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Introduction

A brain tumor is an abnormal cell growth in the brain or in 
the tissues surrounding the brain. It can be benign or malig-
nant. A benign brain tumor is homogeneous in structure 
without cancerous cells. Alternately, the structure of a malig-
nant brain tumor is heterogeneous and contains cancer tis-
sues. Gliomas and meningiomas are a class of benign tumors 
(low-grade tumors) that grow slowly and look similar to 
normal brain cells, whereas glioblastomas and astrocytomas, 
which tend to grow very quickly, are examples of malignant 
tumors (high-grade tumors).1

Brain tumors may be life-threatening so early diagno-
sis plays a critical role in treatment. A variety of diagnostic 
imaging techniques, including MRI, computed tomography, 
positron emission tomography, and single-photon emission 
computed tomography, are currently in use to obtain useful 
information on size, location, shape, and metabolism of brain 

tumors.2 Among these techniques, MRI is frequently used 
for diagnosis of brain tumor because it is a non-invasive 
imaging technique, has high resolution to discern different 
brain tissues,3 and does not involve exposure to ionizing 
radiation.4

MRI can detect various types of brain tumors, such as 
malignant and benign tumors. MRI images can be used to 
obtain precise anatomical details, to differentiate between 
different types of brain tissues, and to identify tumor loca-
tion, size, and boundaries. MRI can also be used to determine 
the characteristics and nature of brain tumors, to differenti-
ate between solid tumors, cysts, and areas of necrosis, and to 
provide information about tumor vascularity for treatment 
planning. The crucial task in brain tumor MRI image analysis 
is to identify and delineate the regions of interest in the brain 
before the image segmentation. Segmentation of brain tumor 
MRI images is the process of separating MRI scans into dis-
tinct regions or structures for analysis and interpretation, 
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Impact Statement

Magnetic resonance imaging (MRI) is widely used 
for brain tumor diagnosis. Accurately segmenting 
MRI images is crucial in clinical practices. Machine 
learning and deep learning techniques have been 
extensively explored for automation of brain tumor 
MRI image segmentation. A systematic review of 
machine learning and deep learning methods for 
brain tumor MRI image segmentation could facili-
tate and promote applications of machine learning 
and deep learning for brain tumor MRI image seg-
mentation in clinical practices. This review article 
summarizes machine learning and deep learn-
ing algorithms and architectures that have been 
explored for brain tumor image segmentation. The 
technical details, advantages, and limitations of 
each method are discussed to help readers better 
understanding of the methods and utilizing these 
methods in clinical applications.
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such as distinguishing different brain tissues (e.g. white 
matter, gray matter, and cerebrospinal fluid).5 MRI image 
segmentation aims to accurately identify and separate differ-
ent anatomical structures or pathologies within the scanned 
image. The location and extent of the tumor regions can be 
estimated through segmentation. The borders of glioblas-
tomas are often blurred and difficult to differentiate from 
healthy tissue due to their infiltrative nature. To address 
this issue, multiple MRI modalities, such as T1-weighted, 
T2-weighted, contrast-enhanced, and fluid attenuation 
inversion recovery (FLAIR) images, that give additional 
information about brain tumors, are routinely used.6,7 Figure 
1 presents an axial slice of the four sequences of MRI modali-
ties and the ground truth. Generally, T1-weighted images 
separate brain tissues (particularly white matter and gray 
matter), T2-weighted images delineate the edema regions 
that produce bright signals on the image, FLAIR images are 
the best for separating edema regions from the cerebrospinal 
fluid, and contrast-enhanced images distinguish the tumor 
border easily because gadolinium ions (the accumulated 
contrast agent) in the active cells of the tumor tissue creates a 
bright signal. Moreover, contrast-enhanced images separate 
necrotic cells from the active cell region because necrotic cells 
do not interact with gadolinium ions and can be noticed by 
the low intense part of the tumor core.2,8

The methods for segmenting brain tumor MRI images 
are broadly categorized into two types: manual and auto-
mated segmentation. Traditionally, the segmentation of 
MRI images is performed manually. Manual segmentation 
involves human experts manually outlining or labeling the 
desired structures. Thus, it is subjective and time-consuming. 
Moreover, many MRI images are generated in current clini-
cal practices for diagnosing brain tumors, and it is almost 
impossible to conduct manual segmentation for such large 
amounts of images in a reasonable time. Therefore, auto-
mated segmentation has been widely used. Automated seg-
mentation utilizes computational algorithms and machine 
learning techniques to automatically identify and delineate 
the regions of interest. However, the manual segmentation 
results are regarded as the ground truth for developing and 
evaluating automated segmentation methods, including 
machine learning and deep learning methods.

There are various approaches to automated brain tumor 
MRI image segmentation, including thresholding, region-, 
edge-, machine learning-, and deep learning-based methods. 
Thresholding method involves setting intensity thresholds 

to separate different tissues based on their pixel intensities. 
Region-based methods use statistical or mathematical mod-
els to identify regions based on homogeneity or similarity 
criteria. Edge-based methods focus on detecting bounda-
ries or edges between different structures using gradient 
information or edge detection algorithms. Machine learn-
ing-based approaches leverage supervised or unsupervised 
machine learning algorithms to learn from training data and 
automatically segment brain tumor MRI images. Deep neu-
ral networks such as convolutional neural network (CNN) 
and U-Net have shown great success in brain tumor MRI 
image segmentation by learning hierarchical features and 
capturing complex patterns.

Machine learning techniques, specifically deep learning 
techniques, are commonly adopted for brain tumor MRI 
image segmentation. Many machine learning and deep 
learning models have been developed for various tasks in 
brain tumor MRI image segmentation. Therefore, this arti-
cle reviews some frequently used machine learning and 
deep learning techniques in brain tumor MRI image seg-
mentation and discusses factors that impact performance of 
machine learning and deep learning models for MRI image 
segmentation.

Data sets used in machine learning 
and deep learning for brain tumor MRI 
image segmentation

Some data sets have been used for developing machine 
learning and deep learning models for brain tumor MRI 
image segmentation. Below are some frequently used data 
sets.

Brain Tumor Segmentation Challenge (BraTS): The BraTS 
data set9 is published by the University of Pennsylvania’s 
Center for Biomedical Image Computing & Analytics and is 
frequently used as benchmarking data for brain tumor MRI 
image segmentation. This data set is generated using differ-
ent clinical protocols and scanners in multiple institutions. It 
includes multi-modal MRI scans (T1-weighted, T2-weighted, 
T1-weighted contrast-enhanced, and FLAIR) of patients with 
gliomas. This data set contains ground truth segmentations 
of various tumor subregions determined by radiologists, 
including tumor core, whole tumor, and enhancing tumor. 
Table 1 summarizes the BraTS data sets.

The Cancer Imaging Archive (TCIA): TCIA (http://
www.cancerimagingarchive.net/) hosts a variety of publicly 

Figure 1.  Example of data from BraTS 2018 training data set. From left to right: T1-weighted image, contrast-enhanced T1-weighted image, T2-weighted image, FLAIR 
image, and the ground truth where red, yellow, and green represent tumor core, enhanced tumor, and edema regions, respectively.9

http://www.cancerimagingarchive.net/
http://www.cancerimagingarchive.net/
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available brain tumor MRI data sets, including the TCGA-
LGG and TCGA-GBM collections. These data sets con-
sist of pre-operative MRI scans, including T1-weighted, 
T2-weighted, and FLAIR, along with manual tumor 
segmentations.

The Brain Web data set (http://brainweb.bic.mni.mcgill.
ca/cgi/brainweb1): It contains simulated three-dimensional 
(3D) normal brain MRI image data generated from three 
modalities (proton density-weighted, T1-weighted, and 
T2-weighted) and can be potentially used as ground truth. 
This data set included multiple slice thicknesses, noise levels, 
and intensity nonuniformity levels.

The Internet Brain Segmentation Repository (IBSR): IBSR 
(https://www.nitrc.org/projects/ibsr) is a repository devel-
oped by Massachusetts General Hospital. It provides expert 
manual segmentation of various anatomical structures along 
with MRI images that can used as a standardized mechanism 
for evaluation of machine learning and deep learning algo-
rithms in terms of shape complexity, contrast-to-noise ratio, 
sensitivity to signal-to-noise ratio, degree of partial volume 
effect, and so on. However, IBSR does not contain segmenta-
tion of tumors.

It is worth noting that some data sets might require reg-
istration or approval from the host institutions. Researchers 
often combine these data sets with additional preprocessing 
techniques, data augmentation, or cross-validation strate-
gies to enhance the performance and generalizability of their 
models.

Performance evaluation methods for 
MRI image segmentation

Evaluating the segmentation model performance is impor-
tant in model development. To assess the performance of 
machine learning algorithms for MRI image segmentation, 
several metrics can be employed. For binary image segmen-
tation, such as brain tumor or non-tumor regions, model 
predictions are compared against the ground truth label 
annotated by radiologists to determine true positives (TPs) 
that refer to actual positives correctly predicted, false posi-
tives (FPs) that are actual negatives incorrectly predicted, 
true negatives (TNs) that represent actual negatives correctly 
predicted, and false negatives (FNs) that denote actual posi-
tives incorrectly predicted. Then, various performance met-
rics can be calculated based on the comparison results.

Dice score (dice similarity coefficient): Dice score estimates 
the agreement between ground truth and predicted segmen-
tation and is computed using the intersection and union of 
ground truth and predicted segmentation by equation (1)
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where  Ω t and  Ω p are ground truth segmentation of a target 
image and predicted segmentation, respectively. In binary 
segmentation, dice score is derived from the comparison 
results by equation (2)
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A higher dice score (ranging from 0 to 1) indicates better 
segmentation accuracy. Conceptually, dice score can be con-
sidered as a special case of Cohen’s kappa coefficient, which 
is a commonly used statistic in reliability analysis for cases 
where background voxels are much more than target voxels.

Intersection over union: Intersection over union is another 
segmentation performance metric that quantifies the over-
lap between ground true and predicted areas. It is calcu-
lated by dividing the intersection by the union of the two 
masks. Its value is between 0 and 1. A higher value indicates 
a better segmentation performance. For binary segmenta-
tion, it can be computed from the comparison results by 
equation (3). However, this metric can be misleading when 
assessing performance on imbalanced data sets

	 Intersection over union
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Precision (positive predictive value): Precision is the percent-
age of positive predictions that are TPs and can be calculated 
by equation (4)

	 Precision
TP

TP FP
=

+
	 (4)

Recall (sensitivity): Recall is the percentage of TPs that are 
correctly predicted and can be calculated by equation (5)

	 Recall
TP

TP FN
=

+
	 (5)

F1-score: The F1-score combines recall and precision, 
resulting a single metrics that balances both measures and 
can be calculated by equation (6). F1-score is the harmonic 
mean of recall and precision and is a better overall perfor-
mance measure than accuracy

	 F1 2− =
+

score *
Precision*recall
Precision recall

	 (6)

Specificity (TN rate): Specificity of a test determines the 
ability to identify the negative cases correctly. A highly spe-
cific test implies there are few negative cases that are not 
correctly classified. It can be calculated by equation (7)

	 Specificity
TN

TN FP
=

+
	 (7)

Table 1.  Number of patients in the BraTS challenge data sets.

Year Training set Validation set Testing set

2012 30 – 15
2013 30 – 10
2014 200 – 38
2015 274 – 53
2016 274 – 191
2017 285 46 146
2018 285 66 191
2019 335 125 166
2020 369 125 166
2021 1251 219 570

http://brainweb.bic.mni.mcgill.ca/cgi/brainweb1
http://brainweb.bic.mni.mcgill.ca/cgi/brainweb1
https://www.nitrc.org/projects/ibsr
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Accuracy: Accuracy measures the overall correctness of 
the segmentation by calculating the ratio of the pixels cor-
rectly predicted to all pixels in an image. It can be calculated 
using equation (8). However, accuracy can be misleading 
when assessing performance on imbalanced data sets, where 
the majority of pixels belong to one class.

	 Accuracy
TP TN

TP FP FN TN
=

+
+ + +

	 (8)

Balanced Accuracy: Balanced accuracy is more appropriate 
when dealing with imbalanced data sets, especially when 
one class significantly outnumbers the other. It is calculated 
by equation (9), which takes the average of sensitivity and 
specificity

	 BalancedAccuracy
Sensitivity Specificity

=
+
2

	 (9)

Receiver operating characteristic curve and area under the 
ROC curve: Receiver-operating characteristic (ROC) curve is 
a graphical chart that illustrates the trade-off between sensi-
tivity and specificity by varying the classification threshold. 
Area under the curve (AUC) summarizes the overall perfor-
mance of the model using an aggregate measure of perfor-
mance across various threshold values. This performance 
evaluation approach is commonly used when dealing with 
probabilistic or confidence-based segmentation models.

Cross-validation is a method that helps assess the gen-
eralization ability of an image segmentation model. In a 
cross-validation, the data set is split into multiple subsets 
and the model is trained on some subsets and tested on 
the remaining subsets to assess its performance. Common 
cross-validation practices include k-fold cross-validation 
and leave-one-out cross-validation. It is important to choose 
evaluation methods that are appropriate for the specific seg-
mentation task and data set characteristics. It is good practice 
to use a combination of multiple metrics to obtain a compre-
hensive understanding of performance of brain tumor MRI 
image segmentation models.

Machine learning for brain tumor 
image segmentation

Machine learning is the core component of artificial intel-
ligence and has been extensively explored in every fields, 
including biological, toxicological, and medical research.10–15 
Machine learning techniques are extensively utilized in the 
field of MRI image segmentation because of their capacity 
to automatically learn and extract meaningful features from 
data. Here, we summarize machine learning approaches 
used for MRI image segmentation and discuss some widely 
used methods, such as mixture model and support vector 
machine (SVM).

Unsupervised machine learning

Unsupervised machine learning techniques are applied 
when labeled training data are not available. These meth-
ods aim to discover patterns, clusters, or structures in the 
data without prior knowledge. Unsupervised learning 
algorithms, such as k-means clustering,16,17 fuzzy c-means 

clustering,18–21 optimal fuzzy clustering,22 and sparse sub-
space clustering23 have been employed for unsupervised 
segmentation of MRI images. Next, we discuss the popular 
unsupervised machine learning, mixture models, in brain 
tumor MRI image segmentation.

Although voxels from different tissue regions may have 
different probability distributions, it is assumed that vox-
els from the same tissue region follow the same probabil-
ity distribution. Therefore, the probability distribution for 
any voxel can be viewed as a mixture model, a weighted 
summation of parametric probability distributions or mix-
ture components. For this reason, the mixture model is a 
popular unsupervised machine learning method for brain 
MRI images segmentation. Most literature considers finite 
mixture models where the data points are assumed to come 
from a mixture of some distributions. Several mixture mod-
els, such as Student’s t-mixture models and Gaussian mix-
ture models (GMMs) are used for segmenting brain tumor 
MRI images. However, GMM is the commonly used mix-
ture model for brain tumor image segmentation. Wang et 
al.24 proposed a method for automatically segmenting brain 
tumor MRI images, which relies on a normalized Gaussian 
Bayesian classifier and a 3D fluid vector flow algorithm. In 
this method, a Gaussian Bayesian classifier was developed 
to generate a Gaussian Bayesian brain map from brain MRI 
images. The brain map was then processed to initialize the 
3D fluid vector flow algorithm for segmenting the brain 
tumor. However, validations found this method works well 
for some data sets but not for others.

Chaddad25 extracted glioblastoma features from MRI 
scans using GMMs, principal component analysis (PCA), 
and wavelet. The extracted features using those three meth-
ods were then used to develop discriminative models for 
distinguishing tumor areas and normal areas by machine 
learning algorithms naive Bayes, SVM, and probabilistic 
neural network. Comparative analysis on the performance of 
those modes found that the models based on features gener-
ated from GMMs performed the best, demonstrating that the 
GMM is an accurate segmentation method to extract inform-
ative features from brain tumor MRI images. Other modified 
GMMs, such as the local variational GMM26 and gray-level 
co-occurrence matrix model,27 were also proposed and vali-
dated, demonstrating that GMMs and modified GMMs not 
only efficiently segment MRI images but also offer an accu-
rate representation of the distribution of critical brain cells.

Student’s t-distribution and Gaussian distribution are 
probability distributions frequently used in statistical infer-
ence and hypothesis testing. Student’s t-distribution was 
used as an alternative to Gaussian distribution in the mixture 
model. Relative to the Gaussian distribution, t-distribution 
exhibits a flatter and more spread-out shape, is more robust 
to outliers due to its bell-shaped curve with heavier tails and 
is more suitable for small sample size. A Student’s t-mixture 
model was used to iteratively segment multiple sclerosis in 
FLAIR images.28 Validation of this method using the clinical 
MRI images from the 2015 longitudinal multiple sclerosis 
lesion segmentation challenge indicated that the t-distribu-
tion model is a viable alternative to Gaussian distribution 
in mixture models for MRI image segmentation, especially 
when sample size is small.
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Student’s t-mixture models and GMMs assume the ana-
tomical label of a voxel is independent of the label of other 
voxels, thus discard the spatial association among the voxels, 
making them sensitive to noise. Therefore, several methods 
were proposed to integrate spatial information into conven-
tional GMM, with the prior probability of each pixel being 
determined through the utilization of information from 
neighboring pixels.29–32 For example, Ji et al.29 introduced a 
fuzzy local GMM method that includes spatial constraints 
within local GMMs for automated brain tumor MRI image 
segmentation. Validation of this algorithm on some synthetic 
and clinical MRI data demonstrated that it improved accu-
racy in brain tumor MRI image segmentation since it can 
overcome the difficulties associated with noise and low con-
trast for general GMM. An extension of GMM was proposed 
to include spatial information within conventional GMM.30 
The extended GMM uses both intensities and spatial attrib-
utes of the pixels for inferring prior probabilities, and valida-
tions on both simulated and true brain MR images showed 
efficacy of brain tumor MRI image segmentation. A hybrid 
GMM with a spatially variant finite mixture model was pro-
posed to mitigate the sensitivity to noise of GMM by taking 
account of the spatial dependencies between pixels using 
a Markov random field model.31 Testing on brain tumor 
MRI image segmentation showed that this hybrid model is 
more accurate in separating region of interest, such as tumor 
from noise than GMMs. Incorporating the spatial associa-
tion, Chen et al.32 introduced an enhanced hierarchical fuzzy 
c-means approach to segment brain MRI images, employing 
the anisotropic multivariate Student t-distribution.

Supervised machine learning

In supervised machine learning, a training data set consist-
ing of MRI images and corresponding manually segmented 
labels is used to train a machine learning model. Various 
algorithms, such as decision tree,33 random forests,34,35 and 
SVM36–41 can be utilized. Machine learning models learn to 
classify and segment different regions using the features 
derived from the input images. Table 2 summarizes the 

machine learning models reported for MRI image segmen-
tation or classification.

SVM is a supervised machine learning technique. For 
binary data, it classifies two classes by creating a hyper-
plane either within the original input space (linear classi-
fiers) or within a higher dimensional space mapped from 
the original input data (non-linear classifiers) as illustrated 
with the black line for two-dimensional (2D) case in Figure 2. 
This hyperplane maximizes the distances to the nearest 
data points of both sides.36 Different kernel functions can 
be applied in SVM. Therefore, both linearly separable and 
not linearly separable data can be studied using SVM with 
different kernels.37 Bahadure et al.1 and Ayachi and Ben 
Amor36 classified normal and tumor tissues based on the 
MRI images using SVM.

The proximal support vector machine (PSVM), a much 
simpler classification algorithm, was proposed. PSVM classi-
fies data points based on the proximity to the parallel planes 
which stretch as much as possible,38 as illustrated by the 
red and blue lines for 2D case in Figure 2. PSVM is compu-
tationally efficient with similar performance as compared 
to standard SVM. Based on segmentation results, PSVM 
showed 92% accuracy in detecting the tumor from an MRI 
brain image compared to the standard SVM with 82% accu-
racy.22 First, the features were extracted utilizing histogram 
equalization to enhance the segmentation accuracy. The MRI 
brain image was then segmented using self-organizing map 
(SOM) clustering. The resulting images from the segmenta-
tion were then fed into the PSVM classifier. Subsequently, 
feature extraction and selection were applied, involving the 
use of the gray-level co-occurrence matrix, to prevent the 
occurrence of misclustered regions and PCA was used to 
enhance classifier accuracy.

Khemchandani and Chandra40 introduced another vari-
ant of SVM for binary classification named twin SVM that 
generates two nonparallel planes in a manner where each 
plane is in close proximity to one class while maximizing 
its separation from the other. The fundamental difference 
between SVM and twin SVM is twin SVM solves two simpler 
quadratic programming problems (QPPs), while standard 

Table 2.  Performance of machine learning models.

Algorithm Data set Performance metrics Performance

Whole tumor Tumor core Enhanced tumor

Decision tree33 BraTS 2017 F-score 0.98 0.75 0.69
Random forest34 BraTS 2018 Dice score 0.72 0.70 0.68
Random forest35 BraTS 2018 Three-class accuracy 0.61
SVM (quadratic)37 46 MRI (training) & 50 MRI (test) Accuracya 0.84 (normal versus abnormal)
Proximal SVM39 IBSR 1.0b Accuracya 0.92 (normal versus abnormal)
Twin SVM (linear kernel)40 Hapetitisc Accuracya 0.81
Twin SVM (RBF kernel)40 Hapetitisc Accuracya 0.83
ResNet-SVM41 260 MRI (training) and 112 MRI (test) Accuracya 0.89
SVM (linear kernel)42 BraTS 2015 Accuracya 0.94
SVM (RBF kernel)42 BraTS 2015 Accuracya 0.98

SVM: support vector machine; MRI: magnetic resonance imaging; IBSR: Internet Brain Segmentation Repository.
aTwo-class (normal versus abnormal) classification accuracy.
bInternet Brain Segmentation Repository (IBSR) 1.0 from the Massachusetts General Hospital has 20T1-weighted volumetric images.
cData set is from the Machine Learning Repository, University of California, Irvine (http://www.ics.uci.edu/~mlearn/MLRepository.html).

http://www.ics.uci.edu/~mlearn/MLRepository.html


Khan et al.    Brain tumor MRI image segmentation    1979

SVM solves one complex QPP including all observations in 
the constraints. In twin SVM, one class’ patterns were used to 
set the constraints for QPP of another class. Hence, twin SVM 
is computationally faster. Once Otsu thresholding is applied 
for segmentation, the subsequent steps include employing 
the discrete wavelet transform for feature extraction and 
utilizing PCA for feature reduction. Vadhnani and Singh42 
applied SVM and its different variants in the classification 
phase. Comparative performance analysis revealed that twin 
SVM exhibited superior performance to other classifiers.

Deep learning methods

Deep learning is a mixed learning approach. It first progres-
sively learns higher-level features from a provided data 
using multiple layers and then learns objects in learning 
using the deepest layer. Due to the increase in learning data 
and computational power, deep learning has gained atten-
tions everywhere including scientific research.43–45 Deep 
learning techniques have become popular for brain tumor 
image segmentation because of their automated feature 
learning capability from raw data and make accurate predic-
tions without the need for manual feature engineering. The 
subsequent sections delve into several commonly employed 
deep learning techniques.

Convolutional neural network.  Recently, CNNs have gained 
popularity in image analysis for their inherent capability of 
automatic intricate feature extractions directly from the 
data itself. CNNs comprise a sequence of convolutional and 
pooling layers that are organized sequentially. In the convo-
lutional layer, a filter is applied to the input image to extract 
features that are passed through an activation function. Fil-
ter size is specified by the user. The resulting features are 

then directed to a pooling layer to reduce spatial dimen-
sions. The final output of the convolutional and pooling lay-
ers sequence is then passed through a fully connected layer 
from which the final predictions are made.

An automated segmentation technique utilizing CNN 
was developed employing small kernels.46 To achieve a 
deep architecture that prevents overfitting, small 3 × 3con-
volution filters were used. Using very small kernels show 
effectiveness in increasing convolutional network depth to 
improve accuracy in the recognition of large-scale images.47 
MRI image pre-processing, such as intensity normalization 
48 was not commonly applied in CNN-based segmentation. 
Although uncommon in CNN-based segmentation methods, 
image pre-processing was found to be highly effective for 
segmenting brain tumor images when combined with data 
augmentation. The assessment of this CNN-based method, 
conducted on the BraTS 2013 and BraTS 2015 data sets, dem-
onstrated its remarkable accuracy, effectiveness, and reliabil-
ity in the segmentation of brain tumor MRI images.

In a multi-institutional setting, the performance of 
CNNs in tumor segmentation for glioblastoma patients 
was strongly influenced by the selection of data used for 
training.49 The T1-weighted pre-contrast, T1-weighted 
post-contrast, and FLAIR images of 44 patients from TCIA 
GBM data set (http://cancergenome.nih.gov/) were manu-
ally segmented by determining tumor components as the 
ground truth. Three CNN models were trained to automati-
cally segment tumors in patients. The first CNN model was 
constructed and tested with the images of patients from 
the same institute. The second CNN model was built with 
images of patients from one institution and tested with 
images of patients from the other institute. The third CNN 
model utilized images of patients from both institutions. 
The 10-fold cross-validation results showed that the model 
trained using images from the same institution outperform 
the model trained on the images from different institution, 
indicating that images from different institutes may have 
different characteristics, such as experimental conditions and 
quality controls. Therefore, images used in training a CNN 
model impact performance of the model on images from 
different experimental settings. Determination of the reasons 
and image aspects for this effect is not clear and deserves 
further investigation.

Ensemble learning takes advantages of different models 
to cancel noises in individual models so that prediction accu-
racy is increased. It has been widely used in diverse domains, 
including computational toxicology.12,50–52 Recently, ensem-
ble models were explored for MRI image segmentation. 
Gupta and Gupta53 introduced an ensemble architecture that 
combines 2D and 3D CNNs. Both the 2D and 3D CNN mod-
els, as well the ensemble model, were trained and validated 
using BraTS 2018 data set. The validation results demon-
strated that the ensemble model had higher dice scores for 
segmenting tumor core, whole tumor, and enhancing tumor 
compared to the individual 2D and 3D CNN models, encour-
aging utilization of ensemble learning for brain tumor MRI 
image segmentation. A different ensemble strategy utilizing 
CNN model was explored for segmenting brain tumor MRI 
image: a 3D hyper-dense CNN was proposed for volumetric 
brain tumor segmentation.54 This network uses 3D fully CNN 

Figure 2.  Illustration of the concept of two-class SVM and PSVM for a two-
dimensional case. The blue circles represent samples of one class and the red 
diamonds are samples of another class with two independent variables x and y. 
SVM identifies the black line (hyperplane in high dimension) that has maximum 
margins to separate the two classes of samples. PSVM find the blue and red 
lines (hyperplanes in high dimension) in the corresponding classes of samples 
so that the most samples are assigned to correct classes by comparing their 
distances to both lines (the shorter distances win).

http://cancergenome.nih.gov/
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for end-to-end volumetric prediction where two 3D CNN 
configurations (global and local patches) were processed 
independently and then integrated for final segmentation. 
The dense connectivity between the two patches provides 
an opportunity for deep supervision and enhances the flow 
of gradients during the learning process. This network was 
hierarchically trained across a few independent paths that 
were prepared for distinct scale patches and combines local 
and global feature maps for multi-scale contextual informa-
tion. Moreover, the bottleneck with a compression model 
was applied to decrease the quantity of feature maps within 
every dense block, resulting in a reduction of learned param-
eters and improving computational efficiency. This model 
was trained and assessed using the 210 patients’ MRI scans 
in the training data of the BraTS 2018 challenge. The dice 
scores were the highest for segmenting enhancing tumor 
and tumor core and segmentation performance on complete 
tumor ranked second compared to the four CNN models 
reported in the literature,46,55–57 again demonstrating that 
ensemble different learning models improve performance 
of image segmentation.

Shaikh et al.58 proposed a Tiramisu architecture with 100 
layers, developed by combining a post-processing using a 
dense conditional random field and a densely connected 
fully CNN, for segmenting brain tumors. This network is 
composed of the down-sampling path with transition down 
layers, blocks with densely connected layers, and the up-
sampling path with transition up layers. Testing of this net-
work on the BraTS 2017 test set resulted in dice scores of 
0.830, 0.650, and 0.650 for the whole tumor, tumor core, and 
enhanced tumors, respectively, suggesting that this archi-
tecture is suitable for brain tumor MRI image segmentation.

An automatic approach for segmenting lesions of brain 
multi-modal MRI images with 11-layer deep, multi-scale, 3D 
CNN was proposed.55 This study utilized a dense training 
scheme that tackles the calculation challenge in 3D medical 
scan processing, as well as the issue of imbalanced training 
samples across different segmentation classes, which has a 
direct impact on segmentation accuracy. Moreover, a deeper, 
thus more discriminative,59 3D CNN was analyzed followed 
by a dual pathway architecture for multi-scale processing 
that incorporates both larger and local contextual data. In 
additional, a 3D fully connected conditional random field, a 
3D extension of the conditional random field model,60 was 
applied to process the soft segmentation from the network 
that effectively removes FPs. Evaluation of this network 
architecture using the BraTS 2015 test set had dice scores 
of 0.667, 0.849, and 0.634 for tumor core, whole tumor, and 
enhanced tumor, respectively, which are better than the com-
pared methods, demonstrating this 3D CNN architecture 
with parallel convolutional pathways is computationally 
efficient and suitable for automatic MRI image segmentation.

A computationally efficient CNN architecture to segment 
brain tumor images was explored6 to simultaneously utilize 
both global and local contextual features. Unlike traditional 
CNN, this network used a fully connected layer convolu-
tionally implemented in the output layer that reduces com-
putation time significantly. Moreover, a two-phase training 
approach was employed to reduce the impact of the imbal-
ance tumor data, and a cascade architecture was utilized 

where the output from the primary CNN provides addi-
tional information for the succeeding CNN. During the 
initial training phase, the patches data set is constructed in 
such a manner that it ensures an equal probability for all 
labels, effectively addressing the class imbalance. In the sub-
sequent training phase, the output layer is retrained using 
the true labels distribution to accommodate the imbalanced 
nature of the data. Testing of the cascade architecture on the 
BraTS 2013 test set showed dice scores of 0.88, 0.79 for the 
core tumor, and 0.73 for the whole tumor, tumor core, and 
enhancing tumor, respectively. The results demonstrate that 
this architecture performed better than state-of-the-art meth-
ods in segmentation accuracy, and also in computational 
efficiency (30 times faster).

Wang et al.61 developed three fully CNN models to 
segment brain tumors into three hierarchical subregions 
(tumor core, whole tumor, and enhanced tumor). The three 
networks for segmenting tumor core, whole tumor, and 
enhancing tumor were sequentially connected. During the 
training stage the ground truth of the tumor core and whole 
tumor regions were utilized in the second and third stages, 
respectively, whereas in the testing phase, the tumor core 
and whole tumor regions obtained from the first and second 
stages were used in the second and third stages, respectively. 
Despite the longer training and testing times and the non-
end-to-end structure, this cascaded framework has several 
advantages, including simpler network architectures for each 
task, reducing over-fitting, being straightforward to train, 
decreasing FPs, and conforming to the anatomical structure 
of the brain tumor by employing binary crisp masks.62 The 
model was assessed using the BraTS 2017 validation set, 
which resulted in average dice scores of 0.838, 0.905, and 
0.786 for tumor core, whole tumor, and enhanced tumor, 
respectively. Despite the core tumor region being inside the 
whole tumor and the enhanced tumor being inside the core 
tumor region, most of the models did not take this known 
information into account during modeling. However, the 
fully CNN models61 incorporated this information.

Guan et al.63 developed the model AGSE-VNet for seg-
menting 3D MRI images and included the squeeze and excite 
(SE) module64 in the encoder and the attention guide (AG) 
filter65 in the decoder in the VNet.66 The encoder enhances 
useful information while suppressing useless information. 
On the other hand, the attention block removes irrelevant 
background and noise. The guide-image filtering directs 
image features and structural information, such as edge 
information. Furthermore, to deal with the issue of imbal-
ance between foreground and background voxels, the cat-
egorical dice loss function was employed. Evaluation of 
AGSE-VNet on the BraTS 2020 validation set showed dice 
scores of 0.69, 0.85, and 0.68 for tumor core, whole tumor, 
and enhanced tumor, respectively. However, given the low 
dice scores for the enhanced tumors and tumor core, there 
may be room for further improvement.

Zhou et al.67 introduced another modified version of the 
V-Net model known as the scSE-NL V-Net. This model incor-
porates two key components: a Spatial and Channel Squeeze-
and-Excitation Network (scSE-Net) and a non-local block, 
which are integrated into the 3D V-Net model. The inclusion 
of the scSE-Net is intended to enhance the capabilities of 
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CNN-based image recognition, while the non-local block 
serves to mitigate inherent image noise interference and 
compensate for the limited spatial dependence caused by 
convolution. The scSE-NL V-Net performance was assessed 
on the BraTS 2020 data set, resulting in Dice scores of 0.82, 
0.76, and 0.65 for the entire tumor, tumor core, and enhanced 
tumor, respectively, on the validation set.

An encoder-decoder based CNN architecture was 
employed by Myronenko68 for brain tumor segmentation 
on 3D MRI images. This CNN architecture has an asym-
metrically large encoder and small decoder, incorporating 
an auto-encoder branch for regularization and utilizing a 
variational auto-encoder strategy to improve feature cluster-
ing, especially when training data is scarce. The ensemble 
comprising 10 models, all trained from scratch, achieved 
dice scores of 0.884, 0.815, and 0.766 for the whole tumor, 
tumor core, and enhanced tumor, respectively, in the evalu-
ation using the BraTS 2018 test set. In addition, the ensem-
ble of one-pass multi-task network and model cascade net, 
along with their variants,69 and a deepSCAN architecture70 
showed comparable dice scores when testing on the BraTS 
2018 test set. Another modified version of the deepSCAN 
model,71 which uses instance normalization to replace batch 
normalization and incorporates a mechanism with light-
weight local attention, achieved dice scores of 0.890, 0.830, 
and 0.810 for the whole humor, tumor core, and enhanced 
tumor, respectively, in the evaluation using the BraTS 2019 
testing set. Zhao et al.72 modified the self-ensemble U-Net 
model through various data processing, model designing, 
and optimizing methods, achieving similar dice scores of 
0.883, 0.810, and 0.861 for the whole tumor, enhanced tumor, 
and tumor core, respectively. These studies demonstrate 
that the ensemble approach is promising in improving brain 
tumor MRI image segmentation. A summary of the perfor-
mance evaluation is shown in Table 3.

U-Net.  Ronneberger et al.73 introduced the U-Net model 
which is a modified and extended version of a fully CNN74 
architecture. It is primarily designed for biomedical image 
segmentation and can be trained with very few training 
images. This architecture comprises a contracting path 
(encoder), an expansive path (decoder), and skip connec-
tions. The contracting path consists of a series of convolu-
tions followed by down-sampling with a pooling layer. On 
the other hand, the expansive path and the contracting path 
are similar. However, the pooling operations are replaced 
by up-convolution (up-sampling) operations. Moreover, 
skip connections combine each up-sample with the relevant 
cropped feature map in the encoding path. Figure 3 depicts 
the complete U-Net architecture. The left side represents the 
contracting path and the right side is the expansive path. 
The contracting path captures the context information, 
whereas the expansive path restores the spatial information 
for pixel-wise segmentation. The skip connections help to 
retain the spatial information lost during the down-sam-
pling operation. In contrast to the unpadded convolutions 
used by Ronneberger et al.,73 Dong et al.75 utilized zero-pad-
ding for all convolutional layers in both the encoder and 

decoder to maintain consistent output dimensions in the 
corresponding layers. Furthermore, they employed a soft 
loss function based on dice66 to address the class imbalance 
issue. Yang and Song76 constructed a U-Net model using 
sample preprocessing, optimization algorithm, and the 
cross-entropy loss function for segmenting brain tumor 
MRI images. This model was evaluated using the BraTS 
2015 challenge training data set, resulting in superior dice 
scores in both complete and enhanced tumor regions in 
comparison to the U-Net models reported by Dong et al.75

Rehman et al.77 introduced BU-Net, a variant of U-Net, 
that incorporates wide context and residual extended skip 
modules in the U-Net architecture. The wide context block 
was used to transition to the decoder from the encoder and 
the deconvolution layer output was linked with the out-
put yielded from the residual extended skip block of the 
corresponding encoder block in the skip connection. While 
the inclusion of these modules facilitates global feature 
aggregation and contextual information acquisition, the use 
of 2D convolution in BU-Net results in the loss of context 
information and local details of different image slices. To 
handle class imbalance, a loss function that combines dice 
loss coefficient and weight cross-entropy was used. This 
loss function leverages the strengths of both loss functions 
where weight cross-entropy addresses class imbalance by 
assigning different weights to classes and the dice loss coef-
ficient emphasizes the spatial overlap of true and predicted 
regions for each class. This U-Net architecture was evalu-
ated on the BraTS 2017 and BraTS 2018 test data sets. This 
architecture outperformed some state-of-the-art methods, 
including baseline U-Net,75 ResU-Net,78 Seg-Net,79 PSPNet,80 
NovelNet,80 3DU-Net,81 Ensemble Net,82 S3DU-Net,83 TTA,84 
and MCC85 with similar cost functions, optimizers, and co-
factors. However, it requires further investigation to deter-
mine if the compared models can perform better in different 
algorithmic settings.

Ghosh et al.86 developed an improved U-Net architecture 
that incorporates pre-trained VGG-16 layers in transition-
ing to the decoder from the encoder. In addition, dense-
convolutional blocks were used for down-sampling in this 
model, which improves feature re-usability. The use of batch 
normalization layers within dense blocks also enhanced the 
model’s stability and performance. This U-Net architecture 
was evaluated using the low-grade glioma data set from 
TCIA.87 This model exclusively focused on segmenting tumor 
cells and achieved a dice coefficient of 0.93 in a fivefold cross-
validation, which is much higher than the 0.68 dice coefficient 
of the basic U-Net, suggesting the incorporated layers in this 
improved U-Net enhance segmentation accuracy.

Wibowo et al.88 presented a 2D U-Net model that employs 
HeNormal initialization to avoid the issues of gradient 
explosion and vanishing. In addition, batch normalization 
was applied in the first pooling layer to normalize the out-
put and prevent loss overfitting. The gradient computation 
dropout was used to connect the encoder and decoder. This 
model was assessed using the BraTS 2018 and BraTS 2020 
data sets and resulted in dice scores of 0.90 and 0.92 for clas-
sifying whole tumor regions for the BraTS 2018 and BraTS 
2020 data sets, respectively.
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ResU-Net,78 another variant of U-Net, replaces the plain 
blocks in both the decoder and encoder of the U-Net model 
with residual blocks.89,90 Residual blocks include a short-
cut mechanism to prevent the gradients from vanishing and 
lead to faster convergence by integrating the global features 
with rough local. In addition, a residual unit was utilized 
as a bridge to connect the encoder and decoder. To address 
the imbalance issue in brain tumor MRI images, the authors 
implemented a loss function that combines weighted cross-
entropy91 with generalized dice loss.92 This U-Net architec-
ture was assessed using the BraTS 2018 data set, resulting 
in average dice scores 0f 0.805, 0.868, and 0.783 for tumor 
core, whole tumor, and enhancing tumor, respectively, mak-
ing this U-Net a top performed model in the BraTS 2018 
challenge. This demonstrates that this U-Net model may be 
used for brain tumor MRI image segmentation in clinical 
practices.

Zhang et al.93 developed an AResU-Net model that adds 
the attention and squeeze excitation block on the skip con-
nections in the ResU-Net model to adaptively improve local 
reactions of down-sampling features that can be applied to 
the feature recovery in subsequent up-sampling process. 
This can decrease the semantic gap between the up-sampling 
and down-sampling processes. Incorporating the attention 
and squeeze excitation block on the skip connections in the 
ResU-Net78 model yielded improved model performance 
on both the BraTS 2018 and BraTS 2017 data sets. The dice 
scores of 0.780, 0.881, and 0.719 for tumor core, whole tumor, 
and enhancing tumor, respectively, were obtained in testing 
20% of the BraTS 2017 training set with the model trained on 
80% of the training set. Similar dice scores of 0.810, 0.876, and 
0.773 for tumor core, whole tumor, and enhancing tumor, 
respectively, were obtained when testing the BraTS 2018 
validation set with the U-Net model trained on the BraTS 

2018 training set, which outperformed most of the com-
pared models, especially for enhancing tumor segmentation. 
However, this U-Net architecture underperformed S3DU-
Net.83 which achieved better dice scores of 0.831 and 0.894 
for tumor core and whole tumor segmentations, respectively.

Since 2D convolutions are unable to make use of the 
spatial information present in volumetric image data, a 3D 
extension of the 2D U-Net model was proposed81 to replace 
all 2D operations in the 2D U-Net73 model with their 3D 
counterparts. The 3D U-Net model with slight modifica-
tions performed best in the BraTS 2018 and BraTS 2017 chal-
lenges with dice scores of 0.775, 0.858, and 0.647 on the BraTS 
2017 test set,94 and slightly better dice scores of 0.806, 0.878, 
and 0.779 on the BraTS 2018 test set95 for tumor core, whole 
tumor, and enhancing tumor, respectively.

A similar 3D U-Net model was implemented by Mehta 
and Arbel96 with some modifications, such as replacing the 
max pooling in the encoder with average pooling to get better 
gradient flow between consecutive layers, applying instance 
normalization97 followed by a dropout98 with 0.05 probabil-
ity to get memory advantage in both encoder and decoder. 
Furthermore, the model employs a loss function weighted 
by categorical cross-entropy and utilizes a curriculum class 
weighting method to tackle the class imbalance problem. The 
performance of this U-Net model was assessed on the BraTS 
2018 data set by fivefold cross-validation, which resulted in 
dice scores of 0.793, 0.888, and 0.690 for tumor core, whole 
tumor, and enhanced tumor, respectively. The model also 
performed well on the BraTS 2018 validation set with dice 
scores of 0.825, 0.909, and 0.788 for tumor core, whole tumor, 
and enhanced tumor, respectively. It is noteworthy that the 
model exhibited notably superior performance on the valida-
tion set, particularly for enhanced tumor prediction, which 
may warrant further investigation.

Table 3.  Performance of CNN models based on BraTS data sets.

Data set Dice score

Cross-validation Validation set Test set

WT TC ET WT TC ET WT TC ET

BRATS 201347 – – – 0.84 0.72 0.62 0.88 0.83 0.77
BRATS 20136 0.84 0.71 0.57 0.88 0.79 0.73
BRATS 201356 – – – 0.86 0.73 0.62 0.87 0.83 0.76
BRATS 201547 – – – – – – 0.78 0.65 0.75
BRATS 201555 0.90 0.75 0.73 – – – 0.85 0.67 0.63
BRATS 201757 0.72 0.83 0.81 – – – – – –
BRATS 201758 – – – 0.87 0.68 0.65 0.83 0.65 0.65
BRATS 201761 – – – 0.91 0.84 0.79 0.87 0.77 0.78
BRATS 201854 0.87 0.84 0.81 – – – – – –
BRATS 201868 – – – 0.91 0.87 0.82 0.88 0.82 0.77
BRATS 201869 – – – 0.91 0.87 0.81 0.88 0.80 0.78
BRATS 201870 – – – 0.90 0.85 0.80 0.89 0.80 0.73
BRATS 201853 0.90 0.87 0.80 – – – – – –
BRATS 201971 – – – 0.91 0.83 0.77 0.89 0.83 0.81
BRATS 201972 – – – 0.91 0.84 0.75 0.88 0.86 0.81
BRATS 202063 0.85 0.77 0.70 0.85 0.69 0.68 – – –
BRATS 202067 – – – 0.82 0.76 0.65 – – –

CNN: convolutional neural network; BRATS: brain tumor segmentation challenge; WT: whole tumor; TC: tumor core; ET: enhanced tumor.
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Jiang et al.99 introduced a two-stage cascaded U-Net model 
where the MRI modalities process an initial rough segmen-
tation and provide a more accurate segmentation map in 
the second stage with additional network parameters. In 
addition, a post-processing step was conducted, wherein 
enhancing tumors were replaced with necrosis if the vol-
ume of the enhancing tumor prediction falls below a specific 
threshold. This threshold is chosen independently for each 
experiment. To reduce variability, an ensemble of 12 models 
was built from scratch using the complete training data set. 
The ensemble performed well on both the BraTS 2019 vali-
dation and test data sets. The dice scores of ensembles on 
the BraTS 2019 test set were 0.837 for tumor core, 0.888 for 
whole tumor, and 0.833 for enhanced tumor, ranking first in 
the challenge. However, the ensemble of 12 models did not 
exhibit a significant performance improvement compared 
to the best individual model in the validation set. It is worth 
noting that the performance of an ensemble model depends 
on the ensemble method used (e.g. majority votes, weighted 
sum, boosting).

Instead of combining all four modalities at the network 
input, in the modality-pairing network100 the modali-
ties were divided into two groups (T1 and post-contrast 
T1-weighted in one group, and FLAIR and T2-weighted in 
the other group) and simultaneously processed using paral-
lel branches. Notably, the same 3D U-Net architecture was 
shared by both branches. This method was tested on the 
BraTS 2020 data set. The top three single Vanilla U-Net mod-
els and three single modality-pairing models, chosen based 
on their performance in the fivefold cross-validation on the 

validation data set, were included in the ensemble model. 
The resulting dice scores on the BraTS 2020 validation set 
(test set) using this ensembled model were 0.856 (0.842) for 
tumor core, 0.908 (0.891) for whole tumor, and 0.787 (0.816) 
for enhanced tumor. The ensemble model ranked second in 
the BraTS 2020 challenge, demonstrating that ensembles of 
different models is an attractive strategy for brain tumor MRI 
image segmentation.

Scale attention network (SA-Net) is derived from the 
encoding-decoding architecture with a larger encoding 
pathway, a smaller decoding pathway, and scale attention 
blocks. Moreover, unlike U-Net, this model has full scale 
skip connections. This network was challenged on the BraTS 
2020 data set (369 cases) and outperformed the Vanilla 
U-Net model. High dice scores of 0.8773, 0.9151, and 0.8125 
were achieved for tumor core, whole tumor, and enhanced 
tumors, respectively, in fivefold cross-validation with the 
training set.101 Subsequently, in the fivefold cross-validation 
on the BraTS 2021 data set (1251 cases), the SA-Net obtained 
dice scores of 0.9211, 0.9372, and 0.8843 for tumor core, whole 
tumor, and enhanced tumors, respectively, indicating that 
segmentation performance can be significantly enhanced 
with larger data sets.102

3D convolution is computationally expensive and 
requires high memory. To address these issues, Chen et al.83 
developed a separable 3D U-Net (S3D-Unet) architecture by 
replacing 3D convolutions with spatiotemporal-separable 
3D (S3D) convolutions, which was proposed by Xie et al.,103 
in both encoder and decoder. The S3D convolution replaces 
each 3D convolution with a combination of two connected 

Figure 3.  Illustration of general U-Net Architecture. Each blue box represents a multi-channel feature map. The number of channels can be different for the input 
image tile. The white boxes represent copied feature maps. The arrows denote the different operations as shown in the legend at right bottom. Max-pooling and up-
convolution usually take 2 × 2.
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convolutional layers: a 1D convolution to extract temporal 
features and a 2D convolution to extract spatial features. This 
architecture was evaluated using the BraTS 2018 data sets. 
The results of fivefold cross-validation on the BraTS 2018 
training set yielded mean dice scores of 0.844, 0.888, and 
0.740 for tumor core, whole tumor, and enhancing tumor, 
respectively, which are comparable to corresponding dice 
scores 0.868, 0.899, and 0.684 of the 3D U-Net without the 
S3D block.

Cao et al.104 proposed a 3D CNN with 3D multi-branch 
attention (MBANet) for segmenting brain tumor MRI images 
using the 3D shuffle attention module. The encoder and 
decoder were constructed using both the basic unit module 
and the multi-branch 3D shuffle attention module, which 
allows the network to improve its feature fusion capabilities 
without significantly increasing the computational require-
ments. In addition, the multi-branch 3D shuffle attention 
module was applied as the attention of the skip connection, 
resulting in a more rational organization of both channel 
attention and spatial attention mechanisms. MBANet was 
assessed using the BraTS 2019 and BraTS 2018 data sets. The 
fivefold cross-validation of MBANet resulted in dice scores 
of 0.860, 0.900, and 0.775 on the BraTS 2018 training set and 
0.851, 0.899, and 0.789 on the BraTS 2019 training set for 
tumor core, whole tumor, and enhancing tumor, respectively. 
These results demonstrate superior performance of MBANet 
compared to other models.83,105–108

Recently, nnU-Net, introduced by Isensee et al.,109 has 
gained popularity as a leading method for segmenting bio-
medical images because of its automatic adaptability to new 
data sets and improved performance. The fully open-source 
codes and models have contributed to its widespread adop-
tion. Since it is difficult to estimate which U-Net configura-
tion performs the best on what data set, nnU-Net develops 
three separate configurations (3D U-Net, 2D U-Net, or 3D 
U-Net cascade) and automatically picks the best model 
according to the average foreground dice score calculated 

from cross-validation on the training data. Isensee et al.110 
and Luu and Park111 applied the nnU-Net model with some 
modifications to the BraTS 2021 BraTS 2020 challenge data 
sets, respectively. However, both Isensee et al.110 and Luu 
and Park111 selected the final models for the test data sets 
based on their performance on the validation sets, rather 
than based on cross-validation results. On the BraTS 2020 
test set, dice scores of 0.851, 0.890, and 0.820 were obtained 
for tumor core, whole tumor, and enhanced tumor, respec-
tively, and the BraTS 2021 test set yielded corresponding dice 
scores of 0.888, 0.931, and 0.884. The notable increase in the 
dice scores on the BraTS 2021 data set compared to the BraTS 
2020 data set may be connected with the increase in training 
data size, 369 cases to 1251 cases.

Table 4 presents a concise comparison of several vari-
ants of the U-Net model and highlights the growing trend 
of utilizing combined loss functions compared to single loss 
functions. Because different loss functions can capture dif-
ferent aspects of the learning problem, combining them can 
help guide the model’s learning process more effectively. 
Table 5 displays a performance comparison among several 
variants of the U-Net model on the BraTS challenge data 
sets. Generally, for the same model the dice score posi-
tively correlates with tumor size (enhancing tumor < tumor 
core < whole tumor), possibly due to the significant impact 
of misclassifications or segmentation errors in smaller 
regions. Furthermore, the model performance on the BraTS 
2021 data set showed a significant improvement compared 
to other data sets. One possible reason for this improvement 
is the increase in training data size.

Hybrid methods

Hybrid methods in image segmentation refer to the combi-
nation of two or more algorithms or techniques to enhance 
robustness and precision of the segmentation results. It is 
worth noting that different from ensemble methods which 

Table 4.  Comparison among different variant of the U-Net model.

Variant name [Reference] Loss function Remark

U-Net73 Cross-entropy Consists of a contracting path (encoder), an expansive path (decoder) and skip 
connections, and can train the model with a limited training data set

BU-Net77 Sum of weight cross-entropy 
and Dice loss coefficient

Residual extended skip (RES) and wide context (WC) are embedded in the U-Net 
model

ResU-Net78 Sum of weight cross-entropy 
and generalized Dice loss

Plain blocks in both the encoder and decoder of the U-Net model are replaced with 
residual blocks. A residual unit is also utilized as a bridge to connect the encoder 
and decoder

AresU-Net93 Sum of weight cross-entropy 
and generalized Dice loss

Embeds the attention and squeeze excitation (ASE) block on the skip connections 
in the ResU-Net model

3D U-Net81 Weight cross-entropy Replaces all 2D operations in the 2D U-Net65 model with their 3D counterparts
S3D-Unet83 Dice loss Replaces each 3D convolution in 3D U-Net with spatiotemporal-separable 3D 

counterparts
MBANet104 Generalized Dice loss The encoder and decoder are constructed combining the basic unit (BU) module 

and the multi-branch 3D SA module, and the multi-branch 3D SA module is applied 
as the attention of the skip connection

nnU-Net109 Sum of cross-entropy and 
Dice loss

Develops three separate configurations (2D U-Net, 3D U-Net, or 3D U-Net cascade) 
and automatically picks the best model (or combination of two) based on the 
average foreground Dice coefficient

RES: residual extended skip; WC: wide context; ASE: attention and squeeze excitation; BU: basic unit.
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combine predictions from different algorithms to make a 
consensus prediction using a voting strategy, algorithms 
in a hybrid method synergistically work to predict a sin-
gle outcome, with no voting element involved. These tech-
niques improve the segmentation performance by utilizing 
the advantages of various algorithms and offsetting their 
limitations.

Aboelenein et al.112 developed a novel architecture, hybrid 
two-track U-Net (HTTU-Net), for brain tumor segmentation. 
HTTU-Net showed superior performance in handling class 
imbalance data compared to the original U-Net architecture 
and can alleviate overfitting issue. This architecture is com-
posed of two tracks with varying numbers of layers and 
kernel sizes. The first track concentrates on the form and size 
of tumor. The second track extracts the contextual informa-
tion. Batch normalization was applied after each convolu-
tion block followed by a Leaky Relu activation function to 
alleviate the variance and mean problems and to stabilize 
the layers. The results of both tracks were then combined, 
and the final segmentation output was generated from this 
concatenation. A hybrid loss function integrating the gen-
eralized dice loss and focal loss functions was employed to 
mitigate the class imbalance. Focal loss is a modified version 
of the conventional cross-entropy loss function and assigns 
more focus to the minority classes and misclassified samples. 
In contrast, the dice loss coefficient focuses on the spatial 
overlap of true and predicted regions for each class. The 
BraTS 2018 challenge data sets were utilized to evaluate this 
model’s performance, resulting in an increase of 0.014, 0.013, 
and 0.055 in the dice scores for tumor core, whole tumor, 
and enhancing tumor, respectively, when compared to the 
original U-Net.

The baseline U-Net model has several shortcomings.113,114 
First, brain tumors are irregular in structure and exhibit size 
variation, making it challenging to train a model to accu-
rately generalize tumor structure. The traditional U-Net 
model can detect the correct region of interest, but it tends 
to over-segment the area. Second, in the U-Net model, skip 
connections combine the high-level features of decoder and 
the low-level features from encoder. This merging can create 
a semantic gap between the two types of features, which can 
affect the baseline U-Net model’s performance. Third, small 
brain tumors are hard to locate and segment. The baseline 
U-Net model struggles to differentiate between small tumor 
regions and many background pixels. Fourth, the baseline 
U-Net model produces numerous feature maps that look 
alike, but only a small fraction of them are useful in learning 
the actual task. To overcome these shortcomings a hybrid 
U-Net model consisting of several resolution blocks, dual 
attention blocks, residual blocks, and a deep supervision 
block was proposed.114 The multiple resolution blocks extract 
features and analyze tumors with different scales; residual 
blocks extract features to decrease the semantic gap between 
the high-level features of skip connections and the low-level 
features of the decoder; dual attention mechanisms empha-
size tumor representations and demote over-segmentation; 
and deep supervision blocks use features of decoder layers 
to generate the target segmentation. In addition to the dice 
score, Hausdorff distance, which represents the largest error 
of segmentation, was used to evaluate model performance.115 
An outlier refers to a data point that significantly deviates 
from the norm or the expected pattern within an MRI image. 
To mitigate the impact of outliers, the Hausdorff distance 
was calculated using only the top 95% of distances from 

Table 5.  Performance of U-Net models based on BraTS data sets.

Model name Data set Dice score

Cross-validation Validation set Test set

WT TC ET WT TC ET WT TC ET

U-Net75 BraTS 2015 0.860 0.860 0.650 – – – – – –
U-Net76 BraTS 2015

(HGG)
0.900 0.820 0.870 – – – – – –

3D U-Net94 BraTS 2017 0.895 0.828 0.707 0.896 0.797 0.732 0.858 0.775 0.647
BU-Net77 BraTS 2017 0.892 0.783 0.736 – – – – – –
AResU-Net93 BraTS 2017 0.881 0.780 0.719 – – – – – –
ResU-Net78 BraTS 2018 0.888 0.793 0.690 0.909 0.825 0.788 0.871 0.771 0.706
3D U-Net96 BraTS 2018 0.888 0.844 0.740 0.894 0.831 0.749 0.839 0.783 0.689
S3DU-Net83 BraTS 2018 0.918 0.857 0.786 0.913 0.863 0.809 0.878 0.806 0.779
No new-Net95 BraTS 2018 – – – 0.901 0.837 0.788 – – –
BU-Net77 BraTS 2018 – – – 0.876 0.810 0.773 – – –
AresU-Net93 BraTS 2018 0.900 0.860 0.775 0.898 0.855 0.802 – – –
MBANet104 BraTS 2018 – – – 0.909 0.865 0.802 0.888 0.837 0.833
Two-stage cascaded U-net99 BraTS 2019 0.924 0.898 0.863 0.908 0.856 0.787 0.891 0842 0.816
MBANet104 BraTS 2019 0.915 0.877 0.813 0.911 0.853 0.793 0.883 0.843 0.818
nnU-Net110 BraTS 2020 0.937 0.921 0.884 0.927 0.866 0.848 0.928 0.885 0.875
3D U-Net100 BraTS 2020 0.938 0.924 0.882 0.928 0.878 0.845 0.930 0.890 0.880
SA-Net101 BraTS 2020 0.860 0.860 0.650 – – – – – –
SA-Net102 BraTS 2021 0.895 0.828 0.707 0.896 0.797 0.732 0.858 0.775 0.647
nnU-Net111 BraTS 2021 0.892 0.783 0.736 – – – – – –

BRATS: Brain Tumor Segmentation Challenge; WT: whole tumor; TC: tumor core; ET: enhanced tumor.
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the complete set of minimum distances. The validation and 
training data sets of BraTS 2020 challenge were used to build 
and evaluate this hybrid model. The results showed that this 
hybrid U-Net model outperformed the baseline U-Net in 
terms of both Hausdorff score and dice score, indicating that 
the hybrid model can produce more accurate segmentation 
results but may over-segment the tumor area.

Three hybrid CNNs (U-SegNet, Seg-Unet, and Res-
SegNet) were explored for the segmentation of brain tumor 
MRI images using a pairwise combination of three popular 
CNNs (SegNet, U-Net, and ResNet18).77 The SegNet archi-
tecture has two types: SegNet3 containing three convolution 
blocks and SegNet5 containing five convolution blocks.79 
While U-SegNet is the fusion of SegNet3 and U-Net,116 Seg-
Unet is the combination of U-Net and SegNet5. On the other 
hand, Res-SegNet is a hybrid of SegNet5 and ResNet18. 
During down-sampling, small brain tumors can be lost, 
which can result in inaccurate segmentation. Inspired by 
Res-Net18 and U-Net, these hybrid models are able to solve 
such problems by including a skip connection in the SegNet. 
The performance of these models was evaluated using the 
BraTS data sets. The mean Jaccard similarity coefficients of 
the U-Net, U-SegNet, Res-SegNet, SegNet3, SegNet5, and 
Seg-Unet models were 0.592, 0.648, 0.689, 0.536, 0.602, and 
0.734, respectively, which indicates that the hybrid mod-
els outperformed SegNet3, SegNet5, and U-Net models. 
Notably, Seg-Unet demonstrated the highest performance 
among all the models, producing well-segmented result with 
accurate boundary alignment for each class.

The hybrid pyramid U-Net (HPU-Net)117 consists of three 
modules, a down-sampling path, a symmetrical up-sam-
pling path, and an additional segmentation path using the 
image pyramid. The down-sampling path includes a batch 
normalization118 layer inside each block. The block contains 
two 3 × 3 kernel convolutional layers, two batch normaliza-
tion layers, and a layer with 2 × 2 strides for max pooling. 
The task of the batch normalization layers is to avoid gradi-
ent vanishing during back propagation and to accelerate the 
model convergence. The convolutional layers prevent the 
disappearance of small lesion areas during down-sampling. 
While the down-sampling path extracts global contextual 
and high-level features of a tumor, the up-sampling path 
reconstructs object details. The auxiliary path extracts multi-
scale information and combines location and semantic infor-
mation in the up-sampling path to help the model segment 
objects with various scales. The high-level features contain 
semantic information, whereas the low-level features contain 
location information. The BraTS 2015 and BraTS 2017 chal-
lenge data sets were used to train and evaluate this model 
and the results showed that this hybrid model outperformed 
the brain tumor MRI image segmentation methods at the 
most recent stage.

Kamnitsas et al.119 proposed EMMA (ensemble of multi-
ple models and architectures) that integrates widely vary-
ing CNNs. Specifically, EMMA incorporated three 3D fully 
convolutional networks (FCNs), two deepMedic models, 
and two 3D versions of the U-Net models. All models were 
trained independently. However, during the testing phase, 
each model was used to segment an unobserved image sepa-
rately and generate corresponding class-confidence maps. 

These models were then ensembled into EMMA that takes 
the average of the probabilities from individual models. 
Since EMMA creates a robust system that remains insensitive 
to independent failures of CNN components, this approach 
yielded impressive dice scores on the test and validation sets 
of the BraTS 2017 challenge.

Jia et al.120 proposed another hybrid model, hybrid high-
resolution and non-local feature network (H2NF-Net), which 
concurrently employed both single and cascaded HNF-Nets. 
This model employs an ensemble of 27 models, including 
five single models built in fivefold cross-validation, five 
cascaded models constructed in fivefold cross-validation, 
seven single models developed using the entire training set, 
and 10 cascaded models constructed from the entire train-
ing set. On the validation set of BraTS 2020, it achieved dice 
scores of 0.855, 0.913, and 0.788 for tumor core, whole tumor, 
and enhanced tumor, respectively. However, an ensemble 
of seven single models trained with the entire training set 
exhibited comparable performance with dice scores of 0.849, 
0.912, and 0.789 for tumor core, whole tumor, and enhanced 
tumor, respectively. On the BraTS 2020 test set, the H2NF-
Net model achieved dice scores of 0.854, 0.888, and 0.828 for 
tumor core, whole tumor, and enhanced tumor, respectively.

A hybrid technique that combines both texture-based 
method and region-based method was proposed for brain 
tumor segmentation and classification based on MRI 
images.121 In this method, a gray-level co-occurrence matrix 
was utilized as the texture-based method to extract features 
from MRI images and a fast bounding box algorithm122 was 
applied as the region-based method for segmenting tumors. 
The two least squares SVM classifiers, one combined with the 
multi-layer perceptron-based kernel function and another 
combined a kernel of radial basis function, was employed 
to classify the features generated from the feature extraction 
stage as tumorous or non-tumorous images. Moreover, the 
noise of MRI images was removed by median filtering fol-
lowed by skull detection using boundary detection criteria 
in the pre-processing step. Using the images in the BraTS 
challenge data sets, 10-fold cross-validation was used to con-
struct and test the least squares SVM classifiers with the two 
kernel functions. The results showed that the least squares 
SVM classifier containing a multi-layer perceptron kernel 
function reached a very promising accuracy (96.63%) in the 
10-fold cross-validation. Furthermore, it demonstrated supe-
rior performance compared to various classifiers, including 
the least squares SVM classifier, neural network with back 
propagation,123 neural network with radial basis function,123 
AdaBoost classifier,124 and SVM models.125

The fuzzy c-means algorithm is a popular segmentation 
method of brain tissues, known for its robustness and effec-
tiveness in identifying similar brain tissues and localization. 
It involves minimizing an objective function and provides 
superior results in both convergence rate and segmentation 
efficiency.126 On the other hand, Hopfield neural network 
(HNN) was used to solve optimization problems using 
Lyapunov energy function, where accuracy depends on 
the weighting factors applied in the energy function, and 
stability of the network was achieved when the modified 
Lyapunov energy function reaches its minimum.127 The fuzzy 
HNN is a hybridization of fuzzy c-means and HNN that 
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enables efficient parallel implementation of online learning 
for image segmentation. The objective function of the fuzzy 
HNN was minimized by a modified Lyapunov energy func-
tion based on unsupervised 2D fuzzy HNN. While searching 
for the optimal weighting factors is laborious and time-con-
suming, the fuzzy HNN can easily solve this problem.128 
This hybrid method was quantitatively validated using two 
MRI modalities—T1- and T2-weighted.87 The mean Jaccard 
similarity score, dice score, specificity, and sensitivity of the 
final segmentation were 0.8569, 0.9186, 0.9917, and 0.9480, 
respectively. Although the fuzzy HNN may encounter dif-
ficulties in differentiating between different brain tissues in 
MRI images that have low tissue contrast, a possible solu-
tion was proposed.129 The GMM on the input MRI images 
was recommended, as this model can enhance the image’s 
brightness, content, and contrast, ultimately overcoming the 
difficulties posed by low tissue contrast.

A hybrid approach integrating fuzzy c-means and 
K-means algorithms was developed to accurately detect 
brain tumors in the minimal time since K-means is faster and 
fuzzy c-means is able to detect tumor cells more accurately.130 
Moreover, this hybrid approach overcomes the limitations 
of the original fuzzy c-means algorithm in segmenting MRI 
images that contain artifacts, such as outliers and noise. 
Thresholding and active contour-level set segmentation 
methods are then used to accurately detect brain tumors. 
The performance of this model was evaluated using three 
benchmark data sets: BraTS 2012, Brain Web, and DICOM 
(Digital Imaging and Communications in Medicine). This 
integrating method is more computationally demanding 
than the K-means method, but it is faster than the fuzzy 
c-means algorithms. Despite this, this integrating method 
achieved the highest accuracy when testing on all the three 
data sets. The performance evaluation comparison among 
different hybrid models is presented in Table 6.

Limitations

Medical image segmentation is a complex task that poses 
several challenges, such as identifying the intricate and sub-
tle boundaries of organs, limited uniformity and similar-
ity within regions of interest, low contrast and intensity in 
homogeneity, and image noise. In addition, brain tumor MRI 
image segmentation involves many steps, including pre-
processing, feature extraction, and segmentation. Therefore, 

the precision of segmentation is intricately linked to the 
precision of each step. Class imbalance is a major issue to 
handle brain tumor MRI image segmentation. Only a small 
sub-region has tumors, and thus the non-tumor tissues play 
a dominant role in shaping the class distribution. The hetero-
geneity of brain tumors also makes it difficult to accurately 
segment the tumor as different tumor regions may neces-
sitate distinct segmentation approaches. To our knowledge, 
there is no method mentioned in the existing literature that 
consistently delivers the top performance across all evalua-
tion parameters.

Though many methods based on machine learning and 
deep learning techniques have been explored for segmenta-
tion of brain tumor MRI images, no such methods have been 
implemented in software tools that are adopted in clinical 
decision-making. Multiple challenges impeded the transla-
tion of the developed machine learning and deep learning 
models to clinical practice. The first difficulty is the lack of 
an adequate amount of annotated brain tumor MRI images. 
Lack of high-quality annotated brain tumor MRI images 
for training limits segmentation accuracy of the developed 
methods, hindering their utilization in clinical practice. Most 
of the developed methods are based on the BraTS data sets 
that contain four types of images annotated by radiologists. 
However, brain tumors can vary widely in terms of size, 
shape, location, and appearance in MRI images. This vari-
ability makes the models developed using BraTS data sets 
difficult to the one-size-fits-all models for brain tumor MRI 
images obtained in different clinical sites. In clinical practice, 
there is a need for real-time or near-real-time tumor segmen-
tation, especially during surgeries. Many current segmenta-
tion models developed using machine learning and deep 
learning algorithms may not meet these real-time require-
ments, which obstruct their application in clinical practice.

Conclusions

The task of segmenting brain tumor MRI images is difficult. 
However, publicly accessible data sets have created a shared 
platform for researchers to develop and compare their tech-
niques. This review article presents various machine learn-
ing and deep learning approaches that have been used for 
brain tumor MRI image segmentation. While both tech-
niques have the potential to enhance efficiency and accuracy 
in brain tumor MRI image segmentation, each has its own 

Table 6.  Performance of hybrid models based on BraTS data sets.

Model name Data set Dice score

Cross-validation Validation set Test set

WT TC ET WT TC ET WT TC ET

HPU-Net117 BRATS 2015 0.91 0.72 0.79 – – – – – –
HPU-Net117 BRATS 2017 0.92 0.80 0.76 – – – – – –
EMMA119 BRATS 2017 – – – 0.90 0.80 0.74 0.89 0.79 0.73
HTTU-Net112 BRATS 2018 0.87 0.81 0.75 – – – – – –
H2NF120 BRATS 2020 – – – 0.91 0.85 0.79 0.89 0.85 0.83
MultiResUNet 114 BRATS 2020 0.95 0.93 0.82 0.75 0.62 0.60 – – –

BRATS: Brain Tumor Segmentation Challenge; WT: whole tumor; TC: tumor core; ET: enhanced tumor; EMMA: ensemble of multiple models and architectures.
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limitations. Machine learning techniques may face compu-
tational challenges when dealing with a large number of 
observations, whereas deep learning techniques require a 
significant amount of data to train models, otherwise, the 
predictive performance may suffer.131 Despite this, deep 
learning techniques have demonstrated better performance 
than traditional machine learning techniques in this field. 
Hybrid methods have shown promising results by combin-
ing the strengths of different techniques. However, there are 
still challenges to be addressed, including the selection of 
appropriate algorithms, as well as the interpretation and val-
idation of results in a clinical context. Thus, further research 
is needed to validate the effectiveness of these techniques in 
the real-world clinical setting.
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