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Introduction

Ensuring and promoting patient safety and pharmacovigi-
lance (PSPV) is paramount in eliminating unexpected side 
effects and establishing reliable safety profiles throughout 
drug development.1,2 As a pivotal component of PSPV, cau-
sality assessment is integral to identifying potential cor-
relations between drug consumption and adverse events, 
thereby contributing to the detection and understanding 
of unforeseen risks and side effects.3,4 Conventionally, the 
causal inference process has largely depended on controlled 

population studies, which are often time-consuming, costly, 
and, in some instances, impractical for certain PSPV chal-
lenges. Alternatively, targeted trials offer a viable solution 
for establishing causality based on observational data. These 
types of trials, such as decentralized clinical trials and those 
utilizing real-world data, inherently involve large volumes 
of data.5,6 This necessitates the application of sophisticated 
statistical methods to effectively handle and interpret the 
information.7–10

The recent announcement of the Food and Drug 
Administration (FDA) Modernization Act 2.0 underscores 
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Abstract
Causality assessment is vital in patient safety and pharmacovigilance (PSPV) for 
safety signal detection, adverse reaction management, and regulatory submission. 
Large language models (LLMs), especially those designed with transformer 
architecture, are revolutionizing various fields, including PSPV. While attempts to 
utilize Bidirectional Encoder Representations from Transformers (BERT)-like LLMs 
for causal inference in PSPV are underway, a detailed evaluation of “fit-for-purpose” 
BERT-like model selection to enhance causal inference performance within PSPV 
applications remains absent. This study conducts an in-depth exploration of BERT-
like LLMs, including generic pre-trained BERT LLMs, domain-specific pre-trained 
LLMs, and domain-specific pre-trained LLMs with safety knowledge-specific fine-
tuning, for causal inference in PSPV. Our investigation centers around (1) the 
influence of data complexity and model architecture, (2) the correlation between 
the BERT size and its impact, and (3) the role of domain-specific training and fine-
tuning on three publicly accessible PSPV data sets. The findings suggest that (1) 
BERT-like LLMs deliver consistent predictive power across varied data complexity 
levels, (2) the predictive performance and causal inference results do not directly 

correspond to the BERT-like model size, and (3) domain-specific pre-trained LLMs, with or without safety knowledge-specific fine-
tuning, surpass generic pre-trained BERT models in causal inference. The findings are valuable to guide the future application of 
LLMs in a broad range of application.
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Impact statement

In this study, we offered crucial insights into 
the application of Bidirectional Encoder 
Representations from Transformers (BERT)-like 
large language models (LLMs) in patient safety 
and pharmacovigilance (PSPV) causality assess-
ment. Our findings reveal that while BERT-like LLMs 
maintain consistent performance across different 
data complexities, the model size is not a direct 
predictor of performance. Notably, domain-specific 
pre-trained LLMs, regardless of safety knowledge 
fine-tuning, outperform generic BERT models in 
causal inference. These revelations are pivotal in 
directing future LLM applications across a myriad 
of sectors, optimizing their deployment in PSPV.
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the critical role of innovative non-animal-based methodolo-
gies like artificial intelligence and machine learning (AI/
ML) in supporting drug development and its safety evalu-
ation (https://www.congress.gov/bill/117th-congress/
senate-bill/5002. By proposing these cutting-edge tools as 
alternatives, the Act aims to accelerate the drug development 
process, thereby expediting the availability of potentially 
life-saving medications. In concurrence with this legisla-
tive shift, the US FDA has unveiled a discussion paper that 
focuses on the application of AI/ML in the development 
of drugs and biological products (https://www.fda.gov/
media/167973/download). The paper places a particular 
emphasis on ensuring the robustness and reliability of AI/
ML solutions in causality assessments, affirming the impor-
tance of these technologies in shaping future healthcare 
landscapes.

Among the various AI/ML strategies, large language 
models (LLMs) are fast becoming the centerpiece of AI 
research.11–13 Their capacity to understand and generate 
human-like text presents vast opportunities for innovation in 
drug development and PSPV.14 By leveraging the predictive 
and analytical capabilities of LLMs, researchers can stream-
line the drug development process, analyze complex patient 
data, and predict potential adverse events more efficiently.15 
Furthermore, LLMs’ ability to process and comprehend large 
volumes of text allows for a more comprehensive analysis 
of real-world data and clinical trials, contributing to a more 
holistic understanding of a drug’s impact, thereby poten-
tially transforming PSPV approaches, especially causality 
assessment.16

In our prior research, we explored the potential of two 
BERT-like models, namely, ALBERT and BioBERT, for per-
forming causal inference in the realm of PSPV. In particular, 
InferBERT, a transformer-based causal inference frame-
work, synergistically combines the powers of ALBERT and 
Judea Pearl’s Do-calculus to establish potential causality 
in pharmacovigilance.17 The effectiveness of this model 
is underscored by its demonstrated ability to accurately 
predict clinical events and infer their underlying causes. 
Similarly, DeepCausality18 is another innovative, AI-driven 
causal inference framework. It uniquely amalgamates 
AI-powered language models (LMs), named entity recog-
nition (NER) techniques, and Judea Pearl’s Do-calculus 
into a comprehensive framework for causal inference.18 The 
framework has been adeptly employed to estimate causa-
tive terms associated with idiosyncratic drug-induced liver 
injury (DILI), subsequently facilitating the generation of a 
knowledge-based causal tree. This causal tree serves as an 
invaluable tool for patient stratification in the context of 
idiosyncratic DILI.

Despite the strides made in this field, a crucial question 
remains: what is the true impact of BERT-like LLMs on 
causal inference in PSPV? This study is designed to system-
atically explore and evaluate the performance of LLMs in 
this domain. In this endeavor, we compared two primary 
categories of LLMs: (1) common knowledge BERT-like 
LLMs, which are pre-trained using common corpora encom-
passing resources like webpages, books, and Wikipedia and 
(2) domain-specific BERT-like LLMs, which are not only 
pre-trained but also fine-tuned utilizing domain-specific 

corpora. The effectiveness of these two categories of LLMs 
was compared through their application in the causal infer-
ence of PSPV tasks. Our findings serve as an essential contri-
bution to better position BERT-like LLMs in the appropriate 
context of PSPV applications.

Materials and methods

As illustrated in Figure 1, the primary objective of this study 
is to evaluate the influence of different BERT-like LLMs on 
causal inference performance in PSPV. This evaluation will 
be underpinned by an in-depth examination of three criti-
cal elements: the complexity of the data, the architecture 
of LLMs, and the specific domain of the LM. Through this 
comprehensive analysis, we aim to elucidate the interplay 
between these aspects and their collective impact on the 
efficacy and facilitate the “fit-for-purpose” causal inference 
approach selection in PSPV.

To assess the influence of data complexity, we leverage 
both structured and free-text data sets in the context of 
causal inference. For instance, our structured data set is a 
subset of the FDA Adverse Event Reporting System (FAERS) 
case reports related to tramadol-related deaths and acute 
liver failure, which includes free-text attributes, such as 
indications (https://www.fda.gov/drugs/questions-and-
answers-fdas-adverse-event-reporting-system-faers/fda-
adverse-event-reporting-system-faers-public-dashboard). 
Conversely, our unstructured data set, LiverTox, comprised 
entirely free text.19

Regarding the LM, we focus on two key factors: the archi-
tecture of the model and the training set used for pre-train-
ing, which also defines the model’s domain. To examine the 
efficacy of domain-specific models, we utilize self-super-
vised learning to fine-tune the BERT model, functioning as 
our pre-trained LM. This is followed by employing a down-
stream task for the fine-tuning of all the candidate models. 
Subsequently, we evaluate all the fine-tuned models using 
the test set. We employ Judea Pearl’s do-calculus mechanism 
to identify causal items and then utilize a one-tailed test to 
assess the significance of these enriched causal items. The 
overall performance of all candidate models is then com-
pared across both structured and free-text data sets.

Data Set

FAERS data set

FAERS is a repository of adverse events and medication error 
reports submitted to the FDA. The design of this database 
aids the FDA’s post-marketing safety surveillance program 
for drugs and therapeutic biologic products. In processing 
the FAERS data for our study, we adopted the same strat-
egy as in our previous research,17 which involved sentence 
extraction from each FAERS case report. These case reports 
encompass clinical features like gender, age, the primary 
suspected drug, dosage, indication, adverse events, and 
outcomes.

We used a specific template to transform the case reports 
into individual sentences, thereby generating a comprehen-
sive sentence set. We selected two specific data sets for our 
study: one related to Analgesics-induced acute liver failure, 

https://www.congress.gov/bill/117th-congress/senate-bill/5002
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https://www.fda.gov/media/167973/download
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and the other associated with tramadol-related deaths.20 The 
data for analgesics-induced acute liver failure spans from 
November 3, 1997 to December 31, 2019. Similarly, the period 
for tramadol-related mortalities extends from November 3, 
1997 to March 31, 2020. A keyword matching strategy was 
then employed to discern between positive and negative 
cases. Specifically, in the data set pertaining to analgesics-
induced acute liver failure, “acute liver failure,” as indicated 
within the clinical feature “adverse event,” was designated 
as the endpoint. The cases mentioning “acute liver failure” 
were classified as positive, while the remaining cases were 
designated as negative. In contrast, for the tramadol-related 
death data, “outcomes” was the clinical feature utilized as 
the endpoint. Cases embedding the term “death” within the 
“outcomes” clinical feature were categorized as positive, 
whereas the rest were labeled as negative. Following this, the 
sentence set was segregated into training, development, and 
test subsets, utilizing a stratified splitting strategy that main-
tained a ratio of approximately 0.64:0.16:0.20, respectively.

LiverTox data set

LiverTox is a collaborative online resource curated by medi-
cal and scientific specialists that provides comprehensive, 
current, and easily accessible data on the diagnosis, cause, 
frequency, patterns, and management of liver injury attrib-
utable to prescription and nonprescription medications, 
herbals, and dietary supplements (www.livertox.nih.gov). 
Its purpose is to serve as a centralized repository of clinical 
information, supporting research on DILI. Our analysis uti-
lized data available up to May 2021.

In processing the LiverTox data, we followed the same 
method as in our prior research.18 We primarily focused 
on four sections of the data set: Introduction, Background, 
Hepatotoxicity, and Mechanism of Injury. For each drug, 
we collated the context from these sections and labeled each 
sentence in the Hepatotoxicity section with a “Likelihood 

score.” The “Likelihood Score” within the LiverTox data set 
is devised to categorize medications according to the prob-
ability of their association with DILI, as detailed in the pro-
vided reference (https://www.ncbi.nlm.nih.gov/books/
NBK548392/). A drug assigned to Category A is well-doc-
umented and thoroughly described to either directly cause 
or be associated with idiosyncratic liver injury, supported 
by evidence from more than 50 cases. Conversely, a drug in 
Category B is known or highly suspected to cause idiosyn-
cratic liver injury, bearing a characteristic signature, with 
cases numbering between 12 and 50. In the context of this 
study, sentences scored as “A” or “B” were marked as posi-
tive. Sentences with any other score were labeled as negative. 
The data were then split into a training set (90%) and a test 
set (10%). Information on these two data sets can be found 
in Table 1.

BERT-like LLMs

In this study, we deployed BERT-like LLMs to examine the 
effect of model selection on our causal inference task. The 
investigation encompassed two critical aspects: the models’ 
relative sizes and the domain-specific corpus employed for 
pre- and fine-tuning.

To ascertain the influence of model size, we uti-
lized ALBERT,21 BERT,22 and RoBERTa23 LMs (size: 
RoBERTa > BERT > ALBERT). These models are trained on 

Figure 1. Workflow of this study.

Table 1. Data set information.

Data set Number of 
positives 
instances

Number 
of total 
instances

Positive 
ratio

Acute liver failure 15,224 36,661 0.42
Tramadol-related death 9846 27,245 0.36
LiverTox data 3578 14,361 0.25

www.livertox.nih.gov
https://www.ncbi.nlm.nih.gov/books/NBK548392/
https://www.ncbi.nlm.nih.gov/books/NBK548392/
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broad corpora, such as the Book Corpus and Wikipedia, nei-
ther of which are task specific. Furthermore, we contrasted 
these generic models with domain-specific ones pre- or 
fine-tuned using data sets germane to our task, including 
SciBERT, BioBERT, ClinicalBERT, and a task-specific fine-
tuned BERT.

Common knowledge BERT-like LLMs

ALBERT, BERT base, BERT large, and RoBERTa base are all 
pre-existing models designed for natural language process-
ing tasks. Each of them is rooted in the transformer architec-
ture, known for effectively capturing contextual information 
in text.

ALBERT (A Lite BERT) is a streamlined version of BERT, 
designed for reduced memory usage and expedited train-
ing times.21 This efficiency is achieved through a parameter-
sharing technique that diminishes the number of trainable 
parameters while preserving high performance.

BERT base and BERT large are both BERT models that dif-
fer in size and computational requirements. The former, with 
110 million parameters, is quicker to train, while the latter, 
with 340 million parameters, yields superior performance 
albeit at a higher computational cost.22

RoBERTa base, while similar to BERT, was pre-trained 
using a distinct training objective and larger batch sizes, 
resulting in improved performance on some downstream 
tasks.23

Domain-specific BERT-like LLMs

SciBERT,24 BioBERT,25 and ClinicalBERT26 are task-specific 
variations of pre-trained LMs developed for scientific, 
biomedical, and clinical domains. They, too, are based on 
transformer architecture, proficient in capturing intricate 
relationships between words and their contexts, which 
makes them ideal for tasks like text classification, NER, and 
question answering.

What differentiates SciBERT, BioBERT, and ClinicalBERT 
from general-purpose models like BERT is their pre-training 
on domain-specific corpora. This specialization allows these 
models to better comprehend the unique characteristics and 
nuances of scientific, biomedical, and clinical language.

BioBERT and ClinicalBERT are pre-trained on large-scale 
biomedical and clinical text corpora, respectively, whereas 
SciBERT is pre-trained on a blend of general- and scientific-
domain text corpora. Each model has demonstrated superior 
performance across a spectrum of scientific, biomedical, and 
clinical natural language processing tasks.

In summary, SciBERT, BioBERT, and ClinicalBERT are 
specialized pre-trained LMs designed to cater to the explicit 
needs of scientific, biomedical, and clinical applications. 
They leverage the strengths of transformer-based models 
and incorporate domain-specific knowledge and pre-train-
ing to deliver high performance on specialized tasks.

The task-specific data from this project were used to fine-
tune the BERT base model through self-supervised learning 
using a masked language model (Mask LM). The fine-tuned 
models were named after their corresponding tasks: Trmol_
DILI_BERT, Analgesics_DILI_BERT, and DILI_BERT.

Causal inference

Leveraging these LLMs for causal inference, we devised a 
task-specific downstream task consisting of a simple classifi-
cation model, as outlined in our previous studies.9,10 The pro-
cedure for conducting causal inference is contingent upon 
the organizational structure of the data set in use. For free-
text data, we deployed an NER method to isolate pertinent 
named entities from the context. These entities were then 
perceived as potential causal candidates. On the other hand, 
with structured data, we regarded the values of each attrib-
ute as potential causal candidates. The do-calculus mecha-
nism was applied in a manner consistent with our previous 
studies Ball and Dal Pan9 and Wu et al.10

Performance metrics

We utilized standard classification metrics, including accu-
racy, recall, precision, and F1-score to assess the effectiveness 
of our downstream classification model.

Predictive positive rate (PPR) is a measure used in statis-
tics and machine learning to evaluate the performance of a 
binary classification model. Specifically, PPR measures the 
proportion of true positive predictions among all positive 
predictions made by the model.

PPR can be calculated using the following formula:

PPR  TP  TP  FP= +( )/

where TP represents the number of true positive predictions 
and FP represents the number of false positive predictions.

PPR is often used in medical testing and diagnosis to 
evaluate the accuracy of a diagnostic test. In this context, 
PPR measures the proportion of correctly diagnosed positive 
cases among all cases that the test identified as positive. A 
higher PPR indicates a more accurate test, as it means that 
the test is correctly identifying a larger proportion of true 
positive cases among all cases that it identifies as positive.

Data and code availability

In this study, we conducted experiments using TensorFlow 
on a machine equipped with an NVIDIA V100 GPU. The 
data and code developed in this study could be accessed 
through GitHub.

Results

Predictive performance of BERT-like models in 
PSPV

BERT-like models yield comparable predictive power for 
structured PSPV data sets. Table 2 reveals a consistently 
strong performance from all investigated BERT-like LLMs 
on the tramadol-related death task, boasting accuracy scores 
within the narrow range of 0.95–0.96. BERT-large and SciB-
ERT rise to the top with accuracy scores of 0.96. In terms of 
precision, the LLMs achieve scores from 0.93 to 0.95, again 
with SciBERT and BERT-large recording the top precision 
scores of 0.95. Recall scores fall within 0.93–0.94, with 



1912  Experimental Biology and Medicine  Volume 248  November 2023

SciBERT and BioBERT marking the highest recall scores of 
0.93. Finally, all the domain-specific BERT-like LLMs secure 
an F1-score of 0.94, in a range of 0.94–0.94.

As per Table 3, the performance of all investigated BERT-
like LLMs on the analgesics-related acute liver failure task is 
rather consistent, yielding accuracy scores from 0.79 to 0.81. 
Precision scores span from 0.73 to 0.76, with ClinicalBERT 
achieving the leading precision score of 0.75. Recall scores 
range between 0.77 and 0.79, with ClinicalBERT also top-
ping the recall score with 0.79. Finally, the F1-scores range 
between 0.76 and 0.77, with ClinicalBERT yet again achiev-
ing the highest F1-score of 0.77. Taken together, these tables 
suggest that domain-specific LLMs and general-purpose 
LLMs exhibit a comparable performance on the structured 
data set in terms of precision, recall, and F1-score.

Predictive performance of lite version of BERT-like models 
is suboptimal for unstructured PSPV data set. Table 4 
showcases the strong performance of all investigated BERT-
like LLMs on the LiverTox task, with accuracy scores rang-
ing from 0.89 to 0.91. BERT-base, BERT-large, RoBERTa, and 
the domain-specific LLMs all claim the highest accuracy 
score of 0.91, leaving ALBERT with the lowest accuracy 
score of 0.89. With respect to precision, recall, and F1-score, 
all LMs attain scores of 0.91, implying an equitable perfor-
mance across these metrics. In essence, both general-pur-
pose and domain-specific LLMs perform commendably on 
the task at hand, except for the ALBERT model.

Causal inference

BERT-like models could well capture casual terms from 
structured PSPV data sets. Figure 2(A) showcases a com-
parative analysis of enriched causal terms as identified by 
various common knowledge BERT-like models, namely, 
ALBERT, BERT-base, BERT-large, and RoBERTa. Each algo-
rithm successfully flagged “completed suicide” and “drug 
abuse” as key factors. Notably, the RoBERTa model further 
identified “sertraline hydrochloride,” a known drug that 
interacts with tramadol. Similarly, as depicted in Figure 
2(B), among the domain-specific BERT-like LLMs, Tramol_
BERT, BioBERT, and SciBERT singled out “citalopram 
hydrobromide,” another recognized tramadol-interacting 
drug.

In relation to the tramadol-related death task, we 
observed an overlap of 19 and 18 causal results among com-
mon knowledge and domain-specific BERT-like models, 
respectively. These overlaps, presented in ascending order 
of p-value in Figure 2(A) and (B), signify that all evaluated 
BERT-like LLMs aptly captured causal terms from the struc-
tured PSPV data set. Notably, a substantial overlap exists 
between the shared causal items identified by both common 
knowledge and domain-specific BERT-like LLMs, under-
scoring the effectiveness of these models in this task.

A similar pattern was found in another structured PSPV 
data set, specifically, the analgesics-related acute liver failure 
task. Figure 3 delineates the causal inference results gener-
ated by various BERT-like LLMs. Particularly among the 
common knowledge BERT-like LLMs, both ALBERT and 
BERT_base models identified “rivaroxaban” as a significant 
factor in the context of completed suicide and drug abuse. 
Furthermore, the term “breast cancer metastatic” surfaced in 
the ALBERT model’s inference. BERT_large augmented the 
insights by flagging “morphine sulfate” as a relevant term 
(Figure 3(A)). Shifting focus to domain-specific models, both 
ClinicalBERT and SciBERT underscored the significance of 
“breast cancer metastatic.” Simultaneously, “morphine sul-
fate” was noted by both Analgesics_DILI and ClinicalBERT 
models. The Analgesics_DILI model also spotlighted “rivar-
oxaban” in its findings (Figure 3(B)).

Interestingly, a full overlap, consisting of 22 causal terms, 
was discovered among the shared items identified by both 
common knowledge and domain-specific BERT-like LLMs 

Table 2. Tramadol-related death task classification results on test set.

Model Accuracy Precision Recall F1-score

Common knowledge BERT-like LLMs
ALBERT 0.95 0.94 0.93 0.94
BERT-base 0.95 0.94 0.93 0.94
BERT-large 0.96 0.95 0.94 0.94
ROBERTA 0.95 0.93 0.94 0.94
Domain-specific BERT-like LLMs
SciBERT 0.96 0.95 0.93 0.94
BioBERT 0.96 0.94 0.94 0.94
ClinicalBERT 0.95 0.94 0.93 0.94
DILI_BERT 0.96 0.94 0.94 0.94

Table 3. Analgesics-related acute liver failure task classification result on 
test set.

Model Accuracy Precision Recall F1-score

Common knowledge BERT-like LLMs
ALBERT 0.81 0.76 0.77 0.76
BERT-base 0.79 0.73 0.78 0.76
BERT-large 0.80 0.74 0.78 0.76
ROBERTA 0.80 0.74 0.78 0.76
Domain-specific BERT-like LLMs
SciBERT 0.80 0.75 0.77 0.76
BioBERT 0.80 0.74 0.77 0.76
ClinicalBERT 0.80 0.75 0.79 0.77
DILI-BERT 0.80 0.74 0.78 0.76

Table 4. LiverTox task classification results on test set.

Model Accuracy Precision Recall F1-score

Common knowledge BERT-like LLMs
ALBERT 0.89 0.89 0.89 0.89
BERT-base 0.91 0.91 0.91 0.91
BERT-large 0.91 0.91 0.91 0.91
ROBERTA 0.91 0.91 0.91 0.91
Domain-specific BERT-like LLMs
SciBERT 0.91 0.91 0.91 0.91
BioBERT 0.91 0.91 0.91 0.91
ClinicalBERT 0.91 0.91 0.91 0.91
DILI-BERT 0.91 0.90 0.91 0.91
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(Figure 3(C)). These shared causal terms are listed in Figure 
3 in ascending order of p-value.

Domain-specific BERT-like LLMs with knowledge-based 
fine-tuning provided superior causal inference in PSPV.  
Figure 4(A) presents the enriched causal terms derived from 

various common knowledge, BERT-like LLMs. The most 
compact and extensive LLMs examined, specifically 
ALBERT and RoBERTa, yielded distinct enriched causal 
terms. Interestingly, most of these terms fell outside the liver 
injury domain. For instance, RoBERTa enriched more thera-
peutic information, including terms like benzodiazepines, 

Figure 2. Causal inference results for tramadol-related death: (A) common knowledge BERT-like LLMs; (B) domain-specific BERT-like LLMs; (C) shared enriched 
causal terms between common knowledge BERT-like LLMs and domain-specific ones.
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dopamine, and tyrosine. In comparison, BERT_base and 
BERT_large produced remarkably similar causal terms, pre-
dominantly pertaining to liver injury.

Figure 4(B) showcases the results from three domain-
specific BERT-like LLMs: BioBERT, ClinicalBERT, and 

DILI-BERT. These models generated fairly comparable 
causal terms. SciBERT, however, yielded a unique, smaller 
set of causal terms, differing considerably from the other 
three LLMs. We extended our study by comparing the 
18 commonly enriched causal terms from BERT_base 

Figure 3. Causal inference results for Analgesics-related acute liver failure: (A) common knowledge BERT-like LLMs; (B) domain-specific BERT-like LLMs; (C) shared 
enriched causal terms between common knowledge BERT-like LLMs and domain-specific ones.
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and BERT_large to the 18 shared terms among BioBERT, 
ClinicalBERT, and DILI-BERT. We found an overlap of 17 
common terms, with the domain-specific LLMs contribut-
ing an additional causal term: cholestasis, a well-established 
DILI pattern, as displayed in Figure 4(C).

We further explored the relevance of these enriched 
causal terms to liver injury through a domain-expert man-
ual review. Figure 5 depicts the predictive positive value 
(PPV) of the investigated BERT-like LLMs, measuring the 
enrichment rate of liver injury-related causal terms. Overall, 

Figure 4. Causal inference results for LiverTox: (A) common knowledge BERT-like LLMs; (B) domain-specific BERT-like LLMs; (C) shared enriched causal terms 
between common knowledge BERT-like LLMs and domain-specific ones.
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domain-specific LLMs (excluding SciBERT) exhibited sub-
stantially higher PPVs compared to the common knowledge 
models. RoBERTa, despite its extensive model size, returned 
the lowest PPV (0.2), indicating no direct correlation between 
causal inference performance and the size of BERT-like LLMs 
in the unstructured PSPV data set. On the other hand, DILI-
BERT yielded the highest PPV (0.95), underscoring the criti-
cal role of domain-specific, knowledge-based fine-tuning. 
It is worth noting that, unlike BioBERT, ClinicalBERT, and 
DILI-BERT, which are built on the foundation of BERT mod-
els, SciBERT is trained from scratch using scientific literature. 
This difference in development approach may partly explain 
its lower PPV (0.25).

Discussion

Causality assessment is an indispensable facet of PSPV, 
as it assists in establishing potential correlations between 
drug administration and the incidence of adverse events.27 
Robust causality assessments bolster the overall efficacy of 
pharmacovigilance systems, promoting superior adverse 
event reporting and empowering regulatory authorities 
to make timely and informed decisions. Upon the initial 
success in merging BERT-like models with advanced sta-
tistical methodologies for causal inference in PSPV,17,18 we 
have undertaken a comprehensive evaluation of the influ-
ence exerted by various BERT-like LLMs to guide “fit-for-
purpose” applications.

Distinctly, SciBERT, in contrast to BioBERT, ClinicalBERT, 
and DILI-BERT – which are extensions of foundational 
BERT models – is initialized from the ground up, exclusively 
utilizing scientific literature for its training. This founda-
tional distinction may factor into its relatively lower PPV 
of 0.25. While SciBERT’s comprehensive training furnishes 
it with a broad knowledge base, apt for various scientific 
contexts, domain-specific models like BioBERT deftly lev-
erage the foundational weights of BERT – pre-trained on 
general-domain texts – and further refine them with bio-
medical content. This nuanced approach enables such mod-
els to smoothly amalgamate general linguistic patterns with 
specific biomedical expertise. Therefore, although SciBERT 
proves proficient in handling a diverse range of scientific 

literature, its precision may not parallel that of models spe-
cifically honed for the biomedical domain, as reflected in the 
observed PPV disparities.

Our study has revealed several significant insights that 
could shape the “best practice” of employing BERT-like 
LLMs for causal inference in PSPV:

1. For well-structured data, such as the FAERS data-
base, common knowledge BERT-like LLMs can offer 
comparable predictive power and causal inference 
capabilities.

2. Interestingly, the size of BERT-like models does not 
correlate with their causal inference performance.

3. For unstructured free text, domain-specific training 
and knowledge-based fine-tuning can ensure reliable 
and robust causal inference results.

4. The pre-training strategy significantly affects causal 
inference performance, especially in the context of 
unstructured free text. Our current investigation sug-
gests that models pre-trained on the basis of common 
knowledge BERT-like LLMs are superior to those 
trained from scratch.

Several directions warrant further exploration to fully 
unleash the potential of LLMs in PSPV-related causal infer-
ence. Although our current study has focused on the poten-
tial of BERT-like LLMs for causal inference, the exploration 
of generative LLMs, such as ChatGPT/GPT4, Cluade 2, and 
Bard in PSPV-related causal inference holds great promise. 
Early endeavors leveraging ChatGPT for causal inference 
have already been initiated.16 In addition, incorporating more 
PSPV data can help consolidate the findings of our current 
study. Given the complexity of PSPV data, such as electronic 
medical records and patient narratives from clinical trials, 
the development of more sophisticated fine-tuning strate-
gies for BERT-like LLMs may be necessary. Furthermore, it 
would be valuable to explore the integration of LLM-based 
causality assessment with traditional rule-based tools like 
the Roussel Uclaf Causality Assessment Method (RUCAM) 
to enhance performance.28 Meanwhile, it is highly recom-
mended to further verify the conclusions of current study 
on more sets of data to further increase its credibility. Data 
privacy is another critical factor to consider while develop-
ing secure AI solutions. Technologies like Lang chain, which 
pair well with generative LLMs, such as GPT4, offer new 
ways to access custom data. However, these also pose sig-
nificant data security challenges. Therefore, a secure data 
governance infrastructure should be established to facilitate 
the safe integration of LLMs in PSPV.

In conclusion, BERT-like LLMs hold substantial potential 
for PSPV-related causal inference, an application that could 
significantly enhance public health and expedite safe drug 
development. The comprehensive assessment provided by 
our current study can guide the development of “fit-for-
purpose” causal inference solutions in PSPV.
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