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Introduction

Until the end of the 19th century, the role of insects as dis-
ease vectors was not known and the transmission of several 
infectious diseases was attributed to “miasmas,” which were 
supposedly fluid carriers of disease. However, this para-
digm changed at the end of the century. In 1881, the Cuban 

physician Carlos Finlay postulated that a different compo-
nent, commonly present in the air, was the actual culprit 
for the spread of the yellow fever (YF) disease: mosquitoes. 
However, this postulate did not have a definitive proof. In 
1901, Reed et al. demonstrated that these insects were the 
actual transmitters of the disease, disproving the notion of 
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Abstract
Arboviruses cause millions of infections each year; however, only limited options 
are available for treatment and pharmacological prevention. Mosquitoes are 
among the most important vectors for the transmission of several pathogens  
to humans. Despite advances, the sampling, viral detection, and control methods 
for these insects remain ineffective. Challenges arise with the increase in mosquito 
populations due to climate change, insecticide resistance, and human interference 
affecting natural habitats, which contribute to the increasing difficulty in controlling  
the spread of arboviruses. Therefore, prioritizing arbovirus surveillance is essential 
for effective epidemic preparedness. In this review, we offer a concise historical 
account of the discovery and monitoring of arboviruses in mosquitoes, from 
mosquito capture to viral detection. We then analyzed the advantages and 
limitations of these traditional methods. Furthermore, we investigated the potential 
of emerging technologies to address these limitations, including the implementation 
of next-generation sequencing, paper-based devices, spectroscopic detectors, and 
synthetic biosensors. We also provide perspectives on recurring issues and areas 
of interest such as insect-specific viruses.
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Minireview

Impact Statement

Mosquitoes are important indicators for predicting, 
monitoring, and controlling the spread of arbovi-
ruses and pose a significant threat to public health 
worldwide. However, the effectiveness of arbovirus 
surveillance has been affected by various challenges 
including climate change, insecticide resistance, and 
human activity. To address these issues, collabora-
tive efforts between different areas of expertise and 
the integration of emerging technologies, such as 
next-generation sequencing (NGS), paper-based 
devices, spectroscopic detectors, and synthetic bio-
sensors, present promising opportunities for improv-
ing surveillance and control efforts, leading to a faster 
response to outbreaks. The successful surveillance 
of arboviruses in mosquitoes requires human and 
material resources to collect mosquitoes, identify 
their taxonomy, detect arboviruses, and employ 
sequencing techniques whenever possible. Mapping 
at-risk areas and implementing appropriate preven-
tion and control measures are crucial for this pro-
cess. By leveraging this valuable information, health 
systems worldwide can promptly prepare, respond, 
and make informed decisions to mitigate or prevent 
the transmission of arboviruses to humans.
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fomites or infected human blood as the primary means of 
transmission. Based on this understanding, measures were 
implemented to isolate patients with YF and initiate mos-
quito control.1 Remarkably, after 6 months, YF was eradi-
cated from Havana for the first time in 150 years.2

Nevertheless, the complexity of the circulation of mos-
quito-borne diseases has increased recently. According to 
the Mosquito Taxonomy Inventory,3 over 3700 mosquito spe-
cies are found worldwide, with the majority being general-
ists who consume blood meals based on host availability, 
including humans, contributing to the transmission of sev-
eral zoonoses in sylvatic and/or rural cycles.

However, some species of two distantly related mosquito 
genera, Aedes and Anopheles, have evolved into human spe-
cialists. Among them, Aedes aegypti is the primary vector for 
diseases such as YF, chikungunya (CHIKV), dengue, and 
Zika (ZIKV) in urban cycles.4 Genomic studies on Ae. aegypti 
aegypti subspecies indicate that this specialization toward 
biting humans occurred approximately 5000 years ago, fol-
lowing the end of the African humid period and a shift from 
savannah to desert conditions. Consequently, these mos-
quitoes increasingly rely on water sources associated with 
humans rather than natural sources.5 After becoming human 
specialists, the potential for disease spread by mosquitoes 
has increased with the increase in human migration. Over 
the centuries, the transmission of arboviruses within and 
between continents has undergone significant changes, often 

affected by human navigation (e.g., the introduction of YFV 
in the Americas during the slave trade) and more recently 
by aviation (e.g., the recent introduction of ZIKV in the 
Americas through the flow of tourists).5

Over the last few decades, the incidence of arboviral dis-
eases in humans has remarkably changed. These changes 
range from fluctuations in low-level, year-long, continuous 
transmission in endemic areas, to continental epidemics of 
previously known viruses. For example, ZIKV caused out-
breaks throughout the Pacific region in 2007 and reached the 
American continent in 2013.6 Another example is CHIKV, 
which spread from Kenya to Southeast Asia between 2004 
and 2010 and then to the Americas, first in St. Martin Island 
in 2013, and then in 2014 to the rest of the continent, compris-
ing approximately 1.5 million cases. Moreover, newly emer-
gent arboviruses, such as Mayaro (MAYV) and Oropouche 
(OROV), have been spreading on a smaller geographic scale 
but are becoming increasingly concerning for public health.7 
The rapid global spread of these previously obscure patho-
gens underscores the importance of mosquito-borne diseases 
and the need to understand the underlying factors driving 
their emergence.

In this review, we summarize the complexities of viral 
surveillance in mosquitoes based on historical events 
as well as how scientific advancements have evolved to 
address the challenges in detecting and tracking arbovi-
ruses (Figure 1).

Figure 1. Overview of arbovirus wild and urban cycles and evolving detection technologies.
(1) Wild mosquito cycle; (2) urban mosquito cycle; (3) mosquito pool sample after ultracentrifugation; and (4) evolution of technologies: (a) animal inoculation; (b) 
cell culture inoculation; (c) use of Whatman paper for sample collection and transportation; (d) polymerase chain reaction (PCR); (e) real-time PCR; and (f) third-
generation sequencing using Nanopore’s portable MinION sequencer, with details on nucleotide sequence acquisition followed by viruses characterization through 
phylogenetic analysis.
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Mosquito vectors of arboviruses

Emerging and re-emerging arboviruses are major public 
health problems worldwide. The main medically important 
arboviruses causing morbidity and mortality in humans 
worldwide belong to the families Flaviviridae, Togaviridae, and 
Bunyaviridae, which are transmitted by Culicine mosquitoes, 
such as Aedes, Haemagogus, and Culex spp.8 Transmission can 
occur in urban, wild, and rural areas.

In the urban arbovirus cycle (i.e., Dengue, ZIKV, and 
CHIKV), humans act as primary vertebrate hosts and 
anthropized mosquitoes such as Ae. aegypti and Ae. albopic-
tus act as vectors.9

Before establishing themselves in human hosts during 
urban cycles, arboviruses typically circulate in sylvatic or 
enzootic cycles between sylvatic mosquitoes and wild or 
domestic animals, such as rodents, birds, horses, and non-
human primates.10,11 Previously, the sylvatic cycles were 
unknown.11,12 The pivotal discovery of the role of wild mos-
quitoes in arbovirus transmission occurred in the 1930s dur-
ing an investigation of a YFV outbreak in the absence of the 
urban mosquito Ae. aegypti.13

In recent years, the incidence of arbovirus infections has 
significantly increased in humans.14–16 Since their discovery, 
several other mosquito species have been implicated in the 
transmission of arboviruses (Table 1).17,18

Importantly, there is a complex relationship between 
viruses and their vectors, including genetic, immunological, 
and environmental aspects, and transmission only occurs 
when viruses are capable of survival, amplification, and dis-
semination from the mosquito midgut to various other tis-
sues, particularly the salivary glands.19 Once transmitted to 
a vertebrate host, for example, humans, the virus replicates 
and may lead to a variety of symptoms, including fever, joint 
pain, and rash, evolving into cure or death.15

Recent studies on the transmission of arboviruses by 
mosquitoes have focused on understanding the factors that 
influence transmission, such as the abundance and behavior 
of the mosquito population, and the role of human behav-
ior in promoting the spread of viruses.16,20,21 Most studies 
have focused on developing new control strategies aimed 
at reducing the population of mosquito vectors, such as the 
development of genetically modified mosquitoes and the use 

of the endosymbiont Wolbachia which can reduce or block 
the transmission of arboviruses.22–24 It is crucial to acknowl-
edge the significant role of vaccination in combating these 
diseases. One of the most effective vaccines against arbovi-
ruses is the YFV-17D live-attenuated vaccine developed in 
1937 to combat YF.25 More recently, phase III trial results for 
CYD-TDV (commercially known as Dengvaxia) were ini-
tially promising, indicating its effectiveness against all sero-
types.26 While this minireview does not focus on vaccination, 
it is important to briefly mention that these vaccines play a 
critical role in preventing and controlling arbovirus infec-
tions. Understanding mosquito control strategies and vac-
cination efforts can contribute to a comprehensive approach 
to decreasing the incidence and effect of arboviral diseases.

Challenges in arbovirus surveillance 
in mosquitoes

Contemporary changes in geography have indicated an 
increase in arbovirus transmission. Modeling techniques 
have shown that the temperature of temperate zones is gen-
erally too low for the transmission of mosquito-borne infec-
tious diseases. However, warmer climates due to climate 
change may favor shorter developmental times of mosquito 
larvae and the feeding frequency of adult females. Thus, they 
can accelerate the transmission and spread of infectious dis-
eases to new areas.27–29 Rose et al.30 showed that intense dry 
seasons and increasing human population are two crucial 
factors affecting the biting behavior of Ae. aegypti mosquitoes 
toward humans as opposed to non-human hosts in Africa. 
While dry season changes are expected to change modestly 
until 2050 in Africa, the human population density in differ-
ent urban zones is expected to change considerably. Thus, 
Ae. aegypti mosquito bites are expected to transition from 
non-human to human hosts more frequently in these urban 
zones. Lee et al.31 used climate data and Aedes mosquito dis-
tribution models to predict the risk of dengue transmission 
in Brazil. Their findings indicated that the geographic range 
of Aedes mosquitoes is expanding in Brazil and that climate 
change is likely to increase the risk of dengue transmission 
in many regions of the country.31 Increases in temperature 
at equatorial latitudes have been associated with increased 

Table 1. Discovery sites and main vectors for some of the most important arboviruses in circulation worldwide.

Virus Discovery Urban vectors Sylvatic vectors References

YFV 1900, Cuba Ae. aegypti, Ae. africanus, Ae. 
simpsoni, Ae. Albopictus

Haemagogus spp., 
Sabethes spp.

Kuno and Chang,20 Xu et al.,45 
and Zaim and Guillet46

DENV 1940s, Southeast Asia 
and Pacific Islands

Ae. aegypti, Ae. albopictus, Ae. 
polynesiensis

Aedes luteocephalus, Ae. 
furcifer, Ae. niveus

Dusfour et al.47

ZIKV 1947, Zika Forest, 
Uganda

Ae. aegypti and Ae. albopictus Aedes spp., Mansonia 
uniformis, Eratmapondites

Vontas et al.48

CHIKV 1952, Tanzania Ae. aegypti and Ae. albopictus Aedes spp. Carpenter and Clem49

WNV 1937, West Nile District, 
Uganda

Culex. pipiens, Cx. restuans, Cx. 
tarsalis, Cx. quinquefasciatus

Culex (melanoconion) spp. Holmes et al.,50 Abreu et al.51 
and Andrade et al.52

MAYV 1950s, Trinidad and 
Tobago

Ae. aegypti and Ae. albopictusa Haemagogus janthinomys,
Hg. leucocelaenus,
Hg. equinus

Almeida et al.,53 Romano et 
al.,54 Andrade et al.55 and Artika 
et al.56

aShows vector competence for MAYV under laboratory conditions.
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malaria epidemics in Kenya, Rwanda, and Tanzania due to 
the faster mosquito developmental times and the expan-
sion of mosquito populations to higher altitudes.29 Another 
climatic variable that plays an important role in the trans-
mission of arboviruses by mosquitoes, in addition to tem-
perature, is rainfall, supplying suitable larval habitats for 
the proliferation of these insects.32 Some changes in traits, 
such as daylight meals and life cycles within indoor spaces, 
have helped mosquitoes become highly effective vectors.33 
These changes, along with other factors, such as air and sea 
travel, facilitate the transmission of arboviruses by mosqui-
toes, leading to recent arboviral outbreaks, such as the trans-
mission of ZIKV from Africa to Oceania and America and 
CHIKV from Southeast Asia to the Americas.34,35

In addition to climatic changes, many other factors affect 
the epidemiology of arboviral transmission, such as envi-
ronmental changes, international travel, and urbanization. 
Kraemer et al.36 discussed the global distribution of the arbo-
virus vectors Ae. aegypti and Ae. albopictus are associated with 
trade and travel. Global connectedness through international 
trade and human movement facilitates the spread of these 
vectors and their associated pathogens, such as DENV and 
CHIKV, making it imperative to address the risk of impor-
tation and subsequent autochthonous transmission in an 
increasingly connected and urbanized world.36

Anthropogenic land use has also been identified as a 
potential driver of arboviral transmission37 and deforestation 
has often been studied in this regard.38 Deforestation enables 
contact among hosts, competent vectors, and susceptible 
human hosts, thereby facilitating pathogen transmission.39 
Several mosquito species that serve as vectors for multiple 
human pathogens are associated with deforested habitats, 
indicating high frequency and increased abundance in dif-
ferent regions of the world.40 Among the taxa most favored 
by deforestation are Aedes spp.41,42 and Anopheles spp.43,44

In addition to climatic, geographic, and human behavio-
ral changes, insecticide resistance is another emerging vari-
able of concern. Insecticide resistance has been proposed to 
be an adaptive phenomenon because before the exposure 
of organisms to a stressor (in this case the exposure of mos-
quitoes to an insecticide), rare individuals may carry one or 
more resistance alleles (such as polymorphisms in the resist-
ance allele sequence or increased expression of the resistance 
allele) that allow them to survive exposure to the stressor.45 
The proportion of individuals carrying resistance polymor-
phisms or alleles is expected to increase following insecti-
cide-selective pressure.45 The widespread development of 
mosquito resistance to the most commonly used insecticides 
(pyrethroids and organophosphates) has resulted in seri-
ous problems in many regions.46 Examples of insecticide 
resistance include Anopheles47 and Aedes urban mosquitoes,48 
which have become increasingly resistant to insecticides, 
posing significant challenges to vector control programs 
aimed at combating malaria and arboviruses.

Carpenter and Clem49 discussed how known factors, 
including temperature, exposure to pesticides, and lar-
val density/competition, contribute to physiological and 
biochemical processes, such as the ability of viruses to 
escape from the midgut barrier and virus-vector specific-
ity.49 They also identified mosquito factors such as physical 

characteristics, such as basal lamina thickness and structure, 
and immune-related gene expression that affect viral circu-
lation within these insects. Huang et al.15 provided insights 
into arthropod vectors that actively mount immune and 
antiviral responses to limit arbovirus infection. These vec-
tors provide a unique intracellular environment that selects 
and promotes the transmission of specific viral populations, 
ultimately influencing the arbovirus transmission patterns. 
Furthermore, vector–host interactions during feeding on 
vertebrate hosts have been shown to play a critical role in 
disease pathogenesis and can create alternative transmission 
routes.15

Although changes in geography and insecticide resistance 
are known to contribute to the spread of viral diseases, spill-
over events are rare and depend on many variables such as 
host distribution, mutation events, and selection of viruses. 
Therefore, it is nearly impossible to predict the timing and 
location of an epidemic. In the dynamic context of changes 
in mosquito and arboviral prevalence, it is essential to pri-
oritize surveillance to prepare for and mitigate epidemics.50

In Brazil, significant progress has been achieved in eco-
epidemiological surveillance through both passive and 
active methods owing to the efforts of research institutions 
and health services. A noteworthy example of integrated 
surveillance is the monitoring of wild YF, where arbovi-
rus detection in non-human primate hosts and mosquitoes 
was conducted even before identifying cases in humans. 
This proactive approach has allowed timely preventive 
and control measures to be implemented in unvaccinated 
populations.51–55

Arbovirus surveillance in mosquitoes: 
Viral detection methods

Early viral detection techniques play an important role in the 
identification and characterization of arboviruses, laying the 
foundation for the development of more advanced diagnos-
tic methods.56,57 These techniques include tissue maceration, 
animal inoculation, cell culture inoculation, and molecular 
techniques such as polymerase chain reaction (PCR).58–60 
Because these methods were developed chronologically, each 
method has its advantages and disadvantages. Currently, 
these techniques complement each other in characterizing 
viruses, as detailed in the following discussion.

Tissue maceration and animal inoculation: Tissue macera-
tion involves grinding or homogenizing a sample of infected 
or suspected tissue (from vertebrates or mosquitoes) in a 
buffer, followed by inoculating in a laboratory animal, such as 
a guinea pig.61,62 The specimens were monitored for signs of 
disease, such as fever, weight loss, and hemorrhagic lesions. 
This method was widely used in the early 20th century to 
detect and identify viruses such as YFV,63 DENV,64 and West 
Nile virus (WNV).65 Although novel viruses are typically 
cultured in cell lines before being inoculated into animals, 
their use remains crucial for assessing viral virulence.66 In 
addition, guinea pigs can be used directly for the detection of 
arboviruses in specific environments. Sentinel specimens can 
be strategically placed in areas suspected of harboring mos-
quito vectors carrying arboviruses. This assessment involves 
evaluating animals for viral circulation after blood meals, 
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followed by seroconversion, virus isolation, or molecular 
detection. This sentinel guinea pig approach has been suc-
cessfully used to study several alphaviruses and YFV.67 For 
instance, ZIKV was first isolated from a febrile rhesus mon-
key, which was placed as a sentinel in the Zika forest in 1947. 
The isolated virus was subsequently found to be infectious 
in other rhesus monkeys and mice in a laboratory setting.68 
Even today, sentinels continue to play a critical role in arbo-
viral surveillance, particularly in urban areas where animals 
live near humans and resource-challenged environments. 
For example, domestic dogs have been used as sentinels for 
WNV signaling.69

Cell culture inoculation: In the 1940s and 1950s, the devel-
opment of tissue culture techniques enabled the in vitro 
growth and propagation of viruses.70 Infected tissue samples 
were inoculated into cultured cells, such as clone C6/36 cells 
(from Ae. albopictus),71 which allows the isolation and identi-
fication of a wide range of viruses, including DENV. The pro-
genitor cell line, C6/36, was successfully established from 
male larvae in 1967. C6/36 cells have a short replication time, 
consistently high viral titers, and null mutations in their dicer 
genes, which result in defective RNA interference pathways. 
Therefore, this cell line has become instrumental in the prop-
agation of several RNA viruses from different families such 
as Flaviviridae, Togaviridae, and Bunyaviridae.72 Alternatively, 
human viruses can also be propagated through vero cells. 
These cells belong to a continuous cell line with indefinite 
division potential, unlike primary cell lineages. This cell line 
was first established in a female African green monkey in 
1962. One notable characteristic is their inability to produce 
interferons (IFNs), which makes them highly susceptible 
to various human viruses. Interestingly, even at high viral 
titers, vero cells did not undergo IFN-mediated cell death.73 
However, certain other factors must also be considered. To 
maintain viral viability, a cold chain involving low tempera-
tures is necessary for viral sample transport. In addition, the 
isolation of viruses from cell lines may be a time-consuming 
process, making it less suitable for rapid epidemiological 
responses and requiring specialized laboratories and sig-
nificant material resources. Notably, not all viruses can infect 
established cell lines.67 New arboviruses have been charac-
terized and evaluated for vertebrate infectivity using cell 
culture inoculation.74

Molecular techniques: PCR is a molecular technique that 
allows for the amplification and detection of viral nucleic 
acid in a sample. This technique has revolutionized viral 
detection and diagnosis because it is highly sensitive and 
can detect a single positive mosquito in a pool of hundreds 
or thousands. The use of specific primers improves the speci-
ficity of the assay. Unlike cell culture or animal tests, PCR 
can detect viral nucleic acids even in the absence of viable 
viruses, irrespective of cell infectivity.67 This approach has 
significantly improved viral detection and diagnosis, mak-
ing PCR an indispensable tool in the field of virology. This 
method, in contrast to the previous two methods, can also 
be performed in hours, instead of weeks or months. PCR 
can detect a single pathogen, such as ZIKV, or a higher tax-
onomic level, such as members of the Flaviviridae family. 
These assays can be combined with multiplex assays and are 
highly reproducible. Therefore, PCRs are particularly useful 

in mosquito-based surveillance (entomovirological surveil-
lance) and have been revolutionary for the diagnosis of arbo-
viruses and the tracking of outbreaks.56,67,75,76 However, they 
require prior knowledge of arboviral genetics and cannot 
detect highly divergent pathogens. In addition, they require 
infrastructure resources, such as cold chains and electricity, 
and trained personnel to perform the assays properly.76

Arbovirus surveillance in mosquitoes: 
Challenges and innovations

Prompt response for the detection of viral circulation, includ-
ing human cases and epizootics, is a critical factor for the 
successful implementation of arbovirus surveillance.55 
Establishing an epidemiological link between laboratory 
results and the investigated events is essential. Entomological 
surveillance focusing on mosquitoes has proven to be an 
excellent tool.67 Figure 2 summarizes the main stages of the 
entomological surveillance. Although the primary mos-
quito species responsible for arbovirus transmission are well 
known, there remains a knowledge gap concerning the biol-
ogy and ecology of other species, such as wild mosquitoes. 
Identifying these species and understanding their behavior 
can significantly improve the entomological surveillance of 
arboviruses.77 One of the main challenges in entomological 
surveillance is the proper conditioning, storage, and trans-
port of mosquitoes after capture in the field. Collected sam-
ples must reach the laboratory under optimal conditions to 
facilitate taxonomic identification and reliable diagnoses. 
However, this process is often slow, expensive, and requires 
skilled professionals to handle the specimens, and the train-
ing and hiring of new taxonomists is a problem worldwide.

In recent decades, research has shown the potential of 
using near-infrared spectroscopy (NIRS) for detecting arbo-
viruses in mosquitoes.78 It is also possible to measure the 
backscattered light of mosquitoes to identify the sex and 
species of mosquitoes and gravid female mosquitoes. This 
identification is achieved through the analysis of the har-
monic content and/or optical properties.79–83 Although 
the current identification accuracy of such systems may be 
lower than that of traditional laboratory analyses of captured 
specimens, they offer the advantage of observing a larger 
number of insects in real time. This real-time observation 
capability can significantly improve surveillance efforts and 
provide valuable insights into mosquito populations and 
their dynamics. The incorporation of machine learning (ML) 
algorithms has significantly improved the interpretation of 
spectroscopic results in recent years.84,85 In addition, an effec-
tive alternative approach involves using software to detect 
and classify mosquito wingbeat sounds, leading to species 
identification.86 These two methods play a vital role in the 
arbovirus surveillance of mosquitoes, as they help reduce 
costs, speed up the diagnostic process, and promote their 
widespread adoption. Other techniques for storage, pres-
ervation, and detection of genetic material are discussed in 
this section.

Recently, more deployable methods that require less infra-
structure and resources but still require some knowledge of 
the viral pathogen have been developed.87 Among these, 
loop-mediated isothermal amplification (LAMP) assays are 
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promising tools for pathogen detection. One of their key 
advantages is that they eliminate the requirement of expen-
sive thermocyclers and help to obtain the presence/absence 
results within minutes.87 Moreover, other isothermal meth-
ods such as recombinase polymerase amplification (RPA), 
rolling circle amplification (RCA), helicase-dependent 
amplification, and nucleic acid sequence-based amplifica-
tion (NASBA) also offer viable alternatives with reduced 
resource requirements.88 Furthermore, paper-based devices 
show promise as low-cost and portable solutions for path-
ogen detection. These devices have the potential to facili-
tate pathogen testing in a variety of settings. For instance, 
Whatman paper cards are a reliable method for transporting 
nucleic acids, enabling their detection without requiring cold 
chains. This has been successfully used for YFV, DENV, and 
ZIKV.89,90 In addition, low-cost and dependable equipment 
for sample preparation was designed using manual centri-
fuges made from paper.91 Toehold RNA biosensors repre-
sent another innovative approach capable of activation in 
the presence of target sequences, which then express mark-
ers such as GFP or beta-galactosidase. These sensors can 
be freeze-dried on paper and activated upon rehydration, 
making them highly portable and useful in low-resource 
settings. Notably, they have been successfully applied in 

conjunction with NASBA for clinical surveillance of ZIKV 
and CHIKV.88,92 To enhance the specificity of isothermal 
amplification methods and RNA toehold sensors, these can 
be combined with the CRISPR-Cas systems.88 Moreover, the 
integration of isothermal amplification methods with NGS 
allows differentiation between different DENV serotypes.93

NGS technologies have revolutionized virus discovery 
and surveillance by allowing the analysis of entire viral 
genomes without the need for cell line cultures or observa-
tion of cytopathic effects in infected cells. In principle, NGS 
strategies do not require prior genetic information regard-
ing the viruses, though nucleic acid amplification strate-
gies may be required to increase the input of viral genetic 
material.76,94,95 Moreover, genome-based epidemiology has 
proven invaluable for providing critical insights into vari-
ous aspects of an epidemic, including its location, timing, 
causative viral agent, viral evolution, and other pertinent 
questions, without the need for prior pathogen knowl-
edge.76 Oxford Nanopore MinION systems, in particular, 
have played a crucial role in enabling on-site sequencing 
of viral strains, significantly facilitating viral surveillance 
and discovery in local communities and environments.96,97 
Our group, along with other researchers,52,98,99 has effec-
tively used NGS to track the spread of YFV across several 

Figure 2. Cycle of entomological surveillance for arbovirus control.



2078  Experimental Biology and Medicine  Volume 248  November 2023

Brazilian states, allowing us to observe changes in viral 
transmission during the most recent epidemic (2016–2021) 
compared with historical records. This approach offers val-
uable insights into the dynamics of the epidemic and has 
contributed to a deeper understanding of YFV transmis-
sion patterns. In addition to their role in the surveillance 
of known arboviruses, NGS methods offer a powerful tool 
for detecting rarely observed viruses or even discover-
ing entirely new ones by utilizing metagenomic analysis 
of both short and long reads. For instance, Nastri et al.100 
employed long-read metagenomic sequencing to detect 
two Sabiá virus infections in humans who were initially 
suspected of having YFV.100 Before their study, only four 
other Sabiá virus cases were registered in Brazil for two 
decades, despite its potential to cause hemorrhagic fever. 
However, these metagenomic techniques have mainly 
focused on animals of human interest, because the highest 
known diversity of animal viruses is found in vertebrates, 
followed by arthropods. Among arthropods, mosquito-
associated viruses are the most extensively studied group, 
with the majority of novel viral species found in mosqui-
toes belonging to the Aedes, Anopheles, Culex, and Mansonia, 
and are insect-specific, that is, they do not have vertebrate 
hosts, such as arboviruses.101,102

In addition to the discovery and characterization of arbo-
viruses, the study of insect-specific viruses (ISVs), includ-
ing virome studies and their interactions with invertebrate 
hosts, is a growing area of interest. Although there is still 
much to learn about these viruses and their relationship 
with arboviruses, mounting evidence suggests that ISVs 
can modulate their transmission capacity.103,104 Therefore, 
monitoring specific ISVs that affect vector competence, 
in addition to arboviruses, may be crucial for conducting 
accurate risk assessments in different geographical loca-
tions. From 2007 to 2017, 187 novel mosquito-associated 
viruses have been described, with the most representa-
tive viral families being Flaviviridae, Rhabdoviridae, and 
Peribunyaviridae101 (Table 2). While most of the novel viruses 
reviewed in Atoni et al.101 were described in Africa and Asia, 
it is important to note that the majority of RNA-dependent 
RNA polymerases, which are typical of RNA viruses found 
in the Sequence Read Archive, come from datasets from the 
Global North,105 despite some of the largest biodiversity 
hotspots being located in the Global South.106 Disparities in 
sequencing efforts between the global northern and south-
ern regions may partly explain this difference. Specifically, 
regarding the study of viral communities and viromes in 
mosquitoes, Brazil, the United States, China, and Australia 
have the highest number of articles.102 However, more 
extensive sequencing of diverse mosquitoes in diverse 
habitats, as well as the mining of public sequence read 
databases, have the potential to discover and characterize 
novel arboviruses.

According to Moonen et al.,102 mosquito virome studies 
have witnessed a significant increase in frequency over the 
last two decades. The number of such studies has increased 
from just two between 2000 and 2008 to an impressive 27 
studies in recent years. A total of 175 articles published dur-
ing this period were identified, indicating growing interest 
in this field. Regarding the methods used in these studies, 
NGS-based strategies and PCR-based approaches employ-
ing sequences of previously known viral families were 
commonly employed in 70 and 67 studies, respectively. In 
addition, a smaller proportion of studies used cell cultiva-
tion before NGS or PCR (38 and 21 studies, respectively). The 
most studied mosquito genera in virome studies are Aedes, 
Culex, and Anopheles, given their importance as vectors of 
known arboviruses, with Anopheles being the main vector 
of the O’Nyong-Nyong virus. Altogether, these 3 genera 
represent nearly 90% (278 of 312) of the virome records, as a 
given article can present multiple virome records published 
until January 2022. In contrast, sylvatic mosquitoes, such 
as Haemagogus, Sabethes, and Psorophora, have only a single 
record published for the same period.102 Due to the impor-
tance of changes in land use, particularly deforestation, in 
promoting pathogen emergence and spillover events,107,108 
we believe that it is necessary to characterize the viromes 
in sylvatic mosquitoes to improve outbreak preparedness.

Studies on viromes have led to the inclusion of arthropods 
as hosts for previously known viral families, expanded the 
clade diversity within taxa, such as orders and families, and 
led to important evolutionary discoveries, such as the detec-
tion of the Nam Dihn virus in mosquitoes. This has led to 
the establishment of the Mesoniviridae family with interme-
diate genome sizes between smaller Arteriviridae and larger 
Coronaviridae.102

Conclusions

In conclusion, the surveillance of arboviruses in mosquitoes 
should be integrated with other strategies, such as the surveil-
lance of human cases and animal reservoirs and the vaccina-
tion of the human population. Entomological surveillance is 
an important domain of research requiring ongoing attention 
and innovation. With increasing challenges posed by climate 
change, insecticide resistance, and human activity, it is impor-
tant to develop effective strategies to mitigate the spread of 
arboviruses. While traditional methods have provided valu-
able insights into mosquito-borne disease transmission, 
emerging technologies promise to increase the current vig-
ilance capabilities. NGS allows for near real-time tracking 
of outbreaks and the discovery of new or rarely observed 
viruses, spectroscopic devices accelerate mosquito identifica-
tion, and paper-based devices allow for the tracking of viruses 
even in resource-challenged conditions, thus democratizing 
vigilance efforts and helping to fill epidemiological gaps.  

Table 2. Summary characteristics of the five most common ISV and some arboviral families found in mosquitoes.

Viruses family/(reference) Flaviviridae (107) Mesoniviridae (108) Rhabdoviridae (109) Reoviridae (110) Peribunyaviridae (111)

Genome type ssRNA+ ssRNA+ ssRNA– dsRNA ssRNA–
Genome segmentation Monopartite or segmented Monopartite Monopartite or segmented 9–12 segments 3 segments
Genome size 9–13 kb 20 kb Varied Varied 10–12 kb
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Altogether, these technologies offer exciting new possibilities 
for improving surveillance and control. Through continued 
exploration of these innovative technologies and approaches, 
researchers can play a crucial role in safeguarding public 
health and mitigating the effect of arbovirus outbreaks world-
wide. Effective surveillance of arboviruses in mosquitoes 
relies on a combination of human and material resources and 
involves the following key steps: (1) continuous collection of 
mosquitoes in different areas; (2) taxonomic identification and 
preparation of the mosquito pools; (3) diagnostic techniques 
for detecting arboviruses in mosquitoes; (4) sequencing when-
ever possible to gain deeper insights into the viral strains; 
(5) mapping risk areas based on the surveillance results;  
(6) initiation of targeted prevention and control measures, 
when indicated; and (7) swift dissemination of results for 
rapid public health interventions followed by comprehensive 
communication in the scientific literature. Using this compre-
hensive information, health systems can better prepare for and 
respond to potential arboviral outbreaks. Informed decision-
making is possible, enabling effective measures to mitigate or 
prevent the transmission of arboviruses to humans. Thus, a 
proactive approach should be taken to protect communities 
against the threat of arboviral diseases.
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