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Introduction

Cyclin-dependent kinase-like 5 (CDKL5) is a ubiquitously 
expressed serine–threonine (Ser/Thr) kinase,1–3 FOXG1 is a 
transcription factor of the forkhead family expressed selec-
tively in the forebrain,4,5 and methyl-CpG binding protein-2 
(MeCP2) is a ubiquitously expressed protein that regulates 
transcription and chromatin structure by binding to methyl-
ated DNA.6–8 MeCP2 is primarily (albeit not exclusively) a 
nuclear protein,9–11 whereas FOXG1 and CDKL5 localize to 
both the nucleus and cytoplasm.12–15 All three proteins are 
expressed most highly in the brain, with FOXG1 expression 

being highest in the developing forebrain. Within the mature 
brain, all three proteins are expressed most highly in neu-
rons. Loss-of-function mutations of MeCP2 cause Rett 
syndrome, an X-linked disorder affecting girls that reveals 
itself by neurodevelopmental regression generally starting 
at about 2 years of age.16,17 Until about a decade ago and 
based on striking similarities in their neurodevelopmental 
abnormalities and symptoms, haploinsufficiency of FOXG1 
and CDKL5 was also thought to cause Rett syndrome, albeit 
congenital forms of the disorder, referred to as atypical or 
variant Rett syndrome. Among the common symptoms and 
brain abnormalities are intractable epilepsy, intellectual 
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Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function 
mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized 
by epilepsy, intellectual disability, autistic features, speech deficits, and sleep 
and breathing abnormalities. Neurologically, patients with all three disorders 
display microcephaly, aberrant dendritic morphology, reduced spine density, and 
an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the 
cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar 
behavioral and neurobiological defects and were referred to as congenital or variant 
Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder 
(CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental 
disorders with some distinctive features have resulted in separate focus being 
placed on each disorder with the assumption that distinct molecular mechanisms 
underlie their pathogenesis. However, given that many of the core symptoms and 
neurological features are shared, it is likely that the disorders share some critical 
molecular underpinnings. This review discusses the possibility that deregulation of 
common molecules in neurons and astrocytes plays a central role in key behavioral 
and neurological abnormalities in all three disorders. These include KCC2, a 
chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-
glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We 
propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, 
along with increased expression of GluD1, is involved in the excitatory/inhibitory 
that represents a key aspect in all three disorders. In addition, astrocyte-derived 
brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and 

inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
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Minireview

Impact Statement

The impact of this review lies in the hypothesis it 
tackles, which is that common molecules within 
neurons and astrocytes are responsible for shared 
behavioral and neurological abnormalities in three 
distinct neurodevelopmental disorders—Rett syn-
drome, CDKL5 deficiency disorder (CDD), and 
FOXG1 syndrome. Among the shared phenotypic 
features are epilepsy, intellectual disability, autistic 
features, speech deficits, and sleep and breathing 
abnormalities. Neurologically, patients with all three 
disorders display microcephaly, aberrant dendritic 
morphology, reduced spine density, and an imbal-
ance of excitatory/inhibitory signaling. After review-
ing the literature pertaining to the three disorders, 
this review identifies and describes molecules that 
likely play a particularly significant role in behavio-
ral and neurobiological impairments common to all 
three disorders. We believe that the review furthers 
our understanding of the cellular and molecular 
underpinnings of Rett syndrome, CDD, and FOXG1 
syndrome and identifies molecules that can be tar-
geted to develop effective therapeutics for them.
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disability, autistic features, sleep and breathing abnormali-
ties.18–21 However, more detailed analyses of a larger number 
of patients revealed that deficiency of FOXG1 and CDKL5 
function causes distinct disorders that have been called 
FOXG1 syndrome (or FOXG1-related encephalopathy)5,22 
and CDKL5 deficiency disorder (CDD).23,24 Interestingly, 
duplication of each of the three genes causes other neurologi-
cal disorders revealing another similarity between them—
their expression has to be maintained within a narrow range 
for proper brain development and function.

The realization that CDKL5, FOXG1, and MeCP2 muta-
tions cause distinct neurodevelopmental disorders has 
increasingly resulted in separate focus being placed on each 
disorder likely under the assumption that distinct molec-
ular mechanisms underlie their pathogenesis. However, 
given that many of the core phenotypic and neurobiological 
abnormalities are shared, it is likely that the disorders share 
some critical molecular underpinnings. It is possible, as dis-
cussed in this review, that CDKL5, FOXG1, and MeCP2 work 
together (as opposed to independently) to ensure proper 
brain development. Thus, decreased function of any one of 
these three proteins will affect the functioning of the other 
two, resulting in common neurodevelopmental abnormali-
ties. Although efforts into the mechanisms underlying CDD, 
FOXG1 syndrome, and Rett Syndrome have focused largely 
on their roles in neurons, given the increasing appreciation 
of the critical role astrocytes play in brain physiology and 
pathophysiology. Astrocytes are crucial for both the devel-
opment of neurons, synapses, and neural circuitry, and for 
the functioning of the nervous system during development 
through adulthood.25,26 Abnormal gliogenesis or glial func-
tion at any stage of life is associated with many neurode-
generative,27,28 neurodevelopmental,29 neuropsychiatric 
disorders,30 and in the development of gliomas. It is therefore 
likely that astrocyte dysfunction contributes significantly 
to the common symptoms in CDKL5 disorder, FOXG1 syn-
drome, and Rett syndrome.

Although most highly expressed in developing and post-
mitotic neurons, CDKL5 and MeCP2 are expressed in astro-
cytes,31,32 and FOXG1 is expressed in cells of the astrocytic 
lineage under certain pathological conditions (e.g. in astro-
cyte-derived gliomas). In the case of MeCP2, mice lacking 
MeCP2 selectively in astrocytes display symptoms and neu-
ropathology similar to MeCP2 knockout (KO) mice demon-
strating that astrocyte dysfunction resulting from the lack of 
MeCP2 contributes significantly to the neurodevelopmental 
abnormalities in Rett syndrome.

Although there are several symptoms that are shared 
between CDD, FOXG1 syndrome, and Rett syndrome, 
this review will focus mostly on the molecular alterations 
underlying epilepsy and dendritic abnormalities. Intractable 
epilepsy is the abnormality that most significantly affects 
quality of life in all three disorders.33 While seizures in CDD 
and FOXG1 syndrome start at around 6 months of age, in Rett 
syndrome, seizures start after about 2 years.33 Interestingly, 
currently used antileptic medications act primarily on neu-
rons and do not alter onset of seizures. Compelling recent 
evidence suggests that astrocytes play a key role in the 
initiation and progression of epileptic seizures via a vari-
ety of processes, including astrogliosis, abnormal uptake 

of neurotransmitters, abnormal release of gliotransmitters 
and cytokines, and metabolic alterations that can cause neu-
ronal hyperexcitability.34 Another abnormality in the three 
disorders is in the morphology of dendritic spines and the 
organization of postsynaptic molecules which are likely to 
contribute to both epilepsy and cognitive impairment in the 
three disorders.22,35,36

We propose that the deficiency of CDKL5, FOXG1, or 
MeCP2 results in deregulation of the proliferation and differ-
entiation of neural stem cells, which results in microcephaly, 
and, subsequently in abnormal synaptic structure and func-
tion. These pathogenic alterations involve both neurons and 
astrocytes. Disruption of gamma-aminobutyric acid (GABA) 
and glutamate signaling in the developing brain resulting in 
an excitatory/inhibitory (E/I) imbalance is likely to underlie 
multiple aspects of the three disorders, including dysregu-
lated neural progenitor cell proliferation/differentiation, 
epilepsy, abnormal, dendritic development and morphology, 
and postsynaptic organization.

Undoubtedly, a large number of molecules are involved 
in the promotion of the pathogenesis of any neurodevel-
opmental disorder. This review focuses on a small subset 
of them, which may play a particularly important role in 
CDD, FOXG1 syndrome, and Rett syndrome. These include 
KCC2, a chloride transporter, vGlut1, a vesicular glutamate 
transporter, GluD1, an orphan-glutamate receptor subunit, 
and PSD-95, a postsynaptic scaffolding protein. We propose 
that reduced expression of KCC2, vGlut1, and PSD-95, along 
with increased expression of GluD1, is involved in the E/I 
imbalance. In addition, we propose that astrocyte-derived 
insulin-like growth factor 1 (IGF-1) and brain-derived neuro-
trophic factor (BDNF) affect the expression and functioning 
of these molecules and also activate AKT, a protein kinase, in 
both neurons and astrocytes which together regulates neu-
ronal structure and function. However, cytokines, such as 
interleukin-1β (IL-1β), interleukin 6 (IL-6), and tumor necro-
sis factor-alpha (TNF-α), impair glutamate uptake by astro-
cytes and impair neuronal signaling. Several studies have 
found that astrocyte dysfunction underlies or contributes to 
epilepsy.34,37–40

We provide below a brief description of the molecules 
the mutations of which cause the three disorders—CDKL5, 
FOXG1, and MeCP2. We then provide a description of mol-
ecules that we propose play a particularly significant role in 
the pathogenesis of all three disorders when their expression 
or functional activities are deregulated.

The principals

FOXG1 (previously called BF-1) is a transcription factor 
expressed selectively in the developing telencephalon during 
early brain development where it regulates neurogenesis by 
promoting proliferation of cortical stem cells while suppress-
ing their premature differentiation into neurons.4,41–45 Mice 
lacking FOXG1 have cerebral hemispheres that are severely 
reduced in size because of premature cell cycle exit of neu-
ral progenitor cells and differentiation.46 Similarly, FOXG1 
haplosufficiency causes microcephaly and severe intellectual 
impairment in humans.47. The proliferative action of FOXG1 
occurs through stimulation of the cell cycle by FOXG1 by 
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inhibiting expression of CDK inhibitor 1A (Cdkn1a/p21) 
and cyclin B1. The inhibition of differentiation is regulated 
by a distinct mechanism involving the inhibition of the 
FOXO/SMAD complex, which normally promotes differen-
tiation.48,49 Subsequently, FOXG1 stimulates cortical neuro-
genesis while suppressing gliogenesis.50 In addition, FOXG1 
regulates patterning of the anterior brain, cell fate determina-
tion, the formation of the corpus callosum, the balance of E/I 
neurons, neuronal migration, axonal and dendritic organiza-
tion, dendritic spine density, neuronal survival, and neu-
ral plasticity.45,51–59 The ability of FOXG1 to influence both 
nuclear and cytoplasmic processes is made possible by its 
ability to localize to both cellular compartments.12,13 In neu-
ral progenitor cells, FOXG1 localizes to the nucleus because 
of its phosphorylation by casein kinase-I (CKI). However, 
phosphorylation through a fibroblast growth factor (FGF)-
dependent mechanism leads the export of FOXG1 from the 
nucleus.12

Loss-of-function mutations in FOXG1 cause FOXG1 syn-
drome, a neurodevelopmental disorder characterized by 
microcephaly, seizures, autistic symptoms, disrupted sleep 
patterns, and severe speech deficits.4,5 Although believed to 
be a variant form of Rett syndrome until about a decade ago, 
distinctive features of the disorder were identified, includ-
ing much more pronounced motor and speech impairments 
along with marked microcephaly and corpus callosum agen-
esis, leading to its recognition in 2016 as a separate and dis-
tinct disorder.60 Among the effects that FOXG1 deficiency 
has on brain development and function, is an imbalance in 
E/I circuitry, which likely contributes to some of the defining 
problems of the disorder, including seizures and autistic-like 
behavior.61

Individuals with FOXG1 gene duplications also display 
seizures, autistic symptoms, and cognitive impairments, 
although these are milder than displayed by patients with 
FOXG1 syndrome.5,22,62 Interestingly, autistic features in 
FOXG1 duplication syndrome mice are also associated 
with an imbalance of E/I signals.61 In iPSC-derived neural 
organoids from autism spectrum disorder (ASD) patients, 
elevated FOXG1 expression has been proposed to cause dys-
regulated proliferation/differentiation and an overproduc-
tion of GABAergic neurons.51

CDKL5 is a Ser/Thr protein kinase encoded by the 
X-chromosome-linked CDKL5 gene (previously the STK9 
gene). CDKL5 is expressed ubiquitously, but highest in the 
brain where it is expressed in neurons and at lower levels in 
glial cells.2,23,63 The highly conserved catalytic domain is in 
the N-terminus region of the protein, whereas the C-terminus 
regulates its intracellular localization. Autophosphorylation 
of CDKL5 activates its catalytic function.63 At early stages 
of brain development, most CDKL5 is cytoplasmic but its 
presence increases in the nucleus as the brain matures.15,64 
Consequently, potential substrates of CDKL5 include both 
nuclear and cytoplasmic proteins although few bonafide 
substrates have been experimentally identified so far. 
Among the cytoplasmic functions of CDKL5 are the regula-
tion of synaptic vesicle recycling, excitatory synapse stability 
(through actions on PSD-95), dendritic and dendritic spine 
morphology, and neuronal cell death.1,23 In neuroblastoma 
cells, CDKL5 inhibits proliferation while also promoting 

differentiation.65 Deregulated proliferation and differentia-
tion, along with increased cell death is observed in the hip-
pocampus of CDKL5 KO mice.66

As a result of alterative splicing and alternative promoter 
usage, five CDKL5 transcripts are expressed, which are des-
ignated at CDKL5-1 to CDKL5-5. The CDKL5-1 transcript 
is the most highly expressed isoform in the embryonic and 
adult rodent and human brain.67,68 There is evidence that the 
isoforms have different functions within neurons.69

Deficiency of CDKL5 deficiency causes CDD, a highly 
rare disorder that was referred to as atypical Rett syndrome 
or early seizure variant of Rett until 2013 when it was sug-
gested to be, and subsequently recognized, as a distinct 
disorder.3,70–72 Most CDD-causing mutations are de novo 
mutations that result in a failure to produce the protein or 
mutations that lie in the catalytic domain / ATP-binding 
region of the CDKL5 protein indicating that loss of kinase 
activity underlies the abnormalities associated with the dis-
order. A hallmark of CDD is the early onset of epileptic sei-
zures which typically begin between six weeks and three 
months of age and which are not responsive to antileptic 
medications.73 Other symptoms include sleep disturbances, 
gastrointestinal issues, musculoskeletal problems, visual 
impairment, autistic symptoms, and severe intellectual dis-
ability.3,70,71 Neuropathological abnormalities include micro-
cephaly, reduced dendritic arborization, and spine density. 
CDKL5 gene duplications cause autistic symptoms, lan-
guage impairment, hyperactivity, and macrocephaly.23,74

Interestingly, CDD-related symptoms can be reversed  
in mice when CDKL5 protein is restored through adeno-
associated virus-mediated expression.75 Although clearly a 
promising finding in terms of treatment of patients, the study 
was conducted using male mice only, while CDD affects 
females almost exclusively. Moreover, while exhibiting many 
of the symptoms observed in patients, CDKL5-deficient mice 
do not display spontaneous early-onset seizures, the cardinal 
feature of CDD.76–79

MeCP2: Methyl-CpG binding protein-2 is a methyl-
ated DNA-binding protein encoded by a gene on the 
X-chromosome that is expressed widely in the body, but with 
highest levels in the brain.7,8 Although expressed in all cells 
of the brain, MeCp2 expression is highest in maturing and 
postmitotic neurons. MeCP2 plays a key role in the brain 
development acting at different phases, including early neu-
rogenesis, migration, dendritic arborization, synapse and 
circuit formation, and synaptic plasticity.7,8,80,81 In humans, 
loss-of-function mutations in MeCP2 cause Rett syndrome, 
a neurodevelopmental disorder suffered almost exclusively 
by females who display microcephaly, seizures, gastrointes-
tinal issues, and sleep disturbances.17,82 However, a modest 
increase in the level of MeCP2, resulting from gene duplica-
tion, causes MeCP2 duplication syndrome, characterized by 
severe cognitive and motor deficits, seizures, and premature 
death.83,84 It is now known that both neuronal and glial dys-
function contribute to the pathogenesis of Rett syndrome 
and MeCP2 duplication disorder.85–88

Best known for its role as a transcriptional regulator (both 
activator and repressor), MeCP2 also regulates chromatin 
structure, splicing, and miRNA processing.7,8,80 The MeCP2 
gene encodes two proteins, MeCP2-E1 and MeCP2-E2, 
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as a result of alternative splicing, which differ only at the 
N-terminals.8,89,90 Although often assumed to be functionally 
interchangeable, E1 and E2 isoforms of MeCP2 differ in their 
temporal and spatial pattern of expression and in their rela-
tive abundance during brain development and have impor-
tant non-overlapping functions.90–92

Experiments in mice suggest that the neurological 
defects of Rett syndrome are reversible both in adolescent 
and adult mice by restoring MeCP2 expression.93 A recent 
study described that reactivating the MeCP2 gene locus in 
the silenced but normal X-chromosome by demethylation 
rescues abnormalities in Rett neurons.94 Separate studies 
have described that suppressing MeCP2 expression using 
antisense oligonucleotides and other genetic methods can 
reduce behavioral defects in a transgenic mouse model of 
MeCP2 duplication syndrome.95,96 However, in these studies, 
the line of MeCP2 used exhibits very mild symptoms rela-
tive to patients with MeCP2 duplication syndrome.95,96 Mice 
expressing MeCP2 at about three times the normal level and 
that better recapitulate the human disorder exhibit neurode-
generation in the cortex and hippocampus that is associated 
with highly elevated release of glutamate from astrocytes.87,88 
Whether these serious neurological deficits associated with 
neuronal loss can be reversed remains to be experimentally 
tested.

The close relationship between 
CDKL5, FOXG1, and MeCP2 at the 
molecular level

CDKL5 and MeCP2 interact directly both in vivo and in 
vitro.97 Moreover, autophosphorylated CDKL5 can phospho-
rylate MeCP2 in vitro.97,98 In comparison to normal CDKL5, 
disease-causing mutations of CDKL5 are impaired in their 
ability to phosphorylate MeCP2.98 MeCP2 can be phospho-
rylated at several sites and these can affect MeCP2 activity 
in different ways.99 For example, neuronal activity increases 
phosphorylation at Ser41 of MeCP2 but leads to dephospho-
rylation at Ser80. Which residue(s) in MeCP2 is phosphoryl-
ated by CDKL5 and how this modification affects its function 
remains to be resolved.

Neuronal activity has effects on survival and dendritic 
morphology, synaptic development, and plasticity. The 
activity and functions of CDKL5, FOXG1, and MeCP2 are 
all regulated by neuronal activity. Through calcium influx, 
membrane depolarization stimulates the phosphorylation of 
MeCP2 at Ser421 while reducing phosphorylation of Ser80.100 
It has also been reported that depolarization reduces the 
level of MeCP2 in the nucleus of cultured neurons, whereas 
treatment with IGF-1 increases it.101 Whether this increase 
affects both MeCP2 isoforms equally, or whether it is selec-
tive for one of the isoforms is unclear. As described above, 
FOXG1 interacts with the E2 isoform of MeCP2 thereby 
suppressing the apoptotic activity of this isoform and pro-
moting neuronal survival.91 However, phosphorylation 
of MeCP2 at Ser80 reduces interaction with FOXG1 and 
promotes apoptosis.102 Unlike the E2 isoform, MeCP2-E1 
is not bound by FOXG1 and does not promote apoptosis 
when overexpressed. In contrast to the regulation of MeCP2 
phosphorylation, both depolarization and IGF-1 increase 

phosphorylation of FOXG1.54 Furthermore, depolarization 
maintains elevated level of FOXG1 in cultured neurons.54 
In cultured neurons, depolarizing stimuli induce a rapid 
increase in synthesis in CDKL5 levels.103 While this induc-
tion is prolonged in immature neurons, it is more short-lived 
in mature neurons. Whether the depolarization-induced 
increase in CDKL5 expression is necessary for the survival-
promoting activity, possibly via BDNF or IGF-1 stimulation, 
remains to be examined. It is known that CDKL5 also has 
anti-apoptotic effects.66,104

Cocaine or serotonin treatment stimulates MeCP2 
expression in the brain while repressing the expression of 
CDKL5.105 This repression is transcriptionally mediated 
by MeCP2 through binding to methylated regions in the 
upstream region of the CDKL5 gene.105 Although suggest-
ing to be an inverse relationship between MeCP2 levels and 
CDKL5 transcription, a comparison of MeCP2 and CDKL5 
mRNA levels indicated that a loss-of-function of one of these 
genes does not influence the mRNA expression of the other.97 
However, this latter study was conducted using lymphoblas-
toid cells and it is possible that transcriptional regulation of 
these genes in neurons or the brain might differ from that in 
lymphoid cells.

Another commonality in the three disorders is the abnor-
mal activation of glia leading to inflammation. Abnormal 
systemic inflammation and brain neuroinflammation have 
been described in Rett syndrome and CDD in all three dis-
orders.106–113 In fact, Rett syndrome has been suggested to 
be an autoimmune disease.114 Reduced FOXG1 expression 
in experimental models increases sensitivity of neurons to 
inflammatory stimuli.115

Potential common effectors

A common causative feature of all three disorders is likely 
to be a disruption of the transition of GABA-modulated 
neurons from providing excitatory signals to providing 
inhibitory signals in the developing brain, impacting the pro-
liferation/differentiation balance and the E/I balance, which 
starts a cascade of pathogenic events resulting in the abnor-
mal dendritic development and dysfunction of neurons. We 
propose that the inability of astrocytes to maintain gluta-
mate homeostasis along with deregulation in the release of 
neurotrophic factors and inflammatory cytokines plays a 
key role in neuronal dysfunction and the proper working of 
neural networks. Several studies have found that astrocyte 
dysfunction underlies or contributes to epilepsy.34,37,38,39 A 
number of studies have described dysfunction of astrocytes 
or disruption of astrocyte-neuron signaling as being a major 
contributor to ASD pathology.29,116–118

Undoubtedly, the mechanisms responsible for the neu-
rodevelopmental impairments associated with CDD, FOXG1 
syndrome, and Rett syndrome involve many molecules and 
molecular interactions. However, we propose, based on pub-
lished research, that some of these molecules play a more 
central role. These include KCC2, a chloride transporter, 
vGlut1, a vesicular glutamate transporter, GluD1, an orphan-
glutamate receptor subunit-1, and PSD-95, a postsynaptic 
scaffolding protein. We propose that reduced expression of 
KCC2, vGlut1, and PSD-95, along with increased expression 
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of GluD1, is involved in the E/I imbalance. In addition, 
we propose that astrocyte-derived IGF-1 and BDNF affect 
the expression and functioning of these molecules and also 
activate AKT, a Ser/Thr protein kinase in both neurons and 
astrocytes which together regulates neuronal structure and 
function. However, cytokines, such as IL-1β, IL-6, and TNF-
α, impair glutamate uptake by astrocytes and proper neu-
ronal signaling. Several studies have found that astrocyte 
dysfunction underlies or contributes to epilepsy.34,37–40

KCC2: KCC2, encoded by the Slc12a5 gene, is potassium-
chloride transported that is in the plasma membrane of cells 
and dendrites of neurons. KCC2 plays a critical role in estab-
lishing the Cl− gradient in cells, which in the brain, regulates 
the actions of GABA. Although the primary inhibitory neu-
rotransmitter in the adult brain, during embryonic develop-
ment, GABA acts as an excitatory neurotransmitter playing 
a key role in the proliferation of neural progenitor cells.119–121 
This is because in the embryonic brain, the intracellular Cl− 
concentration is high. Consequently, the binding of GABA 
to its ionotropic receptor, GABA-A receptor, causes depolari-
zation because of an outflow of Cl−. However, in maturing 
neurons, there is a massive upregulation of KCC2 expression, 
which extrudes Cl− thereby lowering intracellular Cl− con-
centration.122 Binding of GABA to its receptor now results in 
Cl− influx and therefore a hyperpolarizing signal. Therefore, 
by causing the hyperpolarizing influx of Cl−, KCC2 shifts 
the GABA signal from excitatory to inhibitory. Expression 
of KCC2 expression in immature cortical neurons before the 
endogenous upregulation is sufficient to switch of GABAergic 
response from inhibitory to excitatory.123,124 The E/I functional 
shift of GABA is a highly significant event contributing to a 
variety of neurodevelopmental processes, including prolif-
eration, differentiation, cell survival, neuronal maturation, 
and early network wiring.122 Reduced expression of KCC2 
disrupts the E/I balance causing brain dysfunction, including 
intractable epilepsy.125–129 Indeed, KCC2 mutations that impair 
extrusion of Cl− humans result in severe seizures in mice and 
in humans130–132 and are associated with schizophrenia and 
ASD.130 Similarly, psychological stress and neuroinflammation 
during early prenatal development reduce KCC2 expression 
delaying the E/I GABA shift, which has been implicated in 
neurodevelopmental and psychiatric disorders.133–136 Reduced 
KCC2 function also contributes to circadian rhythm disrup-
tion137 and age-associated neurodegenerative diseases, such as 
Alzheimer’s and Huntington’s disease, through impairment 
of GABAergic inhibition.136,138,139

As a result of alternative promoter usage, the Scl12a5 
gene produces two proteins, KCC2a and KCC2b which dif-
fer in their N-termini.140 Although both isoforms are widely 
expressed in the brain, KCC2a expression is low in cortical 
regions, whereas KCC2b is expressed more highly and more 
widely.141–143 The absence of both isoforms leads to death 
at birth because of motor deficits and failure to breathe.122 
At the cellular level, KCC2a is expressed in many cell types 
while KCC2b is expressed highly in neurons and is likely 
to be the isoform that is responsible for the developmental 
shift in GABAergic responses, KCC2a is expressed in other 
cell types as well. KCC2b-specific KO mice have seizures 
and die within two weeks.144 The roles of KCC2a are less 
clear although it is known to be critical for respiration soon 

after birth.145 Besides its function as a channel protein that 
regulates hyperpolarizing inhibitory responses, KCC2 acts 
as a structural protein to regulate dendritic spine develop-
ment through interaction with synaptic proteins146–149 and 
in a BDNF-dependent manner.149 While the Cl− extrusion 
function is managed by the N-terminus region of KCC2, the 
C-terminus domain (CTD) regulates the structure, motility, 
and function of dendritic spines likely through interaction 
with cytoskeleton-associated proteins and a variety of mem-
brane proteins, including neurotransmitter receptor subu-
nits, suggesting transporter-independent ways by which 
KCC2 can affect synaptic function and neurotransmission.148 
Finally, the CTD of KCC2 mediates anti-apoptotic effects in 
the developing cortex.148

Astrocytes regulate KCC2 expression in neurons through 
the release of neurotrophic factors, such as BDNF and IGF-
1, and inflammatory cytokines, such as TNF-α, IL-6, and 
IL-1β.150–153 Astrocyte-released BDNF stimulates KCC2 
expression in neurons by the activation of PI3K–AKT and 
Ras-MAPK pathways.150,154,155 Astrocytes also maintain 
physiological levels of extracellular K+ and glutamate.156 
As a K+-dependent Cl− exporter, the functioning of KCC2 
depends on low extracellular K+ concentrations, which 
depends on proper functioning of astrocytes. Elevated levels 
of glutamate also impact KCC2 function by downregulating 
its expression via the NMDA receptor resulting in depolar-
izing GABA signals.157 Interestingly, treatment with chemi-
cal activators of KCC2 has therapeutic effects in neurons 
derived from human Rett iPSCs and in MeCP2-deficient 
mice. In sum, astrocyte dysfunction impairs KCC function, 
and consequently its ability to balance E/I signals and to 
regulate proper dendritic structure and function.

Confirming that elevating KCC2 expression could have 
therapeutic effects for CDD, FOXG1 syndrome, and Rett 
syndrome is the finding that small-molecule compounds 
that stimulate KCC2 gene expression ameliorated behavioral 
deficits in MeCP2-mutant mice.158 Whether KCC2 expression 
is restored to normal levels in mice in which MeCP2 expres-
sion has been restored remains to be seen. However, given 
the alleviation of major behavioral deficits in these Rett mice 
with restored MeCP2, this is likely.

vGluT1: Within the presynaptic terminal, glutamate is 
loaded into recycled synaptic vesicle by a family of three 
vesicular glutamate transporter, vGluT1–3 for a new round 
of exocytosis.159–161 Of these, vGluT1 transports most of 
the glutamate. Besides glutamate, vGlut1 conducts Cl−, 
and the extrusion of Cl− from the synaptic vesicle is nec-
essary for influx of glutamate in excitatory neurons.162–165 
Efficient extrusion of Cl− depends on low Cl− levels outside 
the vesicle, which depends on KCC2 activity. Mice hemizy-
gous for vGluT1 deletion display anxiety, depressive-like 
behavior, and impairment of some types of memory.166 
Decreased vGluTt1 activity results in cognitive deficits and 
epilepsy,159,167 and severe neurological and neuropsychiatric 
disorders.168–170 Cortical neurons generated from FOXG1-
deficient mouse pluripotent stem cells express reduced level 
of vGluTt1.171 Similarly, patient-derived iPSCs and from mice 
hemizygous for FOXG1 deletion display reduced vGlut1.172

With regard to astrocytes—expressing MeCP2 in MeCP2-
lacking astrocytes results in the elevation of vGlut1 in 
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MeCP2-deficient neurons and restoration of normal den-
dritic morphology.173 Another study described that deplet-
ing microglia increased vGluT1 expression and resulted 
in increased density of dendritic spines.174 Although this 
suggests that microglia regulate vGluT1 expression, it was 
observed that depletion of microglia caused astrocyte acti-
vation, raising the possibility that the effects were more 
directly mediated by astrocytes.174 Loss of IGF-1 in astrocytes 
impairs glutamate uptake175 which can promote excitotox-
icity and seizures in vivo. Both BDNF and IGF-1 increase 
vGlut1 expression in differentiating and mature neurons 
and reduced availability of these factors reduces vGlut1 lev-
els.176–178 While astrocytic factors affect vGluT1, via is role in 
glutaminergic signaling, vGluT1 regulates the maturation of 
astrocytes during development.179

GluD1: GluD1 is an orphan δ-glutamate receptor subu-
nit-1 encoded by the GRID1 gene that is widely expressed 
in the adult mouse brain.180,181 Rather than functioning as 
a postsynaptic ion channel, however, GluD1 is part of a 
synaptic complex that interacts with presynaptic neurexin 
to induce presynaptic differentiation, synaptic connectiv-
ity, and glutamate receptor activity (Figure 1).180–182 Mice 
lacking GluD1 display increased dendritic spine number, 
higher number of synapses, and greater excitatory neuro-
transmission along with stereotyped and depressive behav-
iors, memory impairment, anxiety, and abnormal social 
behavior.183–186

GluD1 expression is increased in iPSCs-derived neu-
rons from FOXG1 syndrome patients and in the brains of 
FOXG1-deficient mice, although whether this represents a 
compensatory mechanism is unclear.172 Similarly, expression 
of GluD1 is elevated in neurons generated from both patient-
derived mutant MECP2- and CDKL5 iPSCs.187 It is known 
that GluD1 plays a key role in maintaining E/I balance and 
in establishing synaptic architecture.180,188,189 GluD1 has been 
found to preferentially stimulate the formation of inhibitory 
GABAergic synapses.180 However, another study described 
induction of both presynaptic GABAergic and glutaminergic 
synapses, suggesting that developmental stage and neuron-
specific effects may influence the actions of GluD1.190,191 
GluD1 mutations and mutations in proteins functionally 
associated with GluD1 are linked to autism, schizophrenia, 
and bipolar disorder.180

PSD-95: Postsynaptic density protein-95 (PSD-95) is a 
membrane-associated scaffold protein that plays a central 
role in the development of synapse development, number, 
stabilization, and function.192–194 A well-studied action of 
PSD-95 is the anchoring AMPA and NMDA receptors in the 
postsynaptic terminal, which regulates neurotransmission 
by glutamate.195 Not surprisingly, altered PSD-95 function 
has been implicated in epilepsy.196–199 In addition, PSD-95 
regulates dendritic morphology, stabilizes dendritic spines, 
and regulates their morphogenesis.200–204 PSD-95 plays a 
critical role in controlling the ratio of E/I synapses with a 
reduction in PSD-95 levels being sufficient to reduce the E/I 
ratio.205 PSD-95 expression is reduced in iPSC-derived neu-
rons from FOXG1 syndrome patients and FOXG1-deficient 
mice172 and in MeCP2-deficient mice.206 Targeting of PSD-95 
to the synapse and stabilizing it, is mediated through interac-
tion with CDKL5.207 Consequently, PSD-95 levels are lower 

in the cortex of CDKL5-deficient mice and in mutant CDKL5 
iPSC-derived neurons that possess abnormal dendritic 
spines.208 Reduced PSD-95 would affect E/I signaling, den-
dritic number and morphology, and synaptic organization, 
all features of CDD, FOXG1 syndrome, and CDD. Besides 
these disorders, PSD-95 dysfunction has been implicated in 
schizophrenia, depression, and autism.209

AKT: AKT (or PKB) is a family of three closely related 
Ser/Thr protein kinases—AKT1, AKT2, and AKT3—that is 
widely expressed and regulates several processes, includ-
ing cell proliferation, growth, survival, and metabolism.210 
The three isoforms have overlapping and distinct expression 
patterns and functions. AKT1 and AKT3 are of particular 
important to brain function.211–213 AKT3 is expressed selec-
tively in the brain and displays the highest expression of the 
developing and mature brain.214 Activation of AKT occurs 

Figure 1. Predicted molecular changes in FOXG1-deficient neurons and 
astrocytes. (A) Under normal conditions, astrocytes release IGF-1 and BDNF, 
and take up glutamate from the synapse. Because KCC2 level increases 
in maturing neurons and remains high, Cl− is extruded and GABA has a 
hyperpolarizing effect. Synaptic formation and function are normal with high 
PSD-95 and low GluD1. (B) With FOXG1 deficiency, IGF-1/BDNF release and 
glutamate uptake is low, whereas the release of inflammatory cytokine, such 
as IL-1, IL-6, and TNF-α, is elevated. Because KCC2 level is low, intracellular 
Cl− in maturing neurons is high leading to a depolarization signal by GABA. The 
developmentally regulated switch of GABA-responsive neurons from excitatory 
to inhibitory signaling is delayed resulting in an E/I imbalance within neuronal 
circuitry. Glutamate loading is altered in the presynaptic neuron and organization 
of the postsynaptic neuron is abnormal. AKT is reduced in both astrocytes and 
neurons. Dotted lines denote a reduction.
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downstream of PI-3 kinase (PI3K), a lipid kinase. Once acti-
vated, AKT regulates different targets of by phosphorylating 
them, of which the inhibition of GSK3β and the activation 
of mTOR are among the best studied.215,216 AKT is involved 
in a variety of functions in the developing and mature brain, 
including neuronal migration, dendritic structure, synaptic 
plasticity, memory, and neuroprotection.79,212,217–220 In addi-
tion, deregulation of PI3K–AKT–mTOR signaling is impli-
cated in several brain disorders, including microcephaly, 
macrocephaly, neurodegeneration, intellectual disability, 
autism, epilepsy, and schizophrenia.214,221–224

Although reduced AKT signaling has well documented 
detrimental effects on brain development and function, as 
in the case of CDKL5, FOXG1, and MeCP2, elevated AKT 
activity may also adversely affect brain health. PI3K–AKT 
signaling is negatively regulated by phosphatase and ten-
sin homologue (PTEN), which dephosphorylates phospho-
inositides that are phosphorylated by PI3K and that then 
activate Akt.225 For example, deleting PTEN, a negative 
regulator of AKT, in neural stem cells or in developing neu-
rons of mice results in an expected elevation of AKT but 
the mice display seizures and autistic behaviors, along with 
macrocephaly, increased soma size, and increased dendritic 
arborization and spine density.225,226 As described above, 
patients and mice with Rett syndrome display E/I imbal-
ance, reduced soma size, and reduced dendritic arborization 
and spine density supporting the idea that some of the neu-
robiological abnormalities in the disorder are due to reduced 
Akt function. Indeed, AKT signaling is reduced in both Rett 
mice and patients.227 In contrast to early deletion of PTEN, 
ablation in mature excitatory neurons does not affect den-
dritic morphology but compromises synaptic plasticity and 
memory.228

Overactivation of AKT–mTOR signaling accompanies 
cortical seizures in FOXG1-haplosufficient mice, although 
whether this occurs in neurons or glial cells, or which 
isoform(s) were responsible is not clear.229 Also, the expres-
sion of vGluT2 was increased and KCC2 expression is 
reduced, which likely increases the excitation/inhibition 
ratio.229 Mice lacking CDKL5 display decreased AKT–mTOR 
and AKT–GSK3β signaling along with reduced dendritic 
growth and branching, abnormal neural synapses and circuit 
function, and behavioral deficits.66,76,77 Levels of IGF-1, which 
plays critical roles in the development and functioning of 
the nervous system, are reduced in Rett mice and patients. 
IGF-1 is a potent stimulator PI3K–AKT signaling in the brain 
and impaired IGF-1–PI3K–AKT has been described in neu-
rodevelopmental disorders.223 Administration of IGF-1 or 
recombinant forms of it ameliorate Rett-related deficits in 
mice.206,230,231 IGF-1 administration increases PSD-95 expres-
sion and dendritic spine density and stability in CDKL5 mice 
(both of which are reduced in mutant mice).208

BDNF, IGF-1, and inflammatory cytokines: The role of 
BDNF in promoting neuronal and synaptic development 
and function is well established.232,233 Some of these effects 
are mediated through PSD-95 and AKT stimulation.234–236 
The relationship between FOXG1 and BDNF remains to be 
resolved, although one study described that both proteins 
are upregulated during adult hippocampal neurogenesis 

induced by antidepressant administration.237 In that study, 
knockdown of FOXG1 failed to block the upregulation of 
BDNF raising the possibility that upregulated BDNF might 
increase FOXG1 expression.237 CDKL5 is required for the 
stimulatory effect of BDNF on dendritic morphogenesis.2 
Taken together, these results suggest a CDKL5-BDNF-
FOXG1 sequence of action.

Numerous studies have described the activation of AKT 
by BDNF. Phosphorylation of FOXG1 by AKT is necessary 
for its function in neurons. BDNF levels are reduced in 
patients with Rett syndrome.82,238 Depletion of BDNF in Rett 
mice results in an earlier onset of disease symptoms, whereas 
increasing BDNF expression or administration of exogenous 
BDNF reduces synaptic dysfunction and disease symptoms, 
and extends lifespan.151,152,239 It deserves mention that sei-
zures increase the expression of BDNF, a finding that was 
first described in 1991 and subsequently confirmed in other 
studies.240 Subsequent studies have described protective 
effects of BDNF against seizures.241 However, some studies 
have described that increased activation of the high-affinity 
BDNF receptor, TrkB, can promote hyperexcitability and sei-
zure activity, particularly after brain injury or insult.242–244 
Taken together, it is likely that either upregulation of reduced 
expression of BDNF can promote seizures depending on the 
context and whether it is released from neurons or glia.

Like BDNF, IGF-1 plays a key role in neuronal maturation, 
survival, and plasticity.245–247 It is possible that BDNF and 
IGF-1 play overlapping roles in non-overlapping neuronal 
populations although, relative to BDNF, less attention has 
been placed on IGF-1. FOXG1-mediated neuronal survival 
requires IGF-1.54 As described above, IGF-1 administration 
alleviates abnormalities in dendritic morphology and syn-
aptic function in MeCP2-deficient mice.206,239 Degenerative 
effects caused by astrocytes derived from iPSCs obtained 
from Rett patients are reduced by treatment with IGF-1.248 
The efficacy of a recombinant form of IGF-1, Mecasermin, 
has been clinically assessed in clinical studies involving 
girls with rett syndrome (RTT). These studies have reported 
good safety, tolerability, and pharmacokinetic profiles of 
Mecasermin in RTT patients.249 More importantly, recombi-
nant IGF-1 was found to improve apnea, improved anxiety 
and mood, and ameliorated breathing and some behavioral 
abnormalities.249 Another study also described significant 
improvement in social and cognitive severity.250 While both 
studies had a relatively small number of patients (11 in one 
and 12 in the other) and the outcome measures were lim-
ited, the findings suggest that IGF-1 has beneficial treatment 
in Rett syndrome. Other studies have described that IGF-1 
stimulates AKT and PSD-95 in neurons and in the brains 
of CDD and Rett mice.206,208,223 In addition, IGF-1 protects 
against dendritic spine instability in CDKL5 mice.208

However, elevated glial-released cytokines, such as IL-1, 
IL-6, and TNF-α, negatively impact brain function and con-
tribute to neurological, neurodevelopmental, and psychiat-
ric disorders.251–254 Although their role in FOXG1 function 
or dysfunction is unclear, elevated levels of inflammatory 
cytokines are associated with CDD and Rett syndrome 
although the upstream and downstream signaling mecha-
nisms are unresolved.106,255,256
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Conclusions

The literature is consistent with the following common mech-
anisms for CDD, FOXG1, and Rett syndrome—the switch of 
GABA from excitatory to inhibitory signaling in a normal 
manner is likely a key, an abnormality that impacts not only 
the E/I balance but also developmental regulated processes, 
including the transition of neural stem cells from prolifera-
tion to differentiation and the formation of the dendrites and 
dendritic spines in proper numbers and morphology. Among 
the key molecular alterations are a downregulation of KCC2, 
vGluT1, PSD-95, and AKT function and an upregulation of 
GluD1 activity that occurs in presynaptic or postsynaptic 
neurons. Astrocytic dysfunction involving glutamate dys-
homeostasis and deregulated release of BDNF, IGF-1, and 
inflammatory cytokines disrupts both the functioning of 
neurons and neuron–astrocyte interactions. Together, these 
abnormalities result in seizures and intellectual disability dis-
played in all three disorders and contribute to other disease-
associated symptoms, including speech and language deficits 
and gastrointestinal problems. We believe that this review, 
along with several others, define a cellular and molecular 
framework that could facilitate a deeper understanding of 
disease mechanisms and ultimately lead to effective therapies 
for children with CDD, FOXG1, and Rett syndrome.

It deserves mention that while this review has provided 
evidence for common mechanistic underpinnings for three 
related neurodevelopmental disorders, it is unlikely that 
these are specific for CDD, FOXG1 syndrome, and Rett syn-
drome. Indeed, it is possible (and perhaps even likely) that 
some of the molecules and mechanisms described above are 
involved in other neurodevelopmental and neuropsychiatric 
disorders, such as ASD and schizophrenia.
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