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Introduction

Alphavirus is a genus of the Togaviridae family, a group of 
enveloped, positive sense, single-stranded RNA arbovi-
ruses transmitted to humans through the bite of mosquitoes 
(mainly Aedes sp., Haemagogus sp., and Anopheles sp.) in a 
sylvatic and urban cycle involving vertebrate reservoirs.1 
These viruses are subgrouped into encephalitic and arthri-
togenic, according to the symptoms caused by the infection. 
The arthritogenic group comprises the Barmah Forest virus 
(BFV), Chikungunya virus (CHIKV), Mayaro virus (MAYV), 
O’nyong-Nyong virus (ONNV), Semliki Forest virus (SFV), 
Sindbis virus (SINV), and Ross River virus (RRV).2,3 Infections 
by these viruses are clearly spreading worldwide,4 as shown 
in Figure 1, even though the number of cases reported is 
probably underestimated due to insufficient surveillance 

and lack of laboratory diagnostic tools in endemic countries, 
where a diagnosis is often based only on clinical symptoms 
that are similar to those caused by other arboviruses.5–8

The potential of alphaviruses to expand their geographi-
cal distribution is exemplified by the two global CHIKV 
epidemics.7 Before the 2000s, CHIKV circulated mainly 
in sub-Saharan Africa and Southeast Asian regions, caus-
ing small local outbreaks. In 2004, the virus spread to the 
Comoros and La Reunion islands, infecting hundreds of 
thousands of people between 2005 and 2006,9 and reached 
Asia and Europe, causing more than 6 million cases of infec-
tion.7 The second major epidemic occurred in 2013, starting 
in the Caribbean and spreading throughout the American 
continent, causing more than 2 million cases of infection in 
50 countries.10 Between 2013 and 2022, Brazil was the most 
affected country in the Americas, with 1.5 million cases (45% 
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arthritis and rheumatoid arthritis (RA), a chronic inflammatory disease that 
also affects articular tissues. In RA, it is well established that M1 macrophages 
contribute to tissue damage and inflammation, while M2 macrophages have a role 
in cartilage repair, so modulating the M1/M2 macrophage ratio is being considered 
as a strategy in the treatment of this disease. In the case of alphavirus-induced 
arthritis, the picture is more complex, as proinflammatory factors derived from M1 
macrophages contribute to the antiviral response but cause tissue damage, while 
M2 macrophages may contribute to tissue repair but impair viral clearance.
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Minireview

Impact Statement

Arthritogenic alphaviruses may cause an inca-
pacitating and long-lasting articular disease. The 
increasing number of outbreaks affecting millions of 
people worldwide makes these pathogens a major 
public health concern. Macrophages are known to 
play a central role in alphavirus-induced disease, 
but a comprehensive analysis of the inflammatory 
mediators produced by these cells during infection 
is lacking. Here, we bring new insights to this field, 
summarizing the stimuli to which macrophages are 
submitted in different phases of the disease. We 
also highlight the pathological and protective roles 
that M1 and M2 macrophage activation phenotypes 
can play in the onset, maintenance, or control of 
the disease. Modulating macrophage polarization 
is currently considered a strategy to treat rheuma-
toid arthritis, a chronic articular disease that shares 
several aspects with alphavirus-induced arthritis. 
Here, we call attention to the complexity and poten-
tial therapeutic aspects of modulating macrophage 
polarization during infection by alphaviruses.
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of the confirmed cases), reaching, in 2022, 98.8% of all the 
cases in the American continent.11 More recently, MAYV 
appeared as another potential candidate for spreading, 
broadening its endemic area as it adapted to infect Aedes 
aegypti mosquitoes.8,12,13

After inoculation by mosquito bites, arthritogenic alphavi-
ruses disseminate through the microvasculature to the lym-
phoid tissues, liver, and spleen, then reach the muscles and 
joints.14,15 Viral replication in these tissues triggers an inflam-
matory response, resulting in symptoms that characterize 
the acute phase of the disease, including fever, rash, head-
ache, myalgia, arthralgia, and arthritis (Figure 1).15 Arthritis 
is the most prevalent clinical sign among the symptoms, 
and although it may be resolved in a few days after infec-
tion, in some individuals, the disease evolves into a severe 
and disabling condition, with movement restriction and 
persistent swelling and pain, which may persist for weeks, 
months, or even years.15–17 The progression to the chronic 
phase of the disease is associated with the extension of viral 
replication and the maintenance of articular inflammation, 
with the infiltration of immune cells in muscles, joints, and 
associated tissues.17,18 Experiments in animal models have 

demonstrated that the cellular infiltrate is composed mainly 
of mononuclear cells, comprising macrophages, monocytes, 
lymphocytes, and natural killer cells,19,20 with macrophages 
being the predominant cells.19,21 Although most of the stud-
ies on arthritogenic alphaviruses focus on the muscles and 
joints, macrophage infiltration along with tissue damage has 
already been reported in the brain and the liver of humans 
and animal models,22,23 highlighting other potential patho-
logical roles of macrophages in alphavirus-induced disease. 
This review aims to discuss the protective and pathogenic 
roles of the macrophage present in infected tissues during 
alphavirus-induced arthritis.

Macrophage plasticity and their 
activation phenotypes

Macrophages are highly plastic cells that can differentiate 
into distinct activation phenotypes depending on the stim-
uli they receive from the environment.24 Th1 lymphocyte–
derived cytokines, such as interferon gamma (IFN-γ), induce 
macrophage polarization to a proinflammatory phenotype, 
termed M1 or “classically activated,” which is known to 

Figure 1.  Geographical distribution of arthritogenic alphaviruses with the years of the main outbreaks (a) until 2000 and (b) between 2001 and 2020. Figure adapted 
from Zaid A et al.4 (c) Schematic illustration of the main clinical manifestations of arthritogenic alphavirus infections.
Source: Figure created using BioRender.com.
BFV: Barmah Forest virus; CHIKV: Chikungunya virus; MAYV: Mayaro virus; ONNV: O’nyong-nyong virus; RRV: Ross River virus; SINV: Sindbis virus.
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play roles in the inflammation onset and maintenance and 
are usually proinjurious.24,25 However, anti-inflammatory 
cytokines derived from Th2 lymphocytes, such as IL-13, 
IL-4, and IL-10, favor polarization to a tissue repair pro-
file, referred to as M2 or “alternatively activated.”25,26 It is 
currently known that the M2 phenotype consists of a het-
erogeneous population of anti-inflammatory and tissue 
modeling macrophages, which have been classified into 
specific subtypes that display different functions depending 
on the differentiation stimuli.24,25 Among these subtypes, 
resolution-promoting macrophages (Mres) specifically act 
on tissue regeneration and homeostasis.25,26

Several studies have demonstrated that arthritogenic 
alphaviruses can establish a productive and persistent 
infection in macrophages.14,27,28 Therefore, during alphavi-
rus-induced arthritis, macrophages are not only exposed 
to the inflammatory environment stimuli but are also tar-
gets for viral infection, adding another layer of complex-
ity to their polarization phenotype. Virus replication results 
in macrophage overactivation with the production of sev-
eral inflammatory mediators that lead to tissue damage.29 
For instance, in vitro studies with CHIKV and RRV have 
shown that macrophage infection induces the production 
of IL-1β, IL-6, TNF, and IFN-γ.30,31 This is consistent with 
the detection of increased serum levels of IL-1β and IL-6 in 
CHIKV-infected patients who developed more severe dis-
ease.32 TNF and IL-6 are also secreted after MAYV and SINV 
infection in cell lines and primary cultures of human and 
mouse macrophages.33,34 These proinflammatory features 
observed during macrophage infection in vitro suggest an 
M1-like activation pattern. However, understanding mac-
rophage polarization in vivo is much more complex as these 
cells are exposed to multiple stimuli and to changes in the 
cytokine profile as the disease progresses. Therefore, over-
lapping phenotypes may coexist.

Macrophage infiltration in the 
pathogenesis of alphavirus infection

Macrophage infiltration in the muscles and joints has a cen-
tral role in the pathogenesis of alphavirus-induced disease by 
promoting tissue inflammation and damage.29 Several stud-
ies have shown that the macrophage-recruiting chemokines 
CCL2 and macrophage inhibitory factor (MIF), key molecules 
in the regulation of immune cell infiltration, are produced 
during alphavirus infection both in animal models and in 
cultured macrophages.29,33,35,36 Thus, in addition to being 
chemoattracted by CCL2 and MIF, macrophages are also the 
primary source of these chemokines,37,38 thus amplifying the 
recruitment of the inflammatory infiltrate. Accordingly, the 
administration of bindarit, an inhibitor of CCL2 production, 
to CHIKV-infected mice reduced macrophage infiltration 
in the joints and bone loss.18,39 In addition, in MIF-deficient 
mice infected with RRV, inflammation, cellular infiltration, 
and muscle damage were mitigated, while the reconstitution 
of MIF levels exacerbated the disease’s severity.40 Together, 
these results reinforce the proinjurious features of the mac-
rophages in the alphavirus-induced disease.

The correlation between macrophage infiltration and 
muscle pathology is also supported by the observation that 

the administration of macrophage-toxic agents (such as sil-
ica) in mice prior to RRV infection abrogated the muscle 
damage observed during the disease.41 The observations that 
macrophage-depleted mice displayed lower levels of the 
inflammatory cytokines TNF and IFN-γ and that either mac-
rophage depletion or direct inhibition of these inflammatory 
mediators attenuated the severity of RRV-induced arthritis 
and myositis29,41 imply that macrophages contribute to tissue 
damage primarily through the production of proinflamma-
tory cytokines.

In addition to the macrophage contribution to the devel-
opment of arthritis and myositis during alphavirus infection, 
the role of these cells in the antiviral response has also been 
reported. For example, macrophage-depleted mice displayed 
prolonged viremia upon CHIKV infection.21 Furthermore, 
the depletion of inflammatory monocytes expressing the 
CCL2 receptor (CCR2) promoted more severe disease and 
higher viral loads in mouse models of CHIKV and RRV 
infection.42 Collectively, these data suggest that macrophage 
polarization to a proinflammatory profile in the acute phase 
of alphavirus-induced disease contributes to the pathogen-
esis but may also have a role in restricting viral replication.

Paradoxically, macrophages can also act as viral reservoirs 
in the late stages of alphavirus-induced arthritis, thus assum-
ing distinct roles in the early or late stages of the disease. 
Studies using a nonhuman primate model of CHIKV infec-
tion detected viral RNA and antigens in macrophages even 
after 3 months of viral inoculation.14 Furthermore, a cohort 
study of CHIKV-infected patients detected the presence of 
CHIKV RNA and proteins in the synovial macrophages of 
a patient 18 months after the first symptoms of the disease, 
suggesting that macrophages’ persistent infection may con-
tribute to the development of the chronic phase of CHIKV-
induced arthritis.43

Taken together, these results indicate that macrophages’ 
contribution to alphavirus pathogenesis is closely inter-
twined with their activation phenotype, which may be 
influenced by changes in the tissue microenvironment as 
the disease progresses.

Macrophage roles in tissue repair and 
inflammation control

Although the inflammatory mediators released by mac-
rophages during alphavirus infection contribute to the 
onset of arthritis, evidence supports that these cells also 
play a role in inflammation control and tissue repair.29,44,45 
Despite some differences in the cytokine profile observed in 
humans and animal models, the initial stage of alphavirus-
induced diseases is usually characterized by an increase in 
the serum levels of proinflammatory cytokines, including 
TNF, IL-6, and IFN-γ,36,46–48 thus favoring M1 macrophage 
polarization. Although the serum levels of some proinflam-
matory cytokines remain elevated as the disease progresses, 
anti-inflammatory cytokines, such as IL-4, IL-10, and IL-13, 
are found at higher levels than those observed in the acute 
phase.36,46–49

This pattern of a proinflammatory profile in the initial 
stages of the infection followed by an anti-inflammatory 
response is also illustrated in a study with CHIKV-infected 
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patients, which found elevated IL-10 levels along with an 
increased ratio of peripheral regulatory T cells (Treg) over 
effector T cells (Teff) as the disease progressed to its reso-
lution.50 These changes in the cytokine profile and T cell 
populations in the late stages of the disease seem to have 
important roles in suppressing the inflammatory process. 
Treg cells can potentially promote M2 macrophage polariza-
tion through the secretion of anti-inflammatory cytokines.51 
IL-10 can induce macrophage Mres phenotype and act as a 
potent inhibitor of the Th1 inflammatory response.25,52

In the case of RRV-induced myositis, the inflammatory 
monocyte population in the muscle tissue is replaced by 
macrophages expressing CX3CR1 as the disease progresses 
to its resolution.44 This receptor plays a role in tissue repair 
and is typical of M2 macrophages.53 Accordingly, CX3CR1-
deficient mice infected with RRV showed more severe dis-
ease, with increased muscle tissue fibrosis.44 Furthermore, 
the depletion of the inflammatory monocytes using immune-
modifying particles (IMPs) ameliorated the disease signs and 
increased the number of CX3CR1 macrophages in the muscle 
tissues and the proportion of regenerating myofibers. This 
reinforces the role of CX3CR1+ macrophages in tissue home-
ostasis in the late stages of alphavirus-induced disease.44

In mice lacking CCR2 infected with CHIKV, the mono-
cyte/macrophage infiltrate is replaced by a neutrophil infil-
trate, leading to more severe and prolonged arthritis.45 In 

addition, macrophage-derived anti-inflammatory media-
tors, such as IL-10, Ym1, and arginase-1 (arg-1), were down-
regulated in CCR2-deficient mice compared to wild-type 
mice during CHIKV infection,45 underlining the importance 
of the anti-inflammatory macrophages in tissue repair and 
inflammation control during CHIKV infection. However, 
genetic ablation of arg-1 in macrophages and neutrophils 
in mice increased viral clearance in the later stages of the 
disease,54 suggesting that the anti-inflammatory properties 
of arg-1 expression may impair viral clearance. Overall, these 
studies highlight the dual role of anti-inflammatory media-
tors during alphavirus-induced disease, which can be benefi-
cial in some situations, such as tissue repair, and detrimental 
in others, such as viral clearance.

Although classifying macrophages into polarization pro-
files may help explain some inflammatory response patterns, 
it is common sense in the scientific community that this clas-
sification is a hypersimplification of the phenotypes that 
macrophages can assume. In the case of alphavirus infection, 
even though M1 stimuli are prominent over M2 in the dis-
ease onset, overlapping phenotypes of macrophages might 
be present at different ratios during the early or late stages 
of the disease (Figure 2).

While knowledge about macrophage polarization during 
alphavirus infection remains limited, a better understanding 
of this phenomenon has been attained within the context 

Figure 2.  Profile of cytokine production during the (a) early and (b) late stages of alphavirus-induced arthritis, with the respective virus for which each cytokine was 
detected. Proinflammatory cytokines (TNF, CCL2, IL-8, IL-6, and IFN-γ) are represented on the left of each panel, and anti-inflammatory cytokines (IL-4, IL-13, and IL-
10) and the M2 macrophage receptor CXCR1 are represented on the right of each panel. The balance scale illustrates the contribution of the macrophage phenotype 
in each disease stage.
Source: Figure created using BioRender.com.
MAYV: Mayaro virus; CHIKV: Chikungunya virus; RRV: Ross River virus.
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of rheumatoid arthritis (RA), a disease that shares similar 
features with alphavirus-induced arthritis. Diverse mac-
rophage populations have demonstrated contrasting, yet 
pivotal, roles in shaping the progression of RA. The increase 
in the M1/M2 macrophage ratio contributes to the develop-
ment of RA:55,56 while M1 macrophage overactivation causes 
tissue damage and bone loss,55 M2 macrophages have a role 
in cartilage repair and inflammation control.26 Modulating 
the ratio of M1/M2 macrophages is already being studied as 
a therapeutical strategy to treat RA. However, in the case of 
alphavirus infections, further studies are necessary to better 
understand the contribution of macrophage populations to 
the disease.

In conclusion, although macrophages can act as patho-
genic effectors during alphavirus infection, their activa-
tion phenotype may affect their role in disease progression. 
Therefore, modulating macrophage activation phenotype 
may be a potential therapeutic strategy to treat alphavirus-
induced arthritis.
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