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Introduction

Immune checkpoint inhibitors have demonstrated improved 
survival for multiple cancers.1–3 However, patients’ 
responses are highly variable. Currently, programmed death 
ligand 1 (PD-L1) expression and microsatellite instability 
are approved by the Food and Drug Administration (FDA) 
as biomarkers for immunotherapy.4 It is not a perfect bio-
marker that some patients tested positive for PD-L1 but not 
respond to the therapy, and some negative tested patients 
may still respond.5–7 Hence, other predictable indicators are 

needed. Tumor mutational burden (TMB) is a promising 
indicator that can discriminate responders across several 
tumor types.8–10 Gandara et al.11 used the blood-based assay 
to measure TMB in plasma and found the high TMB to be 
clinically actionable.

TMB is calculated as the total number of somatic muta-
tions per mega-base in coding regions for a tumor sample. 
TMB has been found to have a remarkable association with 
tumor immune response and has gained more interest in 
cancer studies. Usually, tumors with high-TMB levels are 
more likely to respond to immunotherapy.12 In many clinical 
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Impact statement

This study addresses a crucial aspect in the field of 
cancer immunotherapy by quantitatively evaluating 
the variances of TMB values calculated by whole 
exome sequencing (WES) and targeted panels. As 
TMB emerges as an indicative factor for immune 
checkpoint inhibitor sensitivity and targeted panel 
sequencing has been increasingly used, the accu-
rate estimation of TMB becomes critical. By con-
ducting a comprehensive investigation using 10,000 
simulated targeted panels with varying sizes, we 
demonstrate the impact of panel size on TMB esti-
mation. In addition, we identify high-impact gene 
sets for different cancer types, highlighting the can-
cer type–specific effects on TMB estimation. These 
findings provide valuable insights into the potential 
use of targeted panels for TMB assessment, pre-
senting a cost-effective and efficient alternative to 
WES. Our work contributes to advancing personal-
ized treatment decisions in cancer patients based 
on directly measured TMB from sequencing data 
obtained with targeted panels.
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studies, WES is considered the gold standard for estimating 
TMB in research. Recently, deep-targeted panel sequenc-
ing, which can detect mutations with higher accuracy and 
is cost-effective and less time-consuming, has drawn a lot 
of attention.13 Studies have shown high correlation in TMB 
measured by WES and targeted panels.14,15 Xu et al.16 built a 
pan-cancer for TMB estimation by selecting some genes with 
high mutation frequencies from different cancer types. Their 
optimized panel indicated high correlation with WES.

TMB estimation using targeted panels has been found to 
exhibit biases against WES, leading to various efforts to reduce 
the differences between these two approaches. An association 
between WES- and panel-TMB variance and panel size has 
been reported. In short, compared to WES, bigger panels per-
formed better in measuring TMB. Chalmers et al.14 found that 
below 0.5 Mbps, the variance in TMB measurement increased 
significantly and claimed that targeted panels of 1.1 Mbps 
would be sufficient for measuring TMB. Researchers also have 
focused on other potential factors that may affect TMB estima-
tion, such as the top mutated genes and hotspot mutations.16 
Heydt et al.15 measured the correlation of five large panels with 
WES for TMB estimation and found that including or exclud-
ing synonymous variants had little influence on correlation. 
By measuring a large number of tumor samples, the authors 
also identified a novel mutation hotspot in the PMS2 gene 
that may be associated with increased TMB in skin cancer.14 
However, the current outcomes were not significant enough to 
guide the design and application of targeted panels for TMB.

In this study, we quantitatively investigated the effect of 
panel size on TMB estimation by simulating 10,000 targeted 
panels with a large range of sizes (0.2–3.1 Mbps). Different 
metrics confirmed that, on average, panels larger than 
1 Mbps could output TMB compatible with that of WES. We 
then investigated the outliers (badly performing large panels 
and well-performing small panels) and observed the impacts 
of individual genes on TMB estimation. A big panel can 
show very high-TMB variance if many high-impact genes 
are covered. In addition, we found the gene impact on TMB 
was cancer type specific.

Materials and methods

TMB calculation

Within the TCGA MAF file, a total of 2,899,874 PASS muta-
tions from 9018 samples in CDS regions were used for the 
TMB estimation in this study. A TMB value was calculated 
as the number of mutations per million base pairs covered 
by the interested genome regions.

TMB
Number of Mutations

Region Size
= ×1 000 000, ,

The WES-TMB was evaluated for all CDS regions, which was 
more than 32 Mbps, and all the mutations in CDS regions 
were included in the calculation. On the contrary, the region 
size of a given targeted panel was the part of the panel in 
CDS regions. Only the mutations covered by the CDS part 
of the panel were taken.

Panel simulation processes based on COSMIC 
genes

All COSMIC genes were obtained from the webpage (https://
cancer.sanger.ac.uk/census). The genes in the Cancer Gene 
Census tier1 and tier2, which are strongly indicative of some 
roles in cancer were separated from the others. After the 
exclusion of genes outside the CDS regions, 557 tier1, 139 
tier2, and 9021 other genes remained for the targeted panel 
simulation. With the average gene size around 2.9 Kbps, we 
simulated 10,000 panels by selecting from 70 to 1100 genes to 
cover a large range of panel sizes. To mimic the designed tar-
geted panels that focused more on cancer-associated genes, 
we used the gene selection strategy to build the panels:

1. When N ⩽ 400 (N ⩾ 70), N is the total number of 
genes selected, the ratio of tier1 and tier2 genes was 
3:1, and no other gene was selected.

2. When N > 400 (N ⩽ 1100), we always selected 100 
tier2 genes. The rest of the genes were from tier1 and 
others with the ratio 1:1.

3. All genes were randomly selected from the given 
pool.

For example: When N = 100, #T2 = 25, #T1 = 75, #Other = 0. 
When N = 600, #T2 = 100, #T1 = 250, #Other = 250. When 
N = 1,100, #T2 = 100, #T1 = 500, #Other = 500.

Only the CDS parts of the genes were used to simulate 
panels. Finally, we generated a bed file for each of the pan-
els and bedtools17 was used to sort and merge the genome 
regions of the selected genes. As a result, panels from 
0.2 Mbps to 3.1 Mbps were generated (Figure 2(b)).

Calculation of RMSD, FNR, and MCC

The RMSD was used to evaluate the differences between 
WES-TMBs and panel-TMBs for a group of TCGA cancer 
samples:

RMSD P sqrt
TMB P TMB

Nj
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n
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where P represents the panels and i is an individual sample 
for which the TMB is calculated. The Pj calculates the panel-
TMB of sample i. N represents the number of samples in the 
group for assessment.

The FNR was calculated under the detective TMB thresh-
old as 10, showing that this patient should benefit from the 
immunotherapy. For a given sample with the WES-TMB 
greater than 10, a false-negative (FN) detection was found 
if the panel reported the TMB as less than 10. In this study, 
the total sample number was 1945 (samples with WES-TMB 
between 5 and 30), used as the denominator when calculat-
ing the rate.

To measure the MCC, WES-TMB 10 was used as the cutoff 
to classify positive (TMB > 10) and negative (TMB ⩽ 10) sam-
ples. Each sample was then classified based on the panel-
TMBs. Next, the true-positive (TP), true-negative (TN), 

https://cancer.sanger.ac.uk/census
https://cancer.sanger.ac.uk/census
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false-positive (FP), and FN rates were calculated to further 
measure the MCC, as below:

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN
=

× − ×
+ + + +( )( )( )( )

Individual gene impact on TMB estimation

To assess the potential impact of a given gene G on TMB 
estimation, we calculated the new TMB after G was removed 
from the gene list and compared it with the original TMB 
based on the TCGA cancer samples. To calculate the new 
TMB without G, the mutations called in G were removed 
from the total mutations of a cancer sample and the size of 
this gene was also taken from the total CDS size. For a given 
sample S, the potential impacts of G were estimated as:

TMB diff TMB TMBWES G removed. | |= − −

TMB diff ratio
TMB TMB

TMB
WES G removed

WES

. . =
− −

TMB
Total Mutations Mutations inG

Size SizeG removed
CDS G

− =
−

−

# #

Results

Targeted panels, in comparison to WES, reported 
greater TMB values by panel size

To investigate the patterns and effective factors of TMB esti-
mation by targeted panels in comparison to WES, we first 
downloaded the mutation profile from The Cancer Genome 
Atlas (TCGA) in Mutation Annotation Format (MAF, https://

Figure 1. Targeted panel-TMB evaluation using TCGA mutation annotation. (A) Targeted panels with various sizes involved in our study. (B) Mean difference between 
TMBs measured on panel and CDS regions. Samples were sorted by TMB and 10 samples with closest TMBs were grouped together to calculate a mean TMB value. 
We then took five samples per step to generate the TMB bins to display. Two adjacent bins shared 5 samples. (C) Scatter plot of TMB measures of individual samples. 
RMSD was calculated using the samples with CDS-based TMB levels between 5 and 30. Panel codes: AGL: Agilent ClearSeq Comprehensive Cancer Panel v2, BRP: 
Burning Rock DX OncoScreen Plus, MSK: Memorial Sloan Kettering MSK-IMPACT 13, QGN: Qiagen Comprehensive cancer panel, ILM: Illumina TruSight Tumor 170, 
IDT: Integrated DNA Technologies xGen Pan-Cancer Panel, IGT: iGeneTech AIOnco-seq.

https://gdc.cancer.gov/about-data/publications/mc3-2017
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gdc.cancer.gov/about-data/publications/mc3-2017). Only 
the PASS mutations in coding sequence (CDS) regions were 
used to estimate the WES-TMBs. For a given TCGA cancer 
sample, the WES-TMB value was calculated by dividing the 
number of a sample’s mutations by the size of the entire CDS 
region in million base pairs (Methods). Considering that a 
medium level (about 1016) of TMB is being used as the bio-
marker for immunotherapy, 1945 TCGA cancer samples with 
WES-TMB values between 5 and 30 were included in this 
study. These samples were enriched with the cancer types 
LUSC, LUAD, SKCM, and BLCA (Supp. Fig. 1). We then 
collected seven widely used targeted panels (Figure 1) and 
took the CDS regions only to estimate the panel-TMBs. The 
panel sizes, in CDS regions, were from 0.3 to 2.6 million base 
pairs (Figure 1(A)). We also created a medium-sized panel by 
merging the six smaller panels, named UNI6, together, which 
was 1.34 Mbps (Figure 1(A)). We then calculated the panel-
TMB values of the 1945 TCGA cancer samples and compared 
them with the WES-TMBs (Methods).

We found that, on average, smaller panels tended to 
report higher TMBs, but the difference between panel-TMB 
and WES-TMB were roughly consistent across different 

TMB levels (Figure 1(B) and Supp. Fig. 2). Other studies also 
reported the pattern of higher TMB values from small pan-
els,14 suggesting the potential mutation enrichment of some 
cancer-relevant genes frequently covered by targeted panels.

Figure 1(C) shows the TMB estimation shifting between 
targeted panels and WES. Larger root mean square devia-
tions (RMSDs) were found with decreasing panel sizes 
(Methods). Results indicated that panel size is one of the 
major effective factors when applying targeted panels for 
TMB evaluation; large differences are expected with small 
panels. On the contrary, with very similar panel sizes, IDT, 
409,996 bps, and ILM, 406,619 bps, the mean RMSDs were 
very different (IDT 9.97 vs ILM 7.91). The results showed 
that the genes the targeted panels covered may also have 
significant impact on TMB estimation.

Comprehensive investigation of TMB estimation 
via simulation analysis

To better understand the effects of panel size as well as the 
genes targeted by panels on TMB estimation, we simulated 
10,000 targeted panels consisting of a large range of numbers 

Figure 2. Assessment of 10,000 simulated panels using COSMIC genes. (a) Simulation workflow. (b) Panel size distribution. (c) Root-mean-square deviation 
(RMSD) measured between TMB by panels and CDS. (d) False-negative rate for identification of responsible patients. (e) Matthews Correlation Coefficient (MCC) 
measurement given TMB 10 as threshold, positive if TMB > 10, negative when TMB ⩽ 10.

https://gdc.cancer.gov/about-data/publications/mc3-2017
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of Catalog Of Somatic Mutations In Cancer (COSMIC) 
genes.18 To mimic the real-world design of targeted panels, 
tier1 and tier2 COSMIC genes which are more relevant to 
cancers were selected with higher probabilities compared 
to those of the other COSMIC genes during the simulation 
processes (Figure 2(A), Methods). As a result, 10,000 panels 
that targeted from 70 genes (panel size 0.2 Mbps) up to 1100 
genes (3.0 Mbps) were generated (Figure 2(B)).

For each simulated panel, the panel-TMB values of the 
1945 TCGA cancer samples with the WES-TMBs between 5 
and 30 were calculated. Next, we compared these panel-TMBs 
and WES-TMBs by the RMSD, false-negative rate (FNR), and 
Matthew’s correlation coefficients (MCC) (Methods). Along 
with the increased panel sizes, we obtained smaller RMSDs, 
lower FNRs (if a sample with WES-TMB was higher than the 
threshold but the panel-TMB was lower), and higher MCCs 
(which measure the performance of classifying the samples 
into low- or high-TMB groups using targeted panels) indi-
cating the better performance by larger panels (Figure 2(C) 
to (E), Methods). More specifically, patients with high-TMB 
levels, (e.g. 10), should be identified correctly because they 
are most likely to benefit from the immune therapy. A lower 
FNR represents less chance that we missed this patient for 
the treatment. Taken together, panels of approximately one 
million base pairs and larger are suitable for TMB evaluation 
and would result in reliable concordance with those of WES.

We observed a pattern of TMB value shift, on average, 
between panel- and WES-TMBs, which was highly correlated 
with panel size from Figure 1(C). To closely investigate this 
TMB shift, we then applied linear regressions to investigate 

the relationships between panel- and WES-TMBs. For each 
panel, 1945 panel-TMBs were used to fit a linear regression 
model to describe the TMB correlations.

TMB TMB iPanel i i WES i. ( , , , , , )= × + = …α β 1 2 3 10 000

With the 10,000 simulated panels, 10,000 slopes (α i) and 
intercepts (βi) were calculated. Consistent with our observa-
tions using the eight targeted panels (Figure 1(C)), the slopes 
were tightly clustered around 1.1, especially for bigger pan-
els (Figure 3(A)). Next, the intercepts versus panel sizes were 
plotted for representing the panel-based TMB estimation 
shift from WES. The shifts were convergent around 1 with 
the increasing panel sizes (>1.2 M, orange dots). The shifts of 
smaller panels (⩽1.2 M, purple dots) were more spread out 
(Figure 3(B)). The eight panels’ intercepts were embedded 
into the plot (red dots). We found that, with the exception 
of AGL, the other targeted panels had large intercepts com-
pared to most of the simulated panels of similar sizes.

Notably, many small panels (<1.2 Mbps) also resulted in 
reasonable small TMB shifts. We then separated the small 
panels into little-shift (0.5 < β  ⩽ 1.5) and massive-shift 
(β  > 1.5) groups to discover the differences. Further inves-
tigation of the genes that made up the panels showed that 
TP53, which usually contains a large number of mutations, 
were highly presented (74.1%, 984/1328) in the massive-shift 
group compared with the little-shift panels (6.8%, 149/2196, 
Supp. Fig. 3). More than 35,000 TP53 mutations were identi-
fied by previous studies in various cancer types and cell 
lines,19 and most cancer samples present some amount of 

Figure 3. Assessment of the correlation between TMB evaluation and panel size by regression analysis. (a) Distribution of the slopes of three groups of various-sized 
panels. Small group, panel size < 1M; medium group, 1M ⩽ panel size < 2M; big group, panel size > 2M. (b) The scatter plot of intercepts fitted by regression and panel 
sizes. Intercepts of the eight targeted panels were added (red). (c) Comparison of the MCCs calculated with original and adjusted TMBs.
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TP53 mutations. We found that the majority of the TCGA 
cancer samples in this study contained one to three muta-
tions within the CDS region of TP53, resulting in a TMB shift 
compared to WES-TMBs.

Therefore, given the purpose of a targeted panel for TMB 
evaluation in clinical applications, we could fix a regres-
sion model using the large number of TCGA cancer samples 
and mutations to estimate the performance of the targeted 
panel and measure the variation between panel-TMB and 
WES-TMB. The same method could also be used to compare 
multiple targeted panels for TMB estimation. Basically, com-
pared with WES-TMB estimation, panels commonly have a 
consistent scale of 1.1 and a shift of around 1 (big panels). 

Large shifts are expected for small panels (Figure 3(B)).  
By adjusting the panel-TMB as below, we can obtain a closer 
assessment of WES-TMB measurement. For example, the 
median MCC was increased to 0.741 from 0.655 with the 
adjusted panel-TMB (Figure 3(C), Supp. Fig. 4).

Adj TMB
TMB

Panel
Panel.
.

=
−1

1 1

Genes targeted by panels differently impact TMB 
estimate

Our previous results showed that same-size targeted pan-
els may report TMBs with large deviations from each other, 

Figure 4. The average gene impacts on TMB estimation. For the genes that impacted at least 45 samples, the majority of them had the impact values greater 
than the median ((A) TMB.diff. (B) TMB.diff.ratio). (C) TMB comparison between WES and the “high-impact panel” on the 665 TCGA LUSC and LUAD samples 
(RMSD = 13.2). Even though this panel is so big, over 4 Mbps, we still observed a large difference in TMB estimation. (D) TMB comparison between WES and the 
“high-impact panel” on the 1945 TCGA samples. TCGA LUSC and LUAD samples were colored as orange.
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potentially due to the different genes covered by the panels. 
To assess the impacts of individual genes on TMB estima-
tion, we calculated the TMB difference by original WES and 
a particular gene excluded from the gene list. Genes are dif-
ferent by cancer types in terms of mutation type and density. 
We therefore first took the TCGA LUSC and LUAD samples 
with original WES-TMB between 5 and 30 (655 samples) for 
the analysis.

We calculated the TMB.diff and TMB.diff.ratio of more 
than 9000 genes that contain at least 10 mutations across 
all TCGA lung cancer samples. The TMB.diff was the abso-
lute TMB value difference before and after a given gene was 
excluded. TMB.diff.ratio was calculated as TMB.diff divided 
by original TMB-WES (Methods). As a result, taking all non-
zero impact values of all samples into account, we observed 
median TMB.diff as 0.0303 and median TMB.diff.ratio as 
0.0024. We then calculated the average gene impact on TMB 
over the 665 TCGA lung cancer samples. Only the non-zero 
values were used in the calculation. We kept and sorted the 
genes that impacted at least 45 samples (non-zero values in 
at least 45 samples) and obtained 746 high-impact genes in 
total. The top 30 genes and the impact values are listed in 
Table1. Many genes, such as TTN, CSMD3, LRP1B, RYR2, 
ZFHX4, and USH2A impacted TMB estimation with both 
TMB.diff and TMB.diff.ratio. The violin plots (Figure 4(A) 
and (B)) showed that most of these genes’ average TMB 
impact was greater than the median values.

To further confirm that these genes could heavily impact 
TMB estimation, we built a “high-impact panel” that targeted 
the 746 genes (4.18 Mbps in CDS) and calculated the TMBs 
using this panel. We applied the high-impact panel to the 
TCGA lung cancer samples and to all samples (WES-TMB 
between 5 and 30), respectively. As shown in Figure 4(C), 
the panel-TMB values based on this panel were much higher 
than those of the WES-TMBs. The RMSD was 13.2 calcu-
lated from the TCGA lung cancer samples. Even though this 
panel was extra large, the RMSD was just similar to targeted 
panels between about 0.25 Mbps (Figure 2(C)), suggesting 
these genes had high impacts on TMB estimation. Notably, 
in Figure 4(D), TCGA lung cancer samples were clearly split 
from other samples based on the TMB differences by the high-
impact panel. The results also suggested the gene impact on 
TMB was cancer type specific.

In addition, we simulated samples with fixed TMB levels 
based on high-TMB TCGA samples and an artificial refer-
ence sample with a high density of mutations. The muta-
tions included in these simulated samples were randomly 
selected. Interestingly, the calculated TMBs of these samples 
were lower than the TMB in the artificial reference sample 
(Supp. Fig. 5 and Discussion). The results further indicated 
that individual genes could have varying impacts on TMB 
estimation. As for a cancer genome, the possibilities of the 
mutations in different genes were not the same; therefore, a 
random selection would not reflect the true distribution of 
mutations.

Discussion

In this study, we used 10,000 simulated targeted panels 
with a large range of sizes to quantitatively investigate the 

potential contributing factors of TMB estimation. We con-
firmed that larger panels would perform well with small 
TMB variations in many cases. However, many outliers, 
well-performing small panels and big panels with large var-
iations based on TCGA mutation data, were also observed. 
We showed that the choice of the targeted genes by panels 
was even more critical than panel size. A big panel may 
show large variations if many high-TMB-impact genes were 
selected. Furthermore, we showed that high-TMB-impact 
genes were cancer type specific. A targeted panel designed 
for other purposes, such as driver mutation detection, may 
not be suitable for TMB estimation. With a given targeted 
panel, use of a number of WES cancer samples, (e.g. TCGA), 
to assess performance before putting it to clinical use is 
recommended.

We showed that TP53 was targeted by many low-per-
forming small panels (<1.2 Mbps), significantly higher than 
in well-performing small panels. We further investigated the 
medium-size panels (1.2–2 Mbps), which are generally con-
sidered well-performing panels and found that 44% of them 
covered TP53. With increased panel sizes, the effect of indi-
vidual genes could be diluted by the big denominator in the 
TMB calculation. That is also why compatible panel-TMBs 
were observed by big panels. However, if a targeted panel 
incidentally consisted of many high-TMB-impact genes, the 
panel size would not help with the TMB estimation.

Table 1. Top 30 impact genes.

Gene name TMB.diff Gene name TMB.diff.ratio

TTN 0.050484 TTN 0.004715
CSMD3 0.049889 CSMD3 0.003955
LRP1B 0.0491 LRP1B 0.003933
RYR2 0.048078 RYR2 0.003847
ZFHX4 0.047281 NFE2 L2 0.003845
USH2A 0.043838 ZFHX4 0.003792
KCNC2 0.042625 FAM135B 0.003738
FAM135B 0.042417 STK11 0.003694
SPTA1 0.042396 SPTA1 0.003624
CDH10 0.042327 OR2M2 0.003538
CCT8L2 0.041785 CDH10 0.00353
FLG 0.041688 MUC16 0.003511
PAPPA2 0.041418 USH2A 0.003494
TRIM58 0.041215 SLITRK2 0.003456
SLIT3 0.040907 PTEN 0.003401
ZNF804A 0.040905 OR2M7 0.003377
MUC16 0.04084 CNTN3 0.003373
CNTN3 0.040788 OR4C12 0.003334
PCDH15 0.040677 ATM 0.003332
FAM47C 0.040674 ZNF804A 0.003324
CNTNAP4 0.040641 NALCN 0.003319
SPEF2 0.040509 OR2 L8 0.003317
OR8I2 0.040428 KRAS 0.003294
KCNA4 0.040367 PRDM9 0.00329
SLITRK2 0.040351 TP53 0.003287
MYH15 0.040296 PIK3CA 0.003287
ZNF536 0.040231 THSD7A 0.003287
PCDH11X 0.040218 ZNF521 0.003278
NALCN 0.04018 C6orf118 0.003274
ASTN1 0.040177 CSMD1 0.003254

TMB: tumor mutational burden.
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To investigate the sample-to-sample variance when meas-
uring TMB by targeted panels, we then performed further 
analyses by simulating cancer samples with a fixed TMB 
level, such as 15. First, we collected 89 TCGA cancer samples 
with high WES-TMBs that are greater than 100 (Supp. Fig. 
6). To perform the simulation, we randomly selected 482 
mutations from each of these high-TMB TCGA samples that 
made the simulated TMB values of each sample equal to 15. 
Multiple samples were generated based on one high-TMB 
TCGA sample and the numbers of samples we simulated 
were determined by the total number of mutations in the 
TCGA samples. We simply generated more samples from a 
TCGA sample with more mutations:

Number of Samples round
N

= ×( )
482

3

where N is the total number of mutations in the given sam-
ple. For instance, the smallest N of these samples that could 
generate 6.8 (3272/482) samples without overlapped muta-
tions was 3272. We then simulated three times more sam-
ples by allowing overlap of mutations. Therefore, this TCGA 
sample was used to simulate 20 new samples with fixed 
TMB equal to 15. As a result, 4643 samples with WES-TMB 
as 15 were simulated for the analysis. The eight targeted 
oncopanels (Supp. Fig. 5a) were then used to calculate the 
panel-TMBs of these 4,643 samples. Bigger panels resulted in 
tighter ranges of panel-TMBs around the median value than 
did smaller panels. Interestingly, the median TMBs were 
consistent (11–12, Supp. Fig. 5a) across all the panels, but 
smaller than the values in theory (15).

We next simulated cancer samples based on reference 
DNA sequencing data generated in our previous studies.20,21 
The variants detected by the six targeted panels AGL, BRP, 
QGN, ILM, IDT, and IGT directly21 were used for TMB cal-
culation. With the extra high variant density in the reference 
sample, which means a high level of TMB, we randomly 
selected 1% from the whole pool of known variants pre-
detected each time and simulated 10,000 samples with fixed 
TMB level equal to 19. We then calculated the TMBs of each 
simulated sample by the six targeted panels and found the 
same patterns; output of panel-TMBs with a median of 15, 
lower than the theoretical TMBs, which were less than 19 
(Supp. Fig. 5b). Also, we noticed that the random selection 
flattened the various impacts of mutated genes. In other 
words, mutations in a real tumor sample do not present with 
uniform possibilities.
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