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Introduction

Curcumin, a naturally occurring biologically active poly-
phenolic compound found in the spice turmeric (Curcuma 
longa), has a rich medicinal history dating back centuries in 
traditional medicine.1 It has been utilized in Ayurvedic and 
Chinese medicine for its therapeutic properties in various 
conditions, including inflammation, pain, digestive disor-
ders, and skin diseases.1,2 Sourced primarily from the rhi-
zomes of the turmeric plant, curcumin belongs to a class of 
compounds known as curcuminoids. Curcumin is a molecule 
that exhibits significant biological activities due to its unique 
composition (Figure 1), which includes a diarylheptanoid, 

a β-diketone, and an α,β-unsaturated β-diketone. These 
properties make curcumin valuable for its antioxidant, 
anti-inflammatory, and anticancer effects. Structurally, 
curcumin is a symmetrical compound, also known as 
diferuloyl methane, and its IUPAC name is (1E,6E)-1,7-
bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione. 
It can be represented by the chemical formula C21H20O6 and 
has a molecular weight of 368.38. Its structure comprises 
three distinct components: two aromatic ring systems that 
incorporate o-methoxy phenolic groups, linked together 
by a seven-carbon chain containing an α,β-unsaturated β-
diketone segment.3 Curcumin is a lipophilic compound and 
therefore for optimal absorption, it is commonly ingested 
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Minireview

Impact Statement

Neurological disorders present a global challenge, 
comprising a significant portion of disease burden 
worldwide. The complex nature of central nerv-
ous system (CNS) diseases demands innovative 
therapeutic approaches. Curcumin’s potential as 
an adjuvant therapy for CNS diseases is hindered 
by its limited bioavailability and blood–brain barrier 
(BBB) permeability. Nanocarrier-mediated curcumin 
delivery holds promise in overcoming these chal-
lenges. This review highlights how nanocarriers can 
enhance curcumin’s therapeutic efficacy by improv-
ing its bioavailability and BBB permeability. This 
approach has the potential to reshape CNS disease 
management, offering synergistic effects with exist-
ing drugs and improving safety profiles. Moreover, 
exploring intranasal curcumin delivery and its utili-
zation as an adjuvant therapy offers novel possibili-
ties for effective CNS disease treatment.
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with lipid-containing meals.4 Upon absorption, curcumin 
binds to multiple cellular targets, including transcription 
factors, enzymes, and receptors, resulting in its diverse bio-
logical effects.4 Curcumin’s interactions with nuclear factor-
kappa B (NF-κB) and cyclooxygenase-2 (COX-2) regulate 
cellular inflammation.5 Curcumin exhibits potent antioxi-
dant characteristics by neutralizing free radicals and miti-
gating reactive oxygen species (ROS)-associated cellular 
damage in various diseases.6,7

The conjugated structure of curcumin, marked by mul-
tiple double bonds, reinforces its antioxidant capacity by 
facilitating oxidation and reduction reactions.3,6 Moreover, 
its abundance of hydroxyl and ketone groups allows interac-
tions with various proteins and enzymes, influencing their 
activity and stability.6 The planar structure of curcumin 
enhances its interactions with other planar molecules, ena-
bling further engagement with receptors and enzymes and 
alteration in their activity/stability.6,8 These molecular fea-
tures collectively are responsible for curcumin’s potential as 
a therapeutic agent to treat a wide range of diseases, includ-
ing cancer, cardiovascular disorders, and neurodegenerative 
conditions.8

Therapeutic spectrum of curcumin

Curcumin has demonstrated promising effects in various 
disease conditions. In cancer, curcumin has been shown to 
inhibit the growth of different types of cancer cells, includ-
ing breast,9 lung,10 and colon cancer.11 Its abilities to induce 
cell death and hinder tumor angiogenesis hold promise for 
cancer therapy. In rheumatoid arthritis, curcumin’s anti-
inflammatory and antioxidant effects have been shown to 
alleviate joint inflammation and oxidative stress by modu-
lating proinflammatory cytokines like TNF-α and IL-1β, and 
increasing anti-inflammatory cytokines such as IL-10.12,13 
Furthermore, curcumin has been demonstrated as beneficial 
effects on inflammatory bowel disease, ameliorating symp-
toms in conditions like Crohn’s disease and ulcerative colitis 
through its anti-inflammatory actions in the gut.14,15 In dia-
betes, curcumin has shown potential in improving insulin 
sensitivity, reducing blood sugar levels, and lowering the 
risk of diabetes development by addressing inflammation 
and oxidative stress.16,17

Besides, curcumin exhibits therapeutic potential in reduc-
ing human immunodeficiency virus (HIV)-associated inflam-
mation and cellular damage by modulating autophagy via 
PI3 K/AKT/IKK/NF-κB signaling.18 Curcumin has been 
shown to counter gp120-induced neuronal apoptosis, safe-
guard synaptic plasticity, reduce ROS levels and microglia-
induced inflammation, and accelerate the degradation of Tat 

protein.19–21 It also inhibits Tat-mediated LTR transactivation 
and HIV-1 virus production.21 These findings suggest cur-
cumin’s potential for mitigating HIV-related inflammation 
and neurotoxicity, warrants further therapeutic exploration 
in HIV treatment. Furthermore, curcumin’s role in cardio-
vascular health has been attributed to its ability to reduce 
inflammation and oxidative stress, as well as its capacity to 
lower the levels of circulating cholesterol and blood pres-
sure.22–24 These findings support the potential of curcumin as 
a versatile therapeutic agent for various disease conditions.

Curcumin’s neurotherapeutic 
applications

The therapeutic potential of curcumin shown in (Figure 2) in 
various brain disorders has been extensively investigated due 
to its anti-inflammatory, antioxidant, and neuroprotective 
properties.25–27 In Alzheimer’s disease (AD), curcumin has 
been shown to inhibit the formation of amyloid plaques and 
improve cognitive function.28,29 The underlying mechanisms 
include modulation in the activity of enzymes involved in 
amyloid metabolism and reduction of neuroinflammation 
via inhibition of neuronal NF-κB signaling.30 Similarly, in 
Parkinson’s disease (PD), curcumin’s anti-inflammatory 
and antioxidant actions have been studied in the context of 
Lewy body formation and motor function improvement.31 
Curcumin’s ability to enhance the activity of antioxidant 
enzymes, such as superoxide dismutase (SOD), glutathione 
peroxidase, and catalase, in brain cells leads to a reduction 
in oxidative stress and neuroprotection.32

Moreover, curcumin’s anti-inflammatory effects have 
been explored in depression, traumatic brain injury (TBI), 
and multiple sclerosis (MS).33,34 In depression, curcumin’s 
ability to inhibit proinflammatory cytokines, such as inter-
leukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), are 
important for its antidepressant activity.35 In TBI, curcumin 
has been shown to attenuate neuroinflammation and reduce 
neuronal damage through the inhibition of the p38/MAPK 
signaling pathway and regulation of pro-/anti-inflamma-
tory mediators.33 Similarly, curcumin’s anti-inflammatory 
actions involving the suppression of immune cell activation 
and reduction of oxidative stress have been suggested as 
potential mechanisms for protecting from myelin and neu-
ron damage in MS.34

Curcumin also holds a therapeutic promise in suppress-
ing HIV-associated neurocognitive disorders (HAND) and 
NeuroAIDS by mitigating neuroinflammation and oxidative 
stress. Previous studies showed that curcumin reduces gp120-
induced inflammation, modulates autophagy, and alters 
various inflammatory signaling pathways.18 Nanoparticles 
comprising curcumin display pain-reducing properties by 
inhibiting the expression of the P2X3 receptor.36 Moreover, it 
regulates HSP70 expression to counteract neuronal apopto-
sis induced by the gp120 V3 loop.37 Curcumin also offers pro-
tection against synaptic plasticity impairment20 and reduces 
HIV-1-mediated apoptosis by curbing ROS production.19 In 
addition, curcumin targets the Tat protein and hinders the 
transactivation and replication of the virus.21 Recent studies 
have linked curcumin’s antioxidant properties with potential 
benefits in schizophrenia, where oxidative stress has been 

Figure 1. Chemical structure of curcumin.
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implicated in the pathogenesis of the disorder.38 Curcumin’s 
ability to scavenge free radicals and upregulate antioxidant 
defenses, such as glutathione (GSH), may play a role in alle-
viating symptoms of schizophrenia.

Challenges in delivering therapeutic 
drugs to the central nervous system

Neurological disorders are the leading cause of disability-
adjusted life-years globally and the second leading cause of 
death worldwide.39 Among them, neurodegenerative dis-
eases (NDDs) pose the most difficult management and are 
characterized by a gradual decline in neurological function 
and neuronal cell death. NDDs, including AD, PD, amyo-
trophic lateral sclerosis (ALS), Huntington’s disease, and 
prion diseases, present a growing health concern world-
wide.39 These diseases share mechanisms involving abnor-
mal accumulation of protein aggregates, which is responsible 
for selective neuronal damage and degeneration in specific 
regions of the central nervous system (CNS).40 Factors such 
as neuroinflammation, aging, oxidative damage, and pro-
tein deposits disrupt neuronal communication, resulting in 
long-term cognitive and motor dysfunction.41 Efforts to slow 
down or halt NDD progression through anti-inflammatory 

drugs, amyloid-targeting agents, and small molecules have 
limited success in alleviating the symptoms and improv-
ing the overall quality of life in patients with these patholo-
gies. Most brain diseases currently lack effective treatment 
options, and future studies are required to find novel drug-
gable targets and develop effective therapeutic strategies.42 
Current drugs for NDDs only slow down the progression of 
the disease but do not reverse its course.43

While systemic drug administration is convenient and 
has high feasibility for long-term brain disorder treatment, 
its therapeutic effect is limited by the suboptimal BBB per-
meability, which prevents most macromolecular and 98% of 
small molecule drugs from entering the brain to maintain 
CNS homeostasis.44 Researchers have explored strategies 
to augment BBB permeability, such as changing osmotic 
pressure and using microbubble fixed-point ultrasound, to 
improve drug penetration across BBB.45,46 However, these 
approaches may simultaneously increase the entry of toxic 
substances into the CNS.47 Another innovative strategy is to 
enhance the penetration abilities of therapeutic substances 
while preserving BBB integrity. The BBB structure or per-
meability can change under pathological conditions, and 
exploiting these changes for designing a drug delivery sys-
tem is a current focus of research.48

Figure 2. Diverse mechanisms of neuroprotection conferred by curcumin in CNS diseases.
This figure highlights curcumin’s anti-inflammatory effects, antioxidant properties, reduction of degeneration, and support for neuronal regeneration to maintain 
neuronal health against CNS diseases.
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The effective treatment of brain diseases remains chal-
lenging due to complex underlying mechanisms and limited 
therapeutic options. While advances in targeted delivery 
systems offer hope for more efficient drug delivery to 
the brain, significant challenges persist. These challenges 
include suboptimal BBB permeability, fine-tuning secondary 
targeting within the brain, designing systems for specific dis-
ease microenvironments, and achieving optimal therapeutic 
effects through modulation of the disease microenvironment.

Overcoming limited CNS delivery: 
harnessing novel strategies for 
enhanced therapeutic efficacy

Nanomedicine-based drug delivery systems have emerged 
as a promising strategy to surmount the limitation with sub-
optimal BBB permeability.47 These systems offer the poten-
tial to enhance the pharmacokinetic profile of therapeutic 
drugs, optimizing drug concentration within the brain and 
augmenting therapeutic outcomes.49 Nanocarriers, such as 
liposomes, micelles, inorganic nanoparticles, hybrid nano-
particles, and exosomes, have garnered substantial inter-
est in preclinical studies for their capacity to traverse the 
BBB and transport drugs to the CNS, thereby increasing 
drug availability at the target site.47,49 This nanotechnology-
driven approach holds the promise of reducing nonspecific 
accumulation while enabling targeted delivery, thereby 
enhancing therapeutic precision and efficacy.49 Recent 
advancements in targeting technology have led to investiga-
tions into the secondary targeting effects of nanomedicines 
beyond BBB permeability, including the potential to target 
specific cells or even organelles at the subcellular level.50 
These multifaceted approaches offer the potential for con-
trolled, on-demand drug release tailored to the specific dis-
ease microenvironment.

In the pursuit of more effective CNS disease treatments, 
adjuvant therapy using nutraceuticals has garnered atten-
tion, particularly due to its ability to enhance therapeutic 
responses.51,52 Among these, curcumin has emerged as a 
promising candidate for CNS disorders due to its therapeutic 
activity against them as discussed in the previous section.6,8 
Importantly, curcumin’s role as a modulator of the multi-
drug resistance protein P-glycoprotein (Pgp), a key efflux 
transporter at the BBB, offers a unique avenue for addressing 
CNS drug delivery limitations.53 Pgp plays a pivotal role in 
extruding various compounds from the brain, thus limiting 
their accumulation and potential neurotoxicity. Curcumin’s 
ability to suppress Pgp expression suggests its potential to 
overcome drug efflux barriers at the BBB. Thus, the utiliza-
tion of curcumin not only enhances the BBB permeability 
of drugs for the treatment of CNS diseases, but it will also 
enhance target cellular concentration by inhibiting cellular 
Pgp expression. Furthermore, the utilization of novel nano-
carrier-based delivery systems for curcumin holds prom-
ise for overcoming limited CNS delivery of curcumin and 
enhancing its therapeutic efficacy. Thus, the diverse activities 
of curcumin, coupled with its potential to modulate Pgp-
mediated efflux, make it an ideal candidate for addressing 
CNS drug delivery challenges in the treatment of various 
CNS diseases.

Optimizing curcumin for neurological 
health: innovations to improve 
bioavailability and CNS delivery

Despite its remarkable efficacy and safety profile, curcumin 
has not yet been authorized as a drug due to its poor gut 
absorption, rapid metabolism, and systemic elimination, 
leading to its limited bioavailability. The hydrophobic nature 
of curcumin, characterized by a logP of approximately 3.2, 
renders it practically insoluble in water at >30 nM.3 As a 
result, curcumin exhibits a short half-life, with studies 
reporting a mere 10-min half-life at a pH 7.4.54 In mouse 
models, both intravenous and oral administration of cur-
cumin resulted in rapid declines in its plasma concentrations 
within hours.4 Even with oral administration of a significant 
dose (1.0 g/kg body weight), plasma levels peak at 0.22 μg/
mL after one hour and fall below detectable levels by six 
hours.4 Similar patterns were observed with intraperitoneal 
administration. These findings underscore the formidable 
challenge of sustaining therapeutic levels of curcumin in 
the bloodstream for a meaningful duration. The limitations 
in curcumin’s bioavailability and pharmacokinetics have 
direct implications for achieving effective CNS delivery. 
Furthermore, due to its relatively large structure and hydro-
phobic nature, curcumin has suboptimal BBB permeability.3 
The intricate interplay between curcumin’s limited phar-
macokinetic profile and the complexities of CNS delivery 
necessitates innovative approaches to enhance its solubil-
ity, stability, and retention in the bloodstream, thereby ena-
bling its efficient transport across the BBB. Addressing these 
limitations through innovative formulation approaches and 
targeted delivery strategies is crucial for harnessing curcum-
in’s full therapeutic potential in the context of CNS-related 
pathologies.

In recent decades, extensive research efforts have focused 
on addressing the challenges associated with reduced cur-
cumin bioavailability. Nanoparticles, micelles, and liposomes 
have emerged as promising solutions to enhance the aqueous 
dispersibility of hydrophobic drugs like curcumin, which 
inherently suffer from low solubility in their native forms.55 
By encapsulating curcumin within nanoformulations, 
researchers have harnessed several advantages. These nano-
carriers, with sizes typically ranging from 1 to 100 nm offer 
a high surface area-to-volume ratio.56 This unique feature 
contributes to elevating both the solubility and dissolution 
rate of drugs. Moreover, the reduced particle size extends the 
drug’s presence in the systemic circulation, facilitating tar-
geted drug delivery and enabling efficient transport across 
the BBB. Studies have demonstrated that nano-curcumin 
exhibits significantly higher bioavailability compared to con-
ventional formulations, potentially up to ninefold higher in 
vivo.57 The smaller aggregation size of nano-curcumin ena-
bles better tissue penetration. These nanocarriers, designed 
to migrate and home in various tissues, minimize the risk of 
invasiveness while offering enhanced therapeutic potential.

Researchers have utilized diverse nanocarriers (Figure 3) 
for delivering nano-curcumin, including chitosan, magnetic 
nanocomposites, polymer nanocomposites, and montmoril-
lonite.56 Importantly, curcumin’s safety profile is well-estab-
lished, with the US Food and Drug Administration (FDA) 
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classifying it as “generally recognized as safe.”58 Nano-
curcumin’s safety and tolerability have been highlighted in 
human studies, with reported adverse effects being gener-
ally mild and manageable. In the context of neurological 
diseases, nano-curcumin has emerged as a promising avenue 
for potential therapeutic intervention for AD, PD, HD, MS, 
epilepsy, and ALS. These investigations have shed light on 
the potential efficacy of nano-curcumin in clinical applica-
tions, offering renewed hope for addressing complex neu-
rological challenges.

Therapeutic breakthroughs with nano-
curcumin in preclinical studies

Nano-curcumin’s diverse applications outside the 
CNS

Table 1 presents a comprehensive overview of therapeutic 
outcomes from diverse curcumin formulations that were 
tested in various animal models that target distinct disease 
conditions. These studies collectively emphasize the multi-
faceted potential of curcumin as a therapeutic agent across 
a broad spectrum of health concerns. Nanoformulations of 
curcumin have demonstrated significant potential in vari-
ous cancer models. Curcumin-loaded poly(lactic-co-glycolic 
acid) (PLGA) nanoparticles exhibited improved solubility, 
anticancer activity, and reduced hypoxic microenvironment 

in breast and lung cancer cells.59 ZnO-PBA-Curcumin nano-
particles induced apoptotic cell death in breast cancer cells 
via oxidative stress and mitochondrial damage.60 Silver nan-
oparticle-loaded cellulose hydrogel with curcumin demon-
strated potent antimicrobial activity against Staphylococcus 
aureus, Pseudomonas aeruginosa, and Candida auris in chronic 
wounds.61 Infectious diseases were tackled through inno-
vative strategies like mannosylated chitosan nanoparticles 
targeting leishmaniasis, and PVA/Chi/ZnO-Cur patches aid-
ing wound healing.62,63 Both studies underscore curcumin’s 
potential in targeted drug delivery and antimicrobial activity.

Nano-curcumin’s potential for CNS applications

Several studies highlight the versatility and potential of nano-
curcumin formulations in addressing various aspects of neu-
rological disorders, ranging from anti-inflammatory effects 
and antioxidative properties to enhanced drug delivery and 
targeted action within the CNS (Table 2). In the context of 
subarachnoid hemorrhage-induced early brain injury, studies 
have explored the potential of PLGA nanoparticles loaded 
with curcumin. These nanoparticles have demonstrated a 
significant reduction in the expression of NF-κB (p65) in a rat 
model of double hemorrhage, indicating their ability to miti-
gate neuroinflammation, a common feature in brain injury 
scenarios.64 Moreover, another study using the same PLGA 
nanoparticle formulation observed improved neurological 

Figure 3. Approaches for targeted curcumin delivery in CNS disease therapy.
The figure show diverse strategies to enhance curcumin’s delivery to the CNS, including polymeric nanoparticles, nanomicelle, liposomal encapsulation, and 
extracellular vesicles (EVs)/exosomes. The technology of conjugation with brain-targeting ligands has been used in this field to promote the target delivery of 
curcumin in the CNS.
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Table 1. Applications of nano-curcumin in preclinical studies: non-CNS.

CUR formulation Animal – study model Disease condition Major findings Ref

PLGA-NP C57BL/6 mice – cerebral 
malaria

Cerebral malaria ↑ therapeutic index Dende et al.99

PLGA-NP Swiss male albino mice 
malaria model

Malaria ↑ antiplasmodial activity and safety Busari et al.100

PLGA-NPs in 
hydrogel

C57/BL6 mice – Psoriatic 
skin preparation

Psoriasis ↑ anti-psoriasis activity Sun et al.101

Mannosylated 
chitosan NPs

Rat model of leishmaniasis Leishmaniasis ↑ targeting to macrophages Chaubey et al.62

PVP nano-CUR BALB/c mice Oral candidiasis ↑ antifungal effect
↓ candida colonies

Anwar et al.102

Solid lipid NPs BALB/c mice
Rat model of asthma

Asthma ↑ PK parameters:
↓ airway hyperresponsiveness, 
inflammation, and T-helper-2-type 
cytokines expression

Wang et al.103

Polyphosphazene 
nano-CUR

Mice with acute lung injury Acute lung injury ↓ ALI inflammation, cytokines, ROS Su et al.104

Nano-CUR Rats exposed to inhaled 
paraquat

Acute lung injury ↑ lung function, antioxidant and anti-
inflammatory activity

Ghasemi et al.105

Gal-POPC/Cur and 
Gal-DOTAP/siPTTG1 
liposomes

Nude mice with human Huh-
7 xenografts

Hepatocellular 
carcinoma

↑ tumor inhibition, Caspase-3
↓ Bcl-2 gene expression, HCC 
treatment

Kim et al.106

Nano-liposomes Zebrafish Cancer ↑ CUR and TET solubility, efficacy, 
and safety.
Strong inhibitory effect on cancer 
cells.

Song et al.107

PLGA NPs Orthotopic mouse model of 
cervical cancer

Cervical cancer ↓ cell growth
↑ apoptosis and cell cycle arrest

Zaman et al.108

PLGA-DSPE-PEG 
hybrid NPs

RG2 tumor model (rats) Glioblastoma ↓ tumor volume Orunoglu69

PLGA NPs MDA-MB-231 and A549 cell 
lines

Breast and lung cancer 10-fold ↑ in solubility threefold ↑ in 
anticancer activity

Khan et al.59

HSA-NPs Breast cancer cell lines Chemotherapy-resistant 
cancer

↓ CUR solubility, stability, and 
anticancer effects

Matloubi and 
Hassan109

ZnO-PBA-NPs Ehrlich ascites carcinoma 
tumor-bearing mice

Breast cancer ↑ Targeted delivery
↓ tumor growth without systemic 
toxicity

Kundu60

Ag NPs MM-138, FM-55, and MCF-7 
cell lines

Melanoma and breast 
cancer

↑ anticancer activities Ali et al.110

Chitosan/Hyaluronic 
Acid NPs

Glioblastoma cell culture Glioblastoma ↑ Efficient drug delivery, controlled 
release, cell killing, NGF-driven nerve 
growth.

Sabourian et al.111

PVA/Chi/ZnO patch Wistar albino rats model of 
wound

Wound healing ↑ antimicrobial activity, sustained 
drug release
↑ biocompatibility

Niranjan et al.63

C-alginate – 
nanomicelle

Rats Colorectal wound 
healing

↑ GI wound healing through collagen 
induction
↓ bacterial activity

Zhang and Zhang112

Gelatin/CUR 
nanofiber membrane

BALB/c mice Cartilage formation promote thicker, homogenized 
cartilage.

Kang et al.113

CUR/gelatin – 
nanofibrous mats

Rat skin wound model Acute wounds ↑ wound healing, persistent 
inhibition of inflammatory response ↑ 
regenerative process.

Dai et al.114

PVA/Chi/CUR patch Wistar rats Epidermal wounds ↑ cell proliferation, antibacterial activity 
against major bacterial strains
↑ wound healing

Niranjan et al.73

CUR/TiO2—chitosan 
scaffolds

MRSA-infected wound 
healing

Infected wounds ↑ antibacterial activity against Gram 
+ve and Gram −ve bacteria
↑ wound healing

Marulasiddeshwara 
et al.115

Cellulose nano 
crystals loaded 
chitosan films with 
CUR/Ag NPs

Rabbit model of Skin 
irritation, Rat model of 
Wound.

Skin irritation, Wound 
healing

zero skin irritation
↑ wound healing

Bajpai et al.74

Ag NPs-loaded 
bacterial cellulose 
hydrogel

Antimicrobial test against P. 
aeruginosa, S. aureus, and 
C. auris

Chronic wounds ↑ cytocompatibility and antimicrobial 
activity against P. aeruginosa, S. 
aureus, and C. auris

Gupta et al.61

(Continued)
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function in a rat model of subarachnoid hemorrhage-induced 
early brain injury.65 In the realm of AD, novel nanosystems 
have emerged as potential therapeutic interventions. T807/
TPP-RBC-NPs loaded with curcumin have been investigated 
for their antioxidative effects in AD.66 By specifically target-
ing neuronal mitochondria, these nanosystems hold promise 
in alleviating AD symptoms and addressing the underlying 
oxidative stress. Furthermore, a self-nanomicellizing solid 
dispersion formulation of curcumin demonstrated cognitive 
function improvement and enhanced cellular uptake in a 
transgenic AD mouse model.67 Nano-curcumin formulations 
have also been explored in the context of PD. Curcumin-
loaded polysorbate 80-modified cerasome nanoparticles have 
exhibited enhanced delivery to brain cell nuclei via BBB open-
ing and ultrasound-mediated microbubble destruction.68 This 
approach has shown improvement in motor behaviors and 
dopamine levels in a mouse model of PD. In highly aggres-
sive brain cancer glioblastoma, various nano-curcumin 
formulations have revealed potential therapeutic effects. 
Curcumin-loaded PLGA-1, 2-distearoyl-sn-glycero-3-phos-
phoethanolamine-Poly(ethylene glycol) hybrid nanoparticles 
reduce tumor volume when administered intratumorally in 
an RG2 tumor model.69 These nanoparticles present a prom-
ising strategy for targeting and treating glioblastoma. In 
addition, PLGA nanoparticles loaded with Aβ generation 
inhibitor S1 (PQVGHL peptide) and curcumin improved spa-
tial memory, reduced amyloid-beta, and enhanced antioxi-
dant activity in a transgenic AD mouse model.70

Nano-curcumin in clinical trials: a promising 
adjunctive approach

Table 3 compiles various clinical trials investigating the 
effects of different curcumin formulations on various health 
conditions. Curcumin has garnered attention for its poten-
tial therapeutic properties, and these clinical trials aim to 
shed light on its effectiveness in improving various health 
outcomes. One intriguing study focuses on the use of 
nano-curcumin in COVID-19 patients. In a double-blind, 
placebo-controlled trial involving 60 hospitalized COVID-
19 patients, nano-curcumin supplementation led to signif-
icant reductions in key inflammatory markers, including 
C-reactive protein (CRP), IL-6, and IL-1β.71 Notably, nano-
curcumin treatment demonstrated the potential to modulate 
immune response, which could be crucial in managing the 
hyperinflammatory state associated with severe COVID-19 
infection. In patients with metabolic syndrome, a condition 
marked by a cluster of risk factors for cardiovascular disease, 
nanomicelle curcumin supplementation proved beneficial.72 
This study, involving 50 patients with metabolic syndrome, 
highlighted the role of curcumin in improving serum tri-
glyceride levels. This finding is significant as elevated tri-
glyceride levels are the hallmark of metabolic syndrome and 
it is associated with an increased risk of atherosclerotic car-
diovascular disease. The clinical trial involving nanomicelle 
curcumin therapy in metabolic syndrome patients suggests 
an improvement in serum triglyceride profile, indicating 
its potential as a complementary therapeutic option with 

CUR formulation Animal – study model Disease condition Major findings Ref

CUR-silica NPs Antimicrobial test against P. 
aeruginosa, S. aureus

Multidrug resistant 
bacterial infections, 
Chronic wound infection

↑ antimicrobial activity against P. 
aeruginosa, S. aureus in planktonic 
and biofilm forms
No cytotoxicity

Mirzahosseinipour 
et al.116

Nanostructured lipid 
carriers

Streptozotocin induced 
diabetic rat model

Chronic wound ↑ wound closure
↑ antioxidant enzyme activity

Mirzahosseinipour 
et al.117

CUR-silica NPs BALB/c mice burn model Burn wounds, infection ⊥ in vitro growth of MRSA and P. 
aeruginosa
↑ wound healing

Krausz et al.118

HAp with 
curcuminoids 
and 5-fluorouracil 
nanocomposite

SKOV-3 and HepG2 model 
cell lines

Cytotoxicity ↑ intake of biologically active 
compounds in HAp.

Nguyen et al.119

Nano-CUR Rat (Wistar) Varicocele ↑ sperm motility
↓ abnormal morphology

Sadraei et al.120

CUR and Resveratrol 
Nanoemulsion

Rat (Albino) Protein-deficient 
diet (PDD)-induced 
hyperammonemia

↓ ammonia levels
↑ liver and brain function

Nasr et al.121

PLGA-NPs RIN-m5F cells; Sprague 
Dawley Rats

Type 1 diabetes mellitus ↑ oral bioavailability
↓ glucose levels
↓ inflammation, and apoptosis in 
pancreatic islets
↑ beta cell function

Ganugula et al.122

CUR-loaded pluronic 
nanomicelles

Rat model of streptozotocin-
induced diabetes

Diabetes ↑ solubility and bioavailability, 
optimal redox balance, alleviation of 
streptozotocin-induced β-cell damage.

El-Far et al.123

CNS: central nervous system; CUR: curcumin; PLGA: poly(lactic-co-glycolic acid); NP: nano particle; ↑: increased/improved; ↓: decreased/reduced; PVP: 
polyvinylpyrrolidone; ROS: reactive oxygen species; Ag: silver; ⊥: inhibition; PK: pharmacokinetic; ALI: acute lung injury; HCC: hepatocellular carcinoma; TET: 
tetrandrine; DSPE- PEG : 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol); RG-2: rat glioma 2; MDA-MB-231: human breast cancer cell line; 
HAS: human serum albumin; PBA: phenyl boronic acid; NGF: nerve growth factor; GI: gastrointestinal; MRSA: methicillin-resistant staphylococcus aureus; HAp: 
hydroxyapatite; SKOV-3: human ovarian cancer cell line.

Table 1. (Continued)
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other lipid-lowering drugs.72 Wound healing and dermato-
logical applications were addressed by various formulations 
such as PVA/Chi/Cur patches and cellulose nano crystals 
loaded with chitosan films.73,74 These studies demonstrated 
enhanced wound healing properties, antimicrobial activity, 
and potential for skin regeneration.

Curcumin’s potential also extends to addressing mental 
health concerns. A study involving 80 patients with diabetes 
and depression showed that nano-curcumin supplementa-
tion effectively reduced depression and anxiety scores in 
patients with diabetic polyneuropathy.75 This suggests that 
curcumin’s anti-inflammatory and neuroprotective proper-
ties may contribute to alleviating mental health symptoms in 
diabetic individuals. In the realm of chronic conditions, the 
trials explore curcumin’s impact on migraines and studies 
investigated a combination of omega-3 fatty acids and nano-
curcumin in 80 episodic migraine patients. The combination 
therapy not only reduced the frequency of attack but also 
downregulated the expression of proinflammatory genes, 

indicating curcumin’s anti-migraine effects.76 Liver health 
is another area of interest, with studies focusing on non-
alcoholic fatty liver disease (NAFLD). In a randomized, dou-
ble-blind, placebo-controlled trial involving overweight/
obese patients with NAFLD, nano-curcumin supplementa-
tion significantly improved glucose indices, including fast-
ing blood sugar (FBS) and glycated hemoglobin (HbA1c).77 
These findings suggest a potential role for curcumin in man-
aging metabolic parameters associated with NAFLD. The 
trials collectively demonstrate the promising potential of 
nano-curcumin as an adjunct therapy across various health 
conditions. Its ability to modulate inflammatory responses, 
improve metabolic markers, and alleviate symptoms in 
conditions like migraines and fatty liver disease indicates 
a versatile therapeutic role. From COVID-19 to metabolic 
syndrome, migraines, and liver diseases, nanoformulated 
curcumin demonstrates promising effects on inflammatory 
markers, metabolic profiles, and symptom relief. As research 
in this field advances, curcumin’s role as a complementary 

Table 2. Applications of nano-curcumin in preclinical studies: CNS

CUR formulation Animal-study model Disease condition Major findings Ref

PLGA-NP SD rats – SAH-induced EBI Brain injury ↓ bio-expression of NF-κB (p65) Chang et al.64

PLGA-NP SD rats – SAH-induced EBI Brain injury ↑ neurological function Zhang et al.65

T807/TPP-RBC-NPs Rat primary brain 
microvascular endothelial 
cells and primary astrocytes; 
ICR mice and SD rats

AD ↓ AD symptoms via antioxidative 
effects.

Gao et al.66

self-nanomicellizing 
solid dispersion

Transgenic AD (APPSwe/
PS1deE9) mice

AD ↑ cognitive functions, ↑ cellular 
uptake exhibits safety

Zhang et al.67

CS-BSA NPs Brain microvascular 
endothelial cell line, hCMEC/
D3; RAW 264.7 cells

AD ↑ BBB penetration
↑ microglia activation
↑ Aβ peptide phagocytosis ⊥ 
inflammatory signaling

Yang et al.124

Polymeric NPs 
(NanoCurc™)

Athymic mice AD ↑ CUR bioavailability, protects 
against ROS-mediated insults
↓ H2O2 levels
↓ caspase activities
↑ GSH concentrations

Ray et al.125

Lipid-core 
nanocapsules

Aged female mice AD ↑ neuroprotection against Aβ1-42-
induced cognitive deficit
↑ inflammatory cytokine

Giacomeli et al.126

AmyloLipid 
nanovesicles

SD rats Brain delivery ↑ brain targeting Sintov127

PLGA-NPs Transgenic AD mice AD ↑ spatial memory
↓ Aβ, ROS, TNF-α, IL-6
↑ SOD and synapse numbers

Huang et al.70

PLGA-NPs Transgenic AD mice AD ↓ Aβ load
↑ memory deficiency

Huo et al.128

Polysorbate 
80-modified cerasome 
NPs

MPTP-induced PD mice PD ↑ delivery to brain nuclei via BBB 
opening and UTMD
↑ motor behaviors, DA levels, and 
TH expression

Zhang et al.68

Glyceryl monooleate 
NPs

PD mouse model PD ↑ inhibition of αS protein 
aggregation
↓ rotenone-induced toxicity, 
oxidative stress, and apoptosis

Kundu et al.129

Lactoferrin NPs SK-N-SH cell line PD ↑ intracellular drug uptake 
sustained retention
↑ neuroprotection

Bollimpelli et al.130

CNS: central nervous system; CUR: curcumin; PLGA: poly(lactic-co-glycolic acid); NP: nano particle; SD: rat – Sprague Dawley Rat; ↓: decreased/reduced; ↑: 
increased/improved; AD: Alzheimer’s disease: ⊥: inhibition; ROS: reactive oxygen species; BBB: blood–brain barrier; GSH: glutathione; ROS: reactive oxygen species; 
TNF-α: tumor necrosis factor-alpha; IL-6: interleukin-6; SOD: superoxide dismutase; PD: Parkinson’s disease; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 
EBI: early brain injury; SAH: subarachnoid hemorrhage; T807: 7-(6-nitropyridin-3-yl)−5H-pyrido[4,3-b]indole; TPP: triphenylphosphine; RBC: Red blood cell; CS-BSA: 
chitosan-bovine serum albumin; RAW 264.7 cells- macrophage cell line; UTMD: ultrasound-targeted microbubble destruction; DA: dopamine; TH: tyrosine hydroxylase; 
SK-N-SH: human neuroblastoma cell line.
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Table 3. Summary of clinical trials exploring nano-curcumin.

CUR formulation Disease condition Major findings Ref

Nano-CUR COVID-19 ↓ IL-6 and IL-1β mRNA expression and 
cytokine secretion

Valizadeh et al.71

Nanomicelle curcumin Metabolic Syndrome (MetS) ↑ serum TG levels Bateni et al.72

Nano-CUR Depression in patients with diabetic 
polyneuropathy

↓ depression and anxiety scores Asadi et al.75

CUR Nanomicelles COVID-19 ↑ immune response Hassaniazad et al.131

Nano-CUR supplementation Sepsis ↓ WBCs, neutrophils, platelets, ESR, 
and IL-8
↑ total lymphocyte count

Naeini et al.132

Nano-CUR supplementation Mild-to-moderate hospitalized 
COVID-19 patients

↓ mRNA expression of IFN-γ and TNF-α
differences in IFN-γ, IL-1β, and IL-6 
expression and serum levels of IL-1β

Asadirad et al.133

Nano-CUR supplementation Obese and overweight patients with 
migraine

↓ MCP-1 serum levels
↓ in headache attack frequencies, 
severity, and duration

Sedighiyan et al.134

Nano-CUR supplementation Critically ill patients with sepsis ↑ inflammatory markers, endothelial 
function, oxidative stress
↓ SOFA score and ventilation duration.

Karimi et al.135

Nano-CUR Radiation-induced skin reactions in 
breast cancer patients

↑ radiation-induced skin toxicity
↓ patient-reported pain.

Talakesh et al.136

Nano-CUR Oral lichen planus (OLP) No significant difference Kia et al.137

Nano-CUR and CoQ10 Migraine Synergistic effect on clinical features of 
migraine.

Parohan et al. 138

Nano-CUR supplementation Migraine ↑ IL-4 gene expression and serum levels Djalali et al.139

Nano-CUR supplementation Migraine ↑ adiponectin
↓ headache frequency/severity/ duration 
in migraines

Sedighiyan et al.140

Nano-CUR Migraine ↓ IL-17 levels/expression Djalali et al.141

Nano-CUR Diabetic Sensorimotor 
Polyneuropathy (DSPN) in Type 2 
diabetes mellitus

↓ HbA1c, FBS, total neuropathy score, 
reflex score, and temperature

Asadi et al.142

Nano-CUR Hemodialysis ↓ inflammation, hs-CRP levels, and 
adhesion molecules (ICAM-1, VCAM-1)

Vafadar et al.143

Nano-CUR Diabetes on hemodialysis ↓ fasting glucose, insulin levels, lipid 
levels, hs-CRP, and oxidative stress 
markers
↑ TAC and nitrite levels, ↑Improved 
metabolic profile.

Shafabakhsh et al.144

Nano-CUR Type 2 diabetes with mild to 
moderate coronary artery disease

↓ inflammation (hs-CRP) and lipid 
metabolism disruption (LipoPr (a))

Dastani et al.145

ω-3 fatty acids, Nano-CUR Episodic migraine ↓ serum levels and gene expression of 
VCAM
Combination showed pronounced effect

Abdolahi et al.76

ω-3 fatty acids and nano-CUR Migraine ↓ attack frequency synergistically and 
serum IL-1β levels

Honarvar et al.146

CUR Nanomicelles Coronary heart disease ↑lipid profile, oxidative stress factors and 
inflammatory markers

Helli et al.147

ω-3 Fatty Acids, Nano-CUR Migraine ↓ COX-2/iNOS gene expression ↓serum 
levels
↓ frequency, severity, and duration of 
headaches

Abdolahi et al.148

ω-3 Fatty Acids, Nano-CUR Migraine ↓ IL-6 gene expression
↓ serum IL-6 and hs-CRP levels

Abdolahi et al.149

ω-3 Fatty Acids, Nano-CUR Migraine ↓ TNF-α gene expression
↓ serum TNF-α levels

Abdolahi et al.150

ω-3 Fatty Acids, Nano-CUR Migraine ↓ ICAM-1 serum levels and attack 
frequency

Soveyd et al. 151

Theracurmin (colloidal CUR NPs) Oral bioavailability study 27-fold ↑ bioavailability Sasaki et al.152

CUR Mouthwash (0.1% 
w/v) and CUR-Nanocapsule 
(SinaCurcumin®40)

Radiotherapy-induced oral 
mucositis

↓ severity and pain of radiation-induced 
oral mucositis with higher ulcer-free rates 
than placebo.

Ramezani et al.153

1% and 2% CUR Nanomicelle Gel Recurrent Aphthous Stomatitis 
(RAS)

1% Curcumin nanomicelle gel:↑ efficacy 
in pain reduction 2% Curcumin gel: 
↑ reduction in lesion size and overall 
healing

Bakhshi et al.154

(Continued)
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therapy may become more defined, offering a natural and 
accessible option for improving various treatment outcomes.

Extracellular vesicles-mediated 
curcumin delivery: advancing 
treatments

The use of extracellular vesicles (EVs), natural nanoparticles 
that are secreted from our cells into biofluids, as nanocarriers 
in non-neuronal conditions is also being investigated. EVs 
have been found to improve the delivery of therapeutic inter-
vention, as well as, they serve as biomarkers in liver diseases. 
In a recent review, Wang et al.78 found that EVs can serve 
as cautionary biomarkers, diagnostic and prognostic tools, 
and a possible mode for treating liver failure by encourag-
ing hepatocyte regeneration and proliferation through vari-
ous pathways. However, in the case of sepsis, Homma et al.79 
noted that in a sheep model of sepsis, EVs derived from bone 
marrow mesenchymal stem cells were not capable of lessen-
ing the “severity of multiorgan dysfunction” associated with 
sepsis. Osteoporosis is another condition in which the use 
of EVs as treatment being considered. In a recent review, He 
et al.80 reported that, in mouse models, EVs derived from bone 
marrow can increase bone mass, enhance the microarchitec-
ture of the bone matrix, and promote bone strength.

EVs loaded with curcumin are also being investigated in 
non-neuronal conditions, such as rheumatoid arthritis and 
hyperhomocysteinemia. In the case of rheumatoid arthritis, 
He et al.81 found that loading curcumin onto EVs/exosomes 
helped stabilize curcumin. The curcumin-loaded exosomes 
(Curc-Exos) were found to aid in decreasing the production 
of anti-apoptotic proteins, such as IAP1 and IAP2. Curc-Exos 

was also noted to have anti-inflammatory properties, as it 
decreased inflammatory mediators, such as IL-6, TNF-α, 
MMP1, and PGE2. These findings indicated that Curc-Exos 
should be considered further as a treatment option for rheu-
matoid arthritis. Regarding hyperhomocysteinemia, Kalani 
et al.82 used hyperhomocysteinemia in mouse models as a 
representation of a disrupted BBB. The results showed that 
cells treated with Curc-Exos had decreased oxidative stress 
and endothelial cell layer permeability.

EVs/exosomes are of particular interest to deliver cur-
cumin for the treatment of CNS and other neuronal condi-
tions, especially because EVs can cross the BBB.83 In the case 
of PD, Upadhya and Shetty84 showed that EVs can release 
pathologic miRNAs and/or proteins, which can cause the 
progression of the disease state. Liu et al.85 investigated the 
use of curcumin as a part of the rabies virus glycoprotein 
(RVG) peptide–modified exosome (EXO) curcumin/phe-
nylboronic acid-poly(2-(dimethylamino)ethyl acrylate) nan-
oparticle/small interfering RNA targeting SNCA (REXO-C/
ANP/S). This delivery system can cross the BBB and deliver 
the drug to the neurons involved in the pathologic process. 
The study found that REXO-C/ANP/S serves as a “nano 
scavenger” to aid in diminishing alpha-synuclein aggre-
gates. The study also found reduced motor deficits in the 
mouse models. A recent study by Mohabat et al.86 investi-
gated the use of curcumin-loaded exosomes derived from 
human endometrial stem cells (hEnSCs EXOs-Cur) and 
reported that hEnSCs EXOs-Cur can penetrate the BBB, 
reduce alpha-synuclein aggregates, and lessen neural cell 
death. These studies suggest that the anti-inflammatory and 
antioxidant effects of curcumin can attenuate the pathologic 
processes associated with PD.

CUR formulation Disease condition Major findings Ref

CUR-Containing Nanomicelles COVID-19 ↓ IFN-γ and IL-17 levels
↑ IL-4 and TGF-β levels, and accelerated 
recovery in COVID-19 patients

Hassaniazad et al.155

Nano-CUR capsule Knee osteoarthritis ↑ overall symptoms, pain, stiffness, and 
physical activity

Hashemzadeh et al.156

Nano-CUR Cystic fibrosis ↓ hs-CRP and fecal calprotectin levels
↑ IL-10 levels
↑ improved quality of life
↓ Pseudomonas colonies
↑ weight

Talebi et al.157

Nano-CUR supplementation Mild and moderate acute 
pancreatitis

↓ GI ward length of stay
↓ need for analgesics
↑appetite score

Chegini et al.158

Nano-micellar CUR Benign prostatic hyperplasia ↑ International Prostate Symptoms Score Karami et al.159

Nano-CUR oral soft gels COVID-19 (moderate-severe) ↑chest CT scores, oxygen saturation 
levels, and hospitalization duration

Sadeghizadeh et al.160

Nano-CUR capsule Oral leukoplakia ↓ lesion size, number of lesions, and 
disease staging
↑ serum SOD levels.

Deb et al.161

Nano-CUR supplementation Metabolic syndrome ↑ IL-10 and BDNF levels
↓ in IL-6 levels.

Osali162

Nano-CUR supplementation Non-alcoholic fatty liver disease ↑ glucose indices, including fasting blood 
sugar and HbA1c.

Jazayeri-Tehrani 
et al.77

CNS: central nervous system; CUR: curcumin; PLGA: poly(lactic-co-glycolic acid); NP: nano particle; ↓: decreased/reduced; IL-6: interleukin-6; ↑: increased/improved; 
WBC: white blood cells; FBS: including fasting blood sugar; CRP: C-reactive protein; SOD: superoxide dismutase; TG: triglyceride; ESR: erythrocyte sedimentation 
rate; MCP-1: monocyte chemoattractant protein-1; SOFA: sequential organ failure assessment; ICAM-1: intercellular adhesion molecule 1; VCAM1: vascular cell 
adhesion molecule 1; TAC: total antioxidant capacity; CT: computed tomography; BDNF: brain-derived neurotrophic factor; GI: Gastrointestinal.

Table 3. (Continued)
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In the AD model, Wang et  al.87 noted that curcumin-
loaded exosomes effectively crossed the BBB via transcyto-
sis and increased its bioavailability in the target tissues. The 
curcumin-loaded exosomes reduced neuronal death and Tau 
phosphorylation by activating the AKT/GSK-3β pathway. 
Similarly, Fernandes et al.88 proposed a new concept for the 
delivery of curcumin in AD. Using a zebrafish model, they 
investigated the use of an exosome-like liposome to deliver 
curcumin to the target tissue. The study found that this novel 
delivery system shared the benefits of exosomes in crossing 
the BBB.

In the case of ischemic injuries, He et al.89 used exosomes 
derived from macrophages and loaded with curcumin, 
which decreased the ROS generation in the regions with 
ischemic damage. The decrease in the accumulation of ROS 
aids in reducing damage to the BBB and neuronal apopto-
sis. Furthermore, Tian et al.90 found that curcumin-loaded 
exosomes also initiated a suppression of the inflammatory 
processes in the ischemic brain.

Taken together, these studies show that EV-based cur-
cumin formulations have therapeutic potential for CNS dis-
eases such as AD, PD, ischemic injuries, and rheumatoid 
arthritis. The therapeutic outcomes of EV-curcumin formu-
lations largely occur by overcoming curcumin limitations of 
low bioavailability and suboptimal BBB permeability.

Exploring the potential of intranasal 
curcumin delivery for efficient 
treatment of neurological disorders

The emergence of intranasal (IN) administration has intro-
duced a paradigm shift in targeted drug delivery to the 
CNS, presenting a novel and non-invasive approach for 
effective therapeutic intervention. This approach capitalizes 
on the distinctive histological attributes of the nasal cavity, 
facilitating direct access of approx. 50% of the therapeutic 
agents to the brain.91 A key advantage of IN delivery lies 
in its ability to significantly circumvent liver metabolism, 
systemic circulation, and BBB permeability, leading to high 
bioavailability in the CNS.91,92 Pharmacokinetic investiga-
tions have revealed that despite potential bioavailability 
reductions attributed to the nasal epithelium, drug concen-
trations within various CNS regions post-IN administration 
can exhibit up to a 10-fold increment compared to systemic 
injection.93,94 Strikingly, dose escalation of IN-administered 
drugs elicits proportionate enhancements in drug concentra-
tion across diverse CNS territories. The non-invasive nature 
of IN administration, complemented by user-friendly deliv-
ery devices such as sprays or atomizers, not only fosters 
patient acceptance but also accommodates frequent dosing. 
Clinical trials corroborate the feasibility of repeated IN deliv-
ery within brief intervals, even daily, highlighting the adapt-
ability of this approach for versatile treatment regimens.95,96

Leveraging the potential of IN drug delivery, contem-
porary research has harnessed its capabilities to surmount 
therapeutic challenges associated with curcumin. IN deliv-
ery of curcumin emerges as a promising strategy to enhance 
its brain bioavailability. Multiple studies have explored the 
efficacy of IN curcumin delivery employing diverse formu-
lations and carriers, striving to maximize its therapeutic 

potential for neurological disorders. Strategies such as 
mucoadhesive microemulsion systems (MMESs) have dem-
onstrated heightened brain uptake relative to intravenous 
administration, with implications for targeted brain deliv-
ery.97 Microemulsions (MEs) incorporating docosahexaenoic 
acid (DHA)-rich oil have showcased superior brain penetra-
tion, potentially mediated by DHA-induced BBB transport. 
Furthermore, the development of thermosensitive hydrogels 
and innovative nanoparticles exhibits promise in augment-
ing curcumin’s brain delivery, reinforcing the potential of IN 
administration as a transformative avenue for curcumin’s 
therapeutic application in CNS disorders.98 These strategies 
circumvent the constraints associated with curcumin’s phys-
icochemical attributes, paving the way for enhanced treat-
ments of neurological conditions.

Conclusions

The intricate nature of CNS diseases, often accompanied 
by a spectrum of comorbidities, requires a comprehensive 
therapeutic approach. Curcumin’s multifaceted actions as 
an antioxidant, anti-inflammatory, and immunomodula-
tory make it an appealing adjuvant therapy by targeting 
various inflammatory signaling pathways implicated in the 
pathogenesis of CNS disorders. Innovative strategies, such 
as combining curcumin with existing medications, show 
promise in enhancing therapeutic outcomes in CNS dis-
eases. Collaborative efforts to optimize dosing regimens 
and identify optimal drug combinations and effective 
delivery systems can reshape the treatment landscape for 
these conditions. To this end, nanoformulations, especially 
using natural nanoparticle EVs for curcumin delivery, hold 
great potential for improving curcumin’s bioavailability 
and facilitating its passage through the BBB. Furthermore, 
IN delivery methods of curcumin nanoformulations offer 
opportunities to enhance direct brain targeting while mini-
mizing the peripheral side effects in the other parts of the 
body. Thus, the combined efforts in unraveling curcumin’s 
therapeutic potential and harnessing innovative delivery 
systems including EVs as nanocarriers and IN method hold 
the promise of improving the outcomes and management 
of CNS diseases.
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