breast, prostate, colon, and osteosarcoma.18–20 
Curcumin has been shown to exert antitumor activities 
by regulating intracellular signaling pathways, such as 
RANK/RANKL, Notch, Wnt/β-catenin, and ferropto-
sis, relative to the SLC7A11, GPX4, HO-1, and HMOX1 
pathways.21

Curcumin, as an antitumor agent, has been shown to 
inhibit cell growth and metastasis in osteosarcoma.22,23 Many 
studies have reported that curcumin can inhibit the produc-
tion of ROS, metastasis, angiogenesis, and osteoclast for-
mation, thereby suppressing osteosarcoma development.24 
However, there are few studies on the ability of curcumin to 
regulate ferroptosis in osteosarcoma.25

Based on the aforementioned literature, in the recent 
research, we aimed to explore the effects of curcumin on 
osteosarcoma cells and mice model. In addition, we explored 
the effects of curcumin and its regulation of cell ferroptosis 
and Nrf2/GPX4 signaling pathways. This study aimed to 
provide a scientific reference for research on the mechanism 
of curcumin and identify a novel therapeutic target of cur-
cumin for osteosarcoma.

Materials and methods

Cell culture and groups

Human osteosarcoma cell lines MNNG/HOS and MG-63 
were purchased from KeyGEN BioTECH (Jiangsu, China). 
The cells were incubated in Eagle’s Minimum Essential 
Medium, supplemented with 10% fetal bovine serum (FBS) 
and 1% penicillin/streptomycin, cultured in a humid incu-
bator at 37°C with 5% CO2.

Cells were divided into five groups: control group; cur-
cumin group (cells treated with 22.5 μM curcumin); erastin 
group (cells treated with 20 μM erastin); curcumin + liprox-
statin-1 (Lip-1) group (cells treated with 22.5 μM curcumin 
and 80 nM Lip-1); curcumin + bardoxolone-methyl (BM) 
group (cells treated with 22.5 μM curcumin and 0.05 μM 
BM).26

Cell viability assay

Cell counting kit-8 (CCK-8) kit (KeyGEN BioTECH) was 
used to detect MNNG/HOS and MG-63 cell viability. Briefly, 
MNNG/HOS and MG-63 cells were seeded into 96-well 
plates at a density of 3.0 × 103/well and cultured for 24 h. 
Cells were incubated with CCK-8 solution (10 µL) at 24, 48, 
and 72 h, and cultured in an incubator at 37°C for 2 h, and 
measured using a microplate detector (BD Biosciences, San 
Jose, CA, USA) at 450 nm optical density.

Transwell assay

A transwell assay was performed to detect MNNG/HOS 
and MG-63 cell invasion rates. Chamber with an 8-mm pore 
membrane was used according to the manufacturer’s instruc-
tions and previous studies.27 Briefly, cells were collected and 
counted after treatment with curcumin or other drugs. A 
total of 1 × 104 cell suspension was added to each upper 
chamber (the inner bottom was pre-coated with Matrigel 
Matrix). Next, 500 μL of growth medium containing 10% 
serum was added to the lower chamber. Then, the cells were 
incubated at 37°C in a 5% CO2 for 48 h. Cells were stained 
with 0.5% crystal violet, and the invasiveness of cells on the 
lower side was examined using an inverted microscope.

Cell apoptosis assay

MNNG/HOS and MG-63 cell apoptosis in different experi-
mental groups was measured using an Annexin V-fluorescein 
isothiocyanate (FITC)/propidium iodide (PI) apoptosis 
detection kit (BD Biosciences), according to the manufac-
turer’s instructions.28 MNNG/HOS and MG-63 cells in the 
logarithmic growth phase were collected and inoculated into 
a six-well plate. Then, 5 μL of Annexin V-FITC and PI was 
added to the sample for 15 min in the dark and detected by 
flow cytometry (BD Biosciences).

ROS detection assay

To quantify the levels of ROS, the dichlorodihydrofluores-
cein diacetate (DCFH-DA) probe was employed following 
the guidelines provided by the manufacturer. In brief, cells 
were seeded in six-well plates and treated with quercetin. 
Subsequently, the cells were harvested, rinsed twice with 
phosphate-buffered saline (PBS), and subjected to labeling 
with 20 mM DCFH-DA in a light-restricted environment 
for a duration of 30 min. The fluorescence intensity of the 
collected cells was determined using a flow cytometer. All 
experimental steps were conducted in accordance with the 
manufacturer’s instructions.29

Cell cycle distribution

MNNG/HOS and MG-63 cell cycle distributions were 
detected using a cell cycle detection kit (KeyGEN BioTECH). 
All procedures were performed in accordance with the man-
ufacturer’s instructions.30 Briefly, cells were collected after 
different treatment measures. Cells were resuspended in 
ethanol (75%) overnight. PI/RNase mix (500 μL) was added 
and flow cytometry (BD Biosciences) was used to detect the 
cell cycle distribution.

Transmission electron microscopy assay. Transmission 
electron microscopy (TEM) assays were performed in accor-
dance with established protocols. After trypsinization, 
MNNG/HOS and MG-63 cells were centrifuged at 225g for 
5 min and subsequently fixed with 4% glutaraldehyde for 
2 h at 4°C. Sections were stained with uranyl acetate and 
lead citrate. TEM images were captured using a JEM-
1400Plus transmission electron microscope.
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Immunohistochemical analysis

The expression of Nrf2 and GPX4 was detected by immuno-
fluorescence with a Deacetylase Fluorometric Assay kit (Bio 
Vision, Inc., Milpitas, CA, USA) according to the manufac-
turer’s instructions. Fluorescence microscopy was used to 
observe Nrf2 and GPX4 positive cells, and the images were 
photographed.

Establishment of xenograft model

Fifty BALB/c nude mice were used to establish a xenograft 
model. MNNG/HOS cells were injected into the left axilla 
of the nude mice at a dose of 1 × 107. After tumor forma-
tion, the mice were divided into five groups (n = 10): control, 
curcumin, erastin, curcumin + lip-1, and curcumin + bar-
doxolone-methyl. The tumors were measured using an elec-
tronic Vernier caliper, and the tumor volume and growth 
rate were calculated. We followed the ARRIVE guide-
lines point-by-point during experimental studies (Animal 
Research: Reporting of In Vivo Experiments), and all animal 
procedures were approved by the Shandong University of 
Traditional Chinese Medicine. All animal maintenance and 
operational procedures were performed in accordance with 
the Guide for the Care and Use of Laboratory Animals pub-
lished by the National Institutes of Health (NIH Publication 
no. 86-23, revised 1996).

Measurement of malondialdehyde and glutathione

Malondialdehyde (MDA) and glutathione (GSH) assay kits 
were used to measure the MDA and GSH concentrations. 
The experiment was performed according to the manufac-
turer’s instructions.

Immunohistochemical staining assay

According to previous studies, immunohistochemical stain-
ing assay was performed.31 An immunohistochemical kit 
(Millipore; Merck KGaA, Darmstadt, Germany) was used 
to assess Nrf2 expression. Optical microscopy (Olympus 
Corp., Tokyo, Japan) was used to observe apoptotic cells, 
and images were photographed at 200× magnification.

Western blotting

The experimental procedure was performed as previously 
described in the previous study.32 The total protein concen-
trations of the cells and tissues were measured using the 
BCA protein quantification method (Beyotime, China). Equal 
amounts of protein were resolved by electrophoresis on a 
10% sodium dodecyl-sulfate (SDS) gel and then transferred 
onto nitrocellulose membranes. Following blocking by incu-
bation in 5% non-fat milk, membranes were probed with 
specific anti-SLC7A11 (Cell Signaling Technology, 1:1000), 
anti-GPX4 (Cell Signaling Technology, 1:1000), anti-HO-1 
(Cell Signaling Technology, 1:1000), anti-Nrf2 (Abcam, 
1:1500), and β-actin (Abcam, 1:1000) overnight at 4°C. After 
washing with tris-buffered saline (TBS) containing 0.24% 
Tween-20, the membranes were incubated for 60 min with 
horseradish peroxidase–conjugated secondary antibody. 
An enhanced chemiluminescence system was used for 

visualization of protein signals, and the density of each pro-
tein band was analyzed using Image-Pro Plus6.0 (Media 
Cybernetics, Silver Spring, MD, USA).

Statistical analysis

All experimental data were analyzed using IBM SPSS 
Statistics (version 19.0, SPSS, Inc., Chicago, IL, USA). The sig-
nificant difference of data for comparison was analyzed by 
one-way analysis of variance (ANOVA) followed by Tukey’s 
post-test. The data were considered significantly different at 
P < 0.05.

Results

Effects of curcumin on cell viability, cell apoptosis 
rate, and cell cycle in MNNG/HOS and MG-63 cells

To investigate the effects of curcumin on cell viability, apop-
tosis rate, and cell cycle, CCK-8 and flow cytometry assays 
were performed. As shown in Figure 1(A) and (B), our results 
revealed that after treatment with curcumin (22.5 μM), cell 
viability was significantly decreased (P < 0.05 versus con-
trol group), while the cell viability in the erastin group was 
similarly decreased. However, compared to the curcumin 
group, after treatment with Lip-1 or BM, cell viability was 
significantly increased (P < 0.05).

Consistent with the CCK-8 assay results, the cell apop-
tosis rate results (Figure 1(C) and (D)) revealed that after 
treatment with curcumin, the cell apoptosis rate was sig-
nificantly increased (P < 0.05 versus control group), while 
the cell apoptosis rate in the erastin group was similarly 
increased. However, compared to the curcumin group, after 
treatment with Lip-1 or BM, the cell apoptosis rate was sig-
nificantly lower (P < 0.05).

As shown in Figure 2(A) and (B), cell cycle distribution 
results revealed that after treatment with curcumin, the per-
centage of cells undergoing sub G0/G1 phase in both cell 
lines gradually increased. These results indicate that cur-
cumin induced G0/G1 phase arrest.

Curcumin reversed cell invasion in MNNG/HOS and 
MG-63 cells

To further investigate the effects of curcumin on migration 
and cell invasion, wound healing and transwell assays were 
performed. As shown in Figure 3(A) and (B), our results 
revealed that after treatment with curcumin, cell invasion 
abilities were significantly decreased (P < 0.05 versus control 
group), while cell invasion abilities in the erastin group were 
similarly decreased. However, compared with the curcumin 
group, after treatment with Lip-1 or BM, cell invasion abili-
ties were significantly increased (P < 0.05).

Curcumin reversed ROS levels in MNNG/HOS and 
MG-63 cells

Growing evidence has revealed that the lipid and amino 
acid metabolic pathways are involved in the regulation of 
ferroptosis. Ferroptosis is characterized by the accumula-
tion of lipid hydroperoxides and ROS derived from iron 
metabolism. It can be triggered in cancer cells by depleting 
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Figure 1. Effects of curcumin on cell viability and cell apoptosis rate in MG-63 and MNNG/HOS cells (n = 6): (A) MG-63 cell viability was detected by CCK-8 assay, (B) 
MNNG/HOS cell viability was detected by CCK-8 assay, (C) MG-63 cell apoptosis rate was detected by flow cytometry, and (D) MNNG/HOS cell apoptosis rate.
*P < 0.05 versus control group; #P < 0.05 versus curcumin group.
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Figure 2. Effects of curcumin on cell cycle distribution in MG-63 and MNNG/HOS cells (n = 6): (A) cell cycle distribution in MG-63 cells and (B) cell cycle distribution in 
MNNG/HOS cells.
*P < 0.05 versus control group; #P < 0.05 versus curcumin group.
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Figure 3. Effects of curcumin on cell invasion in MG-63 and MNNG/HOS cells (n = 6): (A) MG-63 cell invasion rate was detected by transwell assay (scar bar: 50 μm) 
and (B) MNNG/HOS cell invasion rate was detected by transwell assay (scar bar: 50 μm).
*P < 0.05 versus control group; #P < 0.05 versus curcumin group.
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GSH or inhibiting GPX4. To further investigate the effects 
of curcumin on ROS levels, flow cytometry was performed. 
As shown in Figure 4(A) and (B), our results revealed that 
after treatment with curcumin, ROS levels were significantly 
increased (P < 0.05 versus control group). However, com-
pared with the curcumin group, after treatment with Lip-1 
or BM, ROS and GSH levels were significantly changed 
(P < 0.05).

Meanwhile, the immunofluorescence assay results of ROS 
were found to be consistent with the flow cytometry results, 
as depicted in Figure 4(C) and (D).

Curcumin induced mitochondrial structural 
changes in MNNG/HOS and MG-63 cells

In order to improve understanding of the mechanism by 
which curcumin induces cell death in MNNG/HOS and 
MG-63 cells, we utilized transmission electron microscopy to 
analyze the ultrastructural features of cancer cells. Our obser-
vations, as illustrated in Figure 5(A) and (B), revealed that in 
the group treated with curcumin, the cell membrane exhibited 
fragmentation and vesiculation, the mitochondria displayed 
reduced size, increased membrane density, diminished or 
absent mitochondrial ridges, and disrupted outer membrane. 
The nucleus size remained normal, although chromatin con-
densation was not observed. Further examination under an 
electron microscope revealed a reduction in mitochondrial 
size and an increase in membrane density, which are indica-
tive of ferroptosis, a significant phenomenon.

Curcumin reversed Nrf2 and GPX4 expressions in 
MNNG/HOS and MG-63 cells

To investigate the effects of curcumin on Nrf2 and GPX4 
expressions, immunofluorescence assay was performed. As 
shown in Figure 6(A) and (B), our results revealed that after 
treatment with curcumin, Nrf2 and GPX4 levels were sig-
nificantly decreased. Meanwhile, in erastin group, Nrf2 and 
GPX4 levels were significantly decreased. However, com-
pared with the curcumin group, after treatment with Lip-1 
or BM, Nrf2 and GPX4 levels were significantly increased.

Curcumin reversed Nrf2/GPX4 relative protein 
levels in MNNG/HOS and MG-63 cells

To investigate the effects of curcumin on Nrf2/GPX4 relative 
protein levels, western blotting was performed. As shown 
in Figure 7(A) to (J), our results revealed that after treatment 
with curcumin, Nrf2, SLC7A11, HO-1, and GPX4 protein 
levels were decreased (P < 0.05 versus control group), while 
in the erastin group, Nrf2, SLC7A11, HO-1, and GPX4 pro-
tein levels were decreased (P < 0.05 versus control group). 
However, compared with the curcumin group, after treat-
ment with Lip-1 or BM, Nrf2, SLC7A11, HO-1, and GPX4 
protein levels increased (P < 0.05).

Curcumin inhibited the tumor volume and 
increased cell apoptosis rate in xenograft model

To further evaluate the effects of curcumin on tumor growth, 
an MNNG/HOS xenograft model was constructed. As 
shown in Figure 8(A) and (B), compared to the control group, 

the tumor growth curve indicated that the tumor volume 
in the curcumin group was significantly smaller (P < 0.05). 
Meanwhile, the tumor volume in the erastin group was sig-
nificantly smaller (P < 0.05). Accordingly, compared to the 
curcumin group, after treated with Lip-1 or BM, the tumor 
volume was significantly bigger (P < 0.05).

As shown in Figure 8(C), the cell apoptosis rate results 
revealed that after treatment with curcumin, the cell apop-
tosis rate was significantly increased (P < 0.05 versus control 
group), while the cell apoptosis rate in the erastin group was 
similarly increased. However, compared to the curcumin 
group, after treatment with Lip-1 or BM, the cell apoptosis 
rate was significantly lower (P < 0.05).

Curcumin reversed ROS, MDA, and GSH levels in 
xenograft model

To further investigate the effects of curcumin on ROS, MDA 
and GSH levels, an enzyme-linked immunosorbent assay 
(ELISA) was performed. As shown in Figure 8(D) to (F), our 
results revealed that after treatment with curcumin, ROS and 
MDA levels were significantly increased while GSH levels 
were decreased (P < 0.05 versus control group). However, 
compared to the curcumin group, after treatment with 
Lip-1 or BM, ROS, MDA, and GSH levels were significantly 
changed (P < 0.05).

Curcumin reversed Nrf2 and GPX4 expressions in 
xenograft model

To investigate the effects of curcumin on Nrf2 and GPX4 
expressions, immunofluorescence assay was performed. 
As shown in Figure 9(A), our results revealed that after 
treatment with curcumin, Nrf2 and GPX4 levels were sig-
nificantly decreased. Meanwhile, in erastin group, Nrf2 and 
GPX4 levels were significantly decreased. However, com-
pared with the curcumin group, after treatment with Lip-1 
or BM, Nrf2 and GPX4 levels were significantly increased.

Curcumin reversed Nrf2/GPX4 relative protein 
levels in xenograft model

To further investigate the effects of curcumin on Nrf2/ GPX4 
relative protein levels, western blotting was performed. 
As shown in Figure 9(B) to (F), our results revealed that 
after treatment with curcumin, Nrf2, SLC7A11, HO-1, and 
GPX4 protein levels were decreased (P < 0.05 versus control 
group), while in the erastin group, Nrf2, SLC7A11, HO-1, 
and GPX4 protein levels were decreased (P < 0.05 versus 
control group). However, compared with the curcumin 
group, after treatment with Lip-1 or BM, Nrf2, SLC7A11, 
HO-1, and GPX4 protein levels increased (P < 0.05).

Discussion

Various studies have indicated that ferroptosis is a new form 
of programmed cell death induced by LPO, followed by iron 
release and lethal ROS.33,34 In this study, we investigated the 
effects of curcumin on osteosarcoma. Our results revealed 
that curcumin inhibited the viability, migration, and inva-
sion of MNNG/HOS and MG-63 cells. Meanwhile, ROS, 
MDA, and GSH levels and Nrf2/ GPX4 relative protein 
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Figure 4. Effects of curcumin on ROS levels in MG-63 and MNNG/HOS cells (n = 6): (A) ROS levels in MG-63 cells were detected by flow cytometry, (B) ROS levels 
in MNNG/HOS cells, (C) ROS levels in MG-63 cells were detected by immunofluorescence assay (scar bar: 50 μm), and (D) ROS levels in MNNG/HOS cells were 
detected by immunofluorescence assay (scar bar: 50 μm).
*P < 0.05 versus control group; #P < 0.05 versus curcumin group.
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levels were also changed by treatment with curcumin. 
Interestingly, there is addition of Lip-1 (an effective inhibitor 
of ferroptosis) and BM (an effective activator of Nrf2). Taken 
together, these results revealed that curcumin could induce 
osteosarcoma cell ferroptosis while mediating progression 
via the regulation of Nrf2/GPX4 pathway.

The high mortality rate of osteosarcoma is believed to 
be due to its high rate of metastasis. Invasion and metasta-
sis of osteosarcoma often occur in the early stages.35 With 
the development of chemotherapy, the survival rate has 
increased; however, invasion and metastasis remain the 
main problems for the failure.36 There is an urgent need to 

Figure 5. Effects of curcumin on mitochondrial structural changes in MG-63 and MNNG/HOS cells (n = 3): (A) mitochondrial structural changes in MG-63 cells and (B) 
mitochondrial structural changes in MNNG/HOS cells.
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Figure 6. Effects of curcumin on Nrf2 and GPX4 expressions in MG-63 and MNNG/HOS cells (n = 6, scar bar: 50 μm): (A) Nrf2 and GPX4 expressions in MG-63 cells 
and (B) Nrf2 and GPX4 expressions in MNNG/HOS cells.
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Figure 7. Effects of curcumin on Nrf2/GPX4 relative protein levels in MG-63 and MNNG/HOS cells (n = 6): (A) western blot bands in MG-63 cells, (B) Nrf2 expressions, 
(C) GPX4 expressions,(D) SLC7A11 expressions, (E) HO-1 expressions, (F) western blot bands in MNNG/HOS cells, (G) Nrf2 expressions, (H GPX4 expressions,  
(I) SLC7A11 expressions, and (J) HO-1 expressions.
*P < 0.05 versus control group; #P < 0.05 versus curcumin group.



2194  Experimental Biology and Medicine  Volume 248  December 2023

Figure 8. Effects of curcumin on tumor volume, ROS, MDA, and GSH levels in xenograft model (n = 6): (A) tumor images of MNNG/HOS cells induced xenograft model, 
(B) tumor volume of xenograft model, (C) cell apoptosis rate was detected by TUNEL assay (scar bar: 50 μm),  (D) MDA levels, (E) ROS levels, and (F) GSH levels.
*P < 0.05 versus control group; #P < 0.05 versus curcumin group.
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Figure 9. Effects of curcumin on Nrf2, GPX4, and Nrf2/GPX4 relative protein expressions in xenograft model (n = 3): (A) Nrf2 and GPX4 expressions were detected by 
immunofluorescence (scar bar: 20 μm), (B) western blot bands, (C) Nrf2 expressions, (D) GPX4 expressions, (E) SLC7A11 expressions, and (F) HO-1 expressions.
*P < 0.05 versus control group; #P < 0.05 versus curcumin group.
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reveal the factors and signaling pathways involved in the 
metastatic process of human osteosarcoma. Consistent with 
previous studies, our research revealed that curcumin can 
inhibit cell viability, migration, and invasion in MNNG/
HOS and MG-63 cells. Our results also revealed that cur-
cumin induced G2/M phase arrest, which is consistent with 
the results of previous studies.

Ferroptosis is a new form of programmed cell death 
induced by various inducers, such as the accumulation of 
LPO and ROS.37,38 Growing evidence has revealed that the 
lipid and amino acid metabolic pathways are involved in 
the regulation of ferroptosis.15,39 Ferroptosis is character-
ized by the accumulation of lipid hydroperoxides and ROS 
derived from iron metabolism.40,41 It can be triggered in 
cancer cells by depleting GSH or inhibiting GPX4. Growing 
evidence indicates that Nrf2 is a critical antioxidant tran-
scription factor that mediates ferroptosis. Many compo-
nents of the ferroptosis cascade are target genes of the 
transcription factor Nrf2; the downregulating of GPX4, 
SLC7A11, and ROS activities was related to the progression 
of ferroptosis.42 Studies have revealed that GPX4 is a down-
stream target of Nrf2, and targeting GPX4 is considered a 
crucial strategy for triggering ferroptosis. Mechanistically, 
studies have verified that GSTZ1 knockout could induce 
cell ferroptosis via activation of the Nrf2/GPX4 axis.43,44 
In accordance with prior studies, curcumin also exerts an 
influence on the levels of ROS and MDA. Collectively, these 
outcomes elucidate the ability of curcumin to induce cell 
ferroptosis through the modulation of ROS expression and 
Nrf2/GPX4 protein levels.

Ferroptosis is a new form of programmed cell death 
induced by various factors, such as LPO and ROS accu-
mulation. Growing evidence indicates that Nrf2 is a critical 
antioxidant transcription factor that mediates ferroptosis. 
Many components of the ferroptosis cascade are target 
genes of the transcription factor Nrf2, and the downregu-
lation of GPX4, SLC7A11, and ROS activities is related to 
the progression of ferroptosis. Studies have revealed that 
GPX4 is a downstream target of Nrf2, and targeting GPX4 
is considered a crucial strategy for triggering ferroptosis. 
The activation of the Nrf2/GPX4 axis has been mechanisti-
cally confirmed to induce cell ferroptosis. In this particular 
study, BM, an activator of Nrf2, was employed to investigate 
the potential mechanisms linking curcumin and Nrf2. Our 
findings align with previous research, as they reveal that 
curcumin treatment effectively suppresses the expression 
of Nrf2, SLC7A11, HO-1, and GPX4 in both in vivo and in 
vitro settings.

Nrf2 is a key regulatory factor required by cells to main-
tain an oxidative steady state. Growing evidence indicates 
that Nrf2 is a critical antioxidant transcription factor that 
mediates ferroptosis response.20,45 Moreover, studies have 
revealed that increased Nrf2 expression is associated with 
poor outcomes and disease-free survival in osteosarcoma. 
BM is an extremely efficient Nrf2 activator. According to 
previous studies, BM can induce the release of activated 
Nrf2, resulting in Nrf2 protein stabilization and nuclear 
translocation.39 Lip-1 is an effective inhibitor of ferroptosis. 
BM significantly altered the effects of curcumin. Ferritin is 
the major intracellular iron storage protein complex and is 

composed of a ferritin light chain and FTH1 (ferritin heavy 
chain). Studies have shown that ferritin and iron levels are 
increased in osteosarcoma cells, thereby inducing ROS injury. 
In this study, we used erastin and ferrostatin-1 (an inhibitor 
of erastin-induced ferroptosis) to verify the effects of cur-
cumin on ferroptosis. Taken together, these results revealed 
that curcumin could induce cell ferroptosis by regulating the 
expression of ROS and Nrf2/GPX4 relative protein levels.

Conclusions

In conclusion, our study not only revealed the therapeutic 
effects of curcumin on osteosarcoma cells and mice models 
but also revealed the relationship between curcumin and the 
Nrf2/GPX4 signaling pathway. Our study revealed that cur-
cumin has therapeutic effects on osteosarcoma by regulating 
the Nrf2/GPX4 signaling pathway.
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