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Introduction

Cardiovascular diseases, such as high blood pressure (BP), 
or hypertension (HPN), are chronic disorders that gradu-
ally decrease life quality and increase the need for medical 
and social assistance. Despite the prevalence and manace 
of essential HPN, little is known about the mechanisms of 
its etiology. Nevertheless, a number of unmodifiable that 
include heritability ranging from 30% to 60%,1 and modifi-
able risk factors have been identified. The major modifiable 
risk factor for developing HPN is dietary salt intake.2

In the present study, we have compared Spontaneously 
Hypertensive rats (SHRs) with normotensive Wistar Kyoto 
(WKY) rats. The fully inbred SHR is an excellent hereditary 
model for human HPN,3 and elevations in BP develop with 

age without the need for dietary or environmental stimuli. 
Different mechanisms have been associated with the devel-
opment of HPN in SHRs such as high ventricular stiffness4 
and dysfunction of baroreflex sensitivity5 prior to end-organ 
damage.6,7 We recently reported that high-salt (HS) diet 
intake led to changes in various gene expressions at differ-
ent brain regions regulating BP.8 Elevated renin-angiotensin 
system (RAS) and sympathetic nervous system have also 
been reported to contribute to the pathogenesis of genetic 
and salt-sensitive HPN.9

Kidneys have long been implicated in playing a central 
role in regulating BP. Defects in the kidney’s sodium- and 
water-handling mechanisms have been mooted as one of 
the primary causes of HPN in the HS intake.10 The kidneys 
have the capacity to return altered BP to baseline level by 
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Suppression of mRNA expression levels of ENaC and AQP subunits suggests that 
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sodium and water retention.
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Dietary salt intake is the most remarkably modifi-
able environmental risk factor for the etiology and 
progression of hypertension (HPN). Knowing the 
heterogeneity of HPN from abundant experimental, 
interventional, and epidemiological observations, it 
is likely to involve the intricate integration of multiple 
regulatory systems and the kidneys have long been 
implicated to play a central role in regulating blood 
pressure (BP). Defects in the kidney’s sodium- and 
water-handling mechanisms have been mooted as 
one of the primary causes of HPN in high-salt (HS) 
intake. In addition, studies on the dysregulation of 
epithelial sodium channels (ENaCs) and aqua-
porins (AQPs) in spontaneously hypertensive rats 
(SHRs) as a consequence of the HS diet were far 
from complete. This study demonstrated suppres-
sion of mRNA expression levels of ENaCs and AQP 
subunits, thus suggesting that the high-salt-induced 
increase in BP of SHRs may not be solely due to 
renal sodium and water retention mechanism.
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increasing or decreasing sodium and water excretion in 
response to elevated or reduced BP.11 This is accomplished 
in the kidney by the presence of renal membrane-bound 
protein, that is, epithelial sodium channel (ENaC), sodium-
potassium ATPase, sodium-hydrogen exchanger and 
sodium-potassium-2 chloride co-transporter in the loop of 
Henle, sodium-phosphate co-transporter in the proximal 
tubules, and sodium chloride co-transporter in the distal 
tubules that fine-tune sodium reabsorption12 and aquapor-
ins (AQPs) that facilitate the transport of water and in some 
cases, other small uncharged solutes.13,14 Furthermore, there 
is no other sodium transporter beyond the kidney’s cortical 
collecting duct (CD) except ENaC which further strengthens 
the importance of this transporter in BP regulation.15

In this study, we focus on ENaC and AQP- both of which 
play essential roles in sodium and water homeostasis. The 
ENaCs are composed of three homologous subunits, that 
is, α, β, and γ.16 The alpha subunit is required for channel 
activity, and it is critical for the formation of ions in the 
permeating pore, whereas β and γ subunits are necessary 
for maximal channel expression and activity at the cell sur-
face and may also play a regulatory role.17 Nevertheless, all 
three subunits significantly affect multimeric ENaC sodium 
transport capacity. The ENaC subunits are regulated by a 
variety of hormones, especially aldosterone.18 The aldoster-
one acts through mineralocorticoid receptor (MR), which in 
turn regulates ENaCs transcription.19 Besides aldosterone, 
arginine vasopressin (AVP) also acts as an antidiuretic hor-
mone (ADH) that increases sodium reabsorption.20 Apart 
from these two hormones, angiotensin II (Ang II)21 has also 
been implicated in sodium transport. In addition, atrial 
natriuretic peptide (ANP) has been reported to be an inhibi-
tor of ENaC.22 Malfunctions of ENaC subunits affect their 
responses to dietary salt and thus disturb sodium homeo-
stasis. The functional role of ENaC in the development of 
salt-sensitive HPN has been widely studied and a variety 
of responses have been reported.23,24 Thus, investigation on 
ENaC and its role in sodium handling in response to HS diet 
intake is continually expanding.

Meanwhile, the AQPs are essential to maintaining 
water balance which also affects BP. To date, 13 AQP iso-
forms (AQP0 to AQP12) have been identified in mammals. 
Among them, six isoforms have been reported in the kidney, 
that is, AQP1, AQP2, AQP3, AQP4, AQP6, and AQP7.25,26 
Renal AQPs are necessary for the osmotic equilibration,27 
and numerous studies have been documented the associa-
tion between increased AQP levels and the pathogenesis of 
HPN.28 A physiologically relevant role in water reabsorption 
has been demonstrated for AQP1 to AQP4. The majority 
of the water reabsorption in the kidney occurs via AQP1, 
localized in the apical and basolateral membranes of proxi-
mal tubule, descending loop of Henle, and descending vasa 
recta; and AQP2, expressed in the apical membrane of the 
CD.27,29,30 Similarly, to ENaCs, the expressions of AQPs in 
the kidneys were also found to be influenced by hormones.

We hypothesized that chronic HS diet intake affects 
expressions of ENaC and AQP subunits in the kidney, lead-
ing to sodium and water retention, respectively, and the sub-
sequent increase in BP.

Materials and methods

Ethical approval

All the experimental protocols involving animals and hous-
ing thereof were reviewed and approved by the Institutional 
Animal Care and Use Committee (IACUC) of the Universiti 
Malaya (Reference: 2014-01-07/Physio/R/HSZ) which main-
tains a full Association for Assessment and Accreditation of 
Laboratory Animal Care (AAALAC) accreditation.

Experimental design and diet treatment

Since sex differences play an important role in influenc-
ing the development of hypertension,31,32 only male rats 
were used in this study as to minimize the confounding 
effect of sex hormones. The WKY rats and SHRs used in 
this study were bred at the Universiti Malaya Animal 
Experimental Unit from stock obtained from BioLASCO 
(Taiwan). After being weaned at 5 weeks of age, rats were 
housed in groups of four to five under controlled labora-
tory conditions (temperature 23°C ± 5°C, 12:12-h light/
dark cycle and humidity 50% to 60%) with food and water 
provided ad libitum for at least 1 week prior to the onset of 
experimentation. Six-week-old WKY rats and SHRs were 
randomly assigned to receive food with either an RS con-
tent (0.2% w/v NaCl) or an HS content (4% w/v NaCl; 
Harlan Teklad, Germany) with free access to water. The 
potassium content in both diets was 0.6% (w/v). Four 
groups were thus studied:

Group 1: WKY receiving regular-salt diet (WRS).
Group 2: WKY receiving high-salt diet (WHS).
Group 3: SHR receiving regular-salt diet (SRS).
Group 4: SHR receiving high-salt diet (SHS).

Measurements of blood pressure, food, and water 
intakes and body weight

Eight rats at the age of 12 weeks from each group were anes-
thetized with sodium pentobarbital (60 mg/ kg; i.p.) (Sigma 
Aldrich, USA). A small incision (1.5–2 cm) was made in the 
neck for tracheostomy and carotid artery cannulation. The 
carotid artery was cannulated with a cannula pre-filled with 
heparinized normal saline (5IU/mL) which was connected 
to a pressure transducer (MLT0380, ADInstruments). The 
transducer output was amplified and recorded continuously 
by PowerLab Data Acquisition System (ADInstruments, 
Sydney, Australia). The whole setup was allowed to stabi-
lize for 30 to 45 min with the baseline recording carried out 
for 10 to 15 min. Systolic (SBP), diastolic (DBP), and mean 
arterial pressures (MAP) were determined on the BP trac-
ing. Meanwhile, weekly intake of feed and drinking fluids 
was estimated throughout the experimental period. The 
food and water intakes were measured by subtracting the 
measured amounts provided to the remaining amounts in 
the cage. Additionally, the body weight (BW) of the rats in 
both groups was recorded before and after treatment, that 
is, at weeks 6 and 12. The change in BW was calculated by 
subtracting the final weight from the initial weight, and the 
percentage was estimated.
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Tissue collection

At the end of the diet treatment, that is, at week 12, rats were 
euthanized (between hours 08:00 and 11:00) by by stunning, 
followed immediately by decapitation with an animal guil-
lotine, and whole kidneys were harvested and snap-frozen 
in dry ice. All tissues collected were stored at −80°C until 
further use.

Plasma analyses

Trunk blood was collected in a chilled, peptidase inhibitor 
(for ANP) and heparinized (for Ang II, aldosterone and AVP) 
coated vacutainers and plasma was obtained by centrifuga-
tion at 3000 r/min, 4°C for 20 min. The ANP level was quan-
tified using the radioimmunoassay procedure as previously 
described by Gutkowska et al.33 Meanwhile, plasma Ang II 
(catalog number: E-EL-R1430), aldosterone (catalog number: 
ADI-900-173), and AVP (catalog number: ADI-900-017A) lev-
els were quantified by using a competitive enzyme-linked 
immunosorbent assay (ELISA) kits (Elabscience, China and 
Enzo Life Sciences, USA).

Quantitative reverse transcription-polymerase 
chain reaction (qRT-PCR) analyses

The mRNA from the kidney was extracted using Qiazol 
lysis buffer followed by cDNA synthesis by Bio-Rad 
iScript Reverse Transcription Supermix for RT-qPCR 
(Biorad, Hercules, CA, USA) according to the manu-
facturer ’s instruction. The steady-state of ENaCs and 
AQPs expression level in the kidney’s mRNA was meas-
ured using RT-qPCR. All primers for α-ENaC encoded 
by Scnn1a (5′-CCTAAGCCCAAGGGAGTTGA-3′ and 
5′-ACACTACAAGGCTTCCGACA-3′), β-ENaC encoded 
by Scnn1b (5′-TGGACATTGGTCAGGAGGAC-3′ and 
5′-AGCAGCACCCCAATAGAAGT-3′), γ-ENaC encoded 
by Scnn1g (5′-TGAGGCTTCCGAGAAATGGT-3′ and  
5′-AATACTGTTGGCTGGGCTCT-3′), AQP1 (5′-ACCCA 
CTGGAGAGAAACCAG-3 ′  and 5 ′ -AGAGTAGC 
GATGCTCAGACC-3 ′), AQP2  (5 ′-AACTACCTGCT 
GTTCCCCTC-3′ and 5′-ACTTCACGTTCCTCCCAGTC-3′), 
AQP3  (5 ′ -GAACCCTGCTGTGACCTTTG-3 ′  and  
5′-AGTGTGTAGATGGGCAGCTT-3′), AQP4 (5′-ACA 
CGAAAGATCAGCATCGC-3′ and 5′-TGACCAGGTA 
GAGGATCCCA-3′), AQP6  (5′-GGATCTTCTGGGT 
AGGACCG-3′ and 5′-ACGGTCTTGGTGTCAGGAAA-3′), 
AQP7 (5′-TATCTTCGCCATCACGGACA-3′ and 5′-CCC 
AAGAACGCAAACAAGGA-3′), and Gapdh (5′-GCT 
ACACTGAGGACCAGGTT-3 ′  and 5 ′-TCATTGAG 
AGCAATGCCAGC-3′) were designed from NCBI official web-
site (http://www.ncbi.nlm.nih.gov). The qRT-PCR reactions 
were carried out using SYBR green master mix buffer (Roche).

Statistical analyses

Statistical analysis was performed using GraphPad Prism 
9.1 (GraphPad Software, La Jolla, CA, USA). All data are 
expressed as the mean ± standard error of means (SEM) of 
four to eight rats. Comparisons between groups were per-
formed by two-way analysis of variance (ANOVA) with 
Tukey’s post hoc test. The differences were considered sta-
tistically significant at P values <0.05.

Results

HS diet increases MAP in SHR

The HS diet significantly increases MAP in SHR when com-
pared with WKY rats and, in comparison, with their litter-
mate on the RS diet (Figure 1). However, the MAP of WKY 
rats, on the other hand, does not show any significant dif-
ference between HS and RS groups. The two-way ANOVA 
analyses showed that the effect of diet and genotype are 
significant on SBP, DBP, and MAP.

HS diet increases water intake in both SHR and 
WKY rats

The HS diet has a significant effect on water intake. As 
shown in Figure 2(A), both SHR and WKY rats show similar 
water intake when compared with their respective controls 
on the RS diet.

HS diet increases food intake in SHR

Both SHS and WHS did not show any significant differ-
ences when compared either with their respective control 
groups or between strains in their food consumption dur-
ing the 6 weeks of free access to HS and RS food intake 
(Figure 2(B)).

HS diet decreases BW in SHR

The BW of SHS was significantly lower compared with its 
respective control groups, SRS (Figure 2(C)). Meanwhile, 
there was no significant change in the BW of WHS compared  
with WRS.

HS diet induces a similar hormonal response in 
both SHR and WKY rats

Our findings show that both diet and genotype have a sig-
nificant effect on the ANP level. The ANP level was higher 
in SHR when compared with WKY rats on the RS diet as 
well as their respective control groups (Figure 3(A)). In addi-
tion, our results also show that diet has a significant effect 
on Ang II and aldosterone levels. The HS diet possesses a 
reducing trend in both strains of rats; however, the result 
was not significant (Figure 3(B)). Meanwhile, the HS diet 
significantly reduces aldosterone levels in both strain of rats 
compared with their littermate on the RS diet (Figure 3(C)). 
However, neither genotype nor diet nor their interaction has 
a significant effect on the AVP level in SHR and WKY rats 
(Figure 3(D)).

HS diet lowers mRNA expression levels of ENaC 
subunits in the kidney

The HS diet was found to be able to lower the mRNA 
expression of the Scnn1a gene encoding α-EnaC in the kid-
neys of both SHRs and WKY rats when compared to their 
counterparts, that is, SHS versus SRS and WHS versus 
WRS (P < 0.01), respectively, as evidenced in Figure 4(A). 
Meanwhile, Scnn1g, gene encoding γ ENaC, was found to be 
significantly (P < 0.01) lower in WHS when compared with 
WRS (Figure 4(C)).

http://www.ncbi.nlm.nih.gov
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HS diet lowers mRNA expression levels of AQP 
subunits in the kidney

The expression levels of AQP1 (Figure 5(A)) and AQP7 (Figure 
5(F)) were markedly lower with P < 0.05 and P < 0.01, respec-
tively, in WKY rats being fed with HS diet when compared 
with WKY rats on the RS diet. Meanwhile, the SHRs did not 
show significant expression change of parallel comparison. 

However, the level of AQP2 was found to be significantly 
lower in SHS when compared with SRS (P < 0.05) (Figure 5(B)).

Discussion

This study demonstrated an increase in BP only in SHRs on 
HS diet, although water intake was elevated in both SHR 
and WKY rats on HS diet. In addition, the plasma hormonal 

Figure 1.  Changes in systolic blood pressure (Panel A), diastolic blood pressure (Panel B) and mean arterial pressure (Panel C) after HS diet. Data are presented as 
mean ± SEM; n = 8 rats. The **P < 0.01, compared between SHS with SRS and ##P < 0.01 and ###P < 0.001 compared between either SRS or SHS with WRS or WHS 
using two-way ANOVA with Tukey’s post hoc test.
WRS: WKY rats fed with regular-salt diet; WHS: WKY rats fed with high-salt diet; SRS: SHRs fed with regular-salt diet; SHS: SHRs fed with high-salt diet.
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levels of Ang II, aldosterone, ANP, and AVP were similar in 
both strains of rats. The HS diet reduced the expression lev-
els of ENaCs and AQP1, AQP2, and AQP7. All these changes 
observed in both strains of rats (SHRs and WKY rats) on the 
HS diet were in line with the physiological response, except 
for SHRs that developed HPN.

We found that both diet and genotype affect arterial pres-
sure as SHRs had higher MAP than WKY rats on the HS 
diet as well as on RS (Figure 1). This is an expected outcome 
as SHRs are known to develop HPN following salt intake, 
unlike WKY rats.34

An HS diet is able to enhance water intake by stimulating 
the thirst center,35,36 which is evidenced in the present study 
(Figure 2) as the water intake increased in both SHRs and 
WKY rats. The increase in water intake could potentially 
lead to volume expansion and therefore be one of the reasons 
for BP elevation in SHRs as these strains of rats have been 
reported to have low urine output, creatinine clearance, and 
urinary sodium excretion when compared with WKY rats.37 
Thus, the elevation in the MAP of SHR in the present study 
may as a result of volume expansion under the influence of 
raised salt intake as reported by Qi et al.38

Figure 2.  Changes in water intake (Panel A), food intake (Panel B), and body weight (Panel C) after HS diet. Data are presented as mean ± SEM; n = 8 rats. The 
*P < 0.05 and **P < 0.01, compared between SHS with SRS and ##P < 0.01 and ###P < 0.001 compared between either SRS or SHS with WRS or WHS using two-way 
ANOVA with Tukey’s post hoc test.
WRS: WKY rats fed with regular-salt diet; WHS: WKY rats fed with high-salt diet; SRS: SHRs fed with regular-salt diet; SHS: SHRs fed with high-salt diet.
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However, this study also showed that the BW of SHR on 
HS diet significantly decreased compared with SHR on the 
RS diet though the food intake in SHR on HS was higher 
than that of SHS on RS diet. This could be that the high 
dietary sodium suppressed digestive efficiency via RAS as 
observed in the study conducted by Weidemann et al.,39 on 
mice. A similar finding was reported by Mutchler et al.,40 that 
associated reduced BW with higher metabolic demand and 
increased in fatty acid oxidation.

In order to study the mechanism behind these responses, 
we measured plasma Ang II and aldosterone levels, the 
two main components of the renin-angiotensin-aldosterone 

system (RAAS). Our results showed that the HS diet sup-
pressed Ang II and aldosterone (Figures 3(B) and (C)) levels 
in both strains of rats, which indicates a normal physiologi-
cal response. Furthermore, reduction in aldosterone level 
and renin activity following salt intake in SHRs has been 
reported before.41 The authors also reported an increase in 
Ang II level in SHRs on the HS diet, which contradict the 
present finding. In addition, the higher BP in SHRs might 
result from higher MR activity and their downstream sign-
aling pathway. The SHRs have been reported to show high 
MR expression compared with WKY rats42,43 indicating that 
the changes in BP in SHRs might be MR dependent. This is 

Figure 3.  Changes in plasma hormonal levels of atrial natriuretic peptide (ANP) (Panel A), angiotensin II (Panel B), aldosterone (Panel C), and arginine vasopressin 
(AVP) (Panel D) levels in SHRs and WKY rats after HS diet. Data presented as mean ± SEM; n = 6 rats. The *P < 0.05 and **P < 0.01 SHS compared with SRS, 
#P < 0.05 and ##P < 0.01 compared between either SRS or SHS with WRS or WHS using two-way ANOVA with Tukey’s post hoc test.
WRS: WKY rats fed with regular-salt diet; WHS: WKY rats fed with high-salt diet; SRS: SHRs fed with regular-salt diet; SHS: SHRs fed with high-salt diet.
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further evidenced in the present study as there was a slight 
increase in aldosterone level (around 30%) in SHRs when 
compared with WKY rats.

We also measured two peptides that are involved in 
Na+ and volume homeostasis, that is, ANP and AVP. Our 
results showed that the ANP level was altered in a similar 
manner in both SHRs and WKY rats on the HS diet whereby 
SHS and WHS had higher ANP levels when compared with 
their respective controls on the RS diet. An increase in ANP 
could inhibit aldosterone level, and this has been shown in 
this study, which also explains the reduced aldosterone level 
earlier. As ANP is an essential indicator of blood volume, the 

increase in plasma ANP in this study may corroborate our 
finding (Figure 2) that showed high water consumption of 
SHRs and WKY rats being fed with HS diet. A higher water 
consumption due to HS intake would have to increase extra-
cellular fluid (ECF) volume and this would have increased 
the stretch of cardiac chambers thus surging the secretion 
of ANP. Teleologically, the response of ANP would be logi-
cal in being protective against excessive sodium and water 
retention. Nevertheless, plausibly for the increased of ANP 
and BP only in SHR on HS diet remains to be elucidated 
though our findings in accordance with results from stud-
ies conducted by Sagnella et al. and Kohno et al.44 which 

Figure 4.  Relative mRNA expression levels of Scnn1a encoding α-ENaC (Panel A), Scnn1b encoding β-ENaC (Panel B), and Scnn1g encoding γ-ENaC (Panel C) in 
the kidneys under the influence of HS diet. Data are presented as mean ± SEM; n = 4 rats. The *P < 0.05 SHS compared with SRS and #P < 0.05 WHS compared with 
WRS using two-way ANOVA with Tukey’s post hoc test.
WRS: WKY rats fed with regular-salt diet; WHS: WKY rats fed with high-salt diet; SRS: SHRs fed with regular-salt diet; SHS: SHRs fed with high-salt diet.
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Figure 5.  Relative mRNA expression levels of AQP1 (Panel A), AQP2 (Panel B), AQP3 (Panel C), AQP4 (Panel D), AQP6 (Panel E), and AQP7 (Panel F) in the 
kidneys under the influence of HS diet. Data are presented as mean ± SEM; n = 4 rats. The *P < 0.05 SHS compared with SRS, #P < 0.05 and ##P < 0.01 WHS 
compared with WRS using two-way ANOVA with Tukey’s post hoc test.
WRS: WKY rats fed with regular-salt diet; WHS: WKY rats fed with high-salt diet; SRS: SHRs fed with regular-salt diet; SHS: SHRs fed with high-salt diet.
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demonstrated higher plasma ANP levels in patients with 
essential and salt-sensitive HPN.

In addition, we measured AVP level in order to assess the 
cause of increased water intake in rats. Our previous results 
showed that SHRs on the HS diet had higher AVP and oxy-
tocin levels expressed in supraoptic nucleii and subfornical 
organ.8 However, in this study, plasma AVP level did not 
change in response to the HS diet. It has been reported that 
enhanced thirst appeared to normalize plasma AVP concen-
trations in subjects on HS intake,45 and this may serve as the 
possible explanation in the present results as SHRs and WKY 
rats fed with a high-salt diet showed higher water consump-
tion compared to WKY rats of regular-salt diet. Moreover, 
the current and previous results8 imply the essential role of 
the brain in the regulation of BP in SHRs.

As all the above findings remain to answer the increased 
BP only in SHRs on HS diet, we furthered our investiga-
tion on the Na+ (ENaC) and water (AQP) transporters in 
the kidney. The mRNA expression level of both ENaC and 
AQP subunits were analyzed. mRNA expression of α-, β-, 
and γ-ENaC subunits was downregulated in SHRs fed with 
HS diet when compared with SHRs on RS diet (Figure 4). 
The SHRs on RS (0.2% Na+ content) diet has been reported 
to be able to retain an excessive amount of sodium resulting 
from reduced glomerular filtration,37,46 enhanced tubular 
reabsorption,37,47 and increased protein abundance of ENaC 
subunits in various part of kidney segments.37 This, in turn, 
contributes to the elevated BP in these rats. However, the 
4% HS diet in this study did not enhance the mRNA level 
in SHRs suggesting that the HS diet induces compensatory 
natriuresis to maintain sodium homeostasis23,48 in SHRs. One 
of the compensatory natriuretic mechanisms could be the 
low plasma Ang II as well as aldosterone levels and reduced 
in these two plasma proteins has been reported to lower α-
ENaC mRNA levels.48 Aldosterone secretion from the adre-
nal cortex is stimulated by Ang II upon activation of the RAS. 
It is known for its essential role in the transcription of gene 
encoding α-ENaC, thus activating its activity.49,50 Therefore, 
our findings well correlate with reduced plasma Ang II and 
aldosterone levels with the low mRNA expression of the α-
ENaC subunit and thus the lower protein content of α-ENaC.

Meanwhile, the mRNA expressions of β- and γ-ENaCs, 
which are known to be expressed independent of aldoster-
one,51,52 were also found to be depressed in SHRs of being 
fed with HS diet. Activities of both β- and γ-ENaCs have 
been reported to be regulated by α-ENaC.53 Hence, the low 
expression of β- and γ-ENaCs could be due to the low level 
of α-ENaC. Therefore, it is postulated that co-expression of 
all ENaC subunits would result in a fully operating channel 
as their co-existence was required for maximal ENaC chan-
nel function.54 Furthermore, the low plasma aldosterone and 
high plasma ANP of SHRs fed with the HS diet may indicate 
that the high MAP in SHR caused by the HS diet (Figure 1) 
was not due to alteration in the activity of ENaC and may 
involve other mechanisms such as activation of sympathetic 
nervous activity,12,55 enhancement of reactive oxygen species 
(ROS),23,56 and stimulation of cardiovascular control center 
in the brain. However, the lower mRNA levels of α- and 
γ-ENaCs in WKY rats fed with a high-salt diet are in accord-
ance with the claim that under physiological conditions, in 

normotensive rats (Dahl-salt-resistance/SD/WKY rats) there 
is neither no change in expression nor decreased expression 
of ENaC in the kidney in response to high-salt diet.57–59

This study showed various mRNA AQP expression pat-
terns in SHRs and WKY rats in response to the HS diet. In 
both SHR and WKY rats on the HS diet, the mRNA levels of 
AQP1, AQP2, and AQP7 were found to be lower when com-
pared to their counterparts on the RS diet (Figure 5). AQP1 
is the major water channel in the renal proximal tubule (PT) 
and loop of Henle that is responsible for reabsorbing 80% of 
glomerular filtrate.60,61 It has been reported that renal and 
cardiac AQP1 expressions were downregulated in conditions 
such as renal fibrosis in mice62 and HS-induced HPN.63 The 
present result is in accordance with the finding by Penna 
et al.64 who showed that 8% of HS downregulated APQ1. 
Hence, the downregulation of AQP1 in both SHRs and WKY 
rats could be interpreted as a compensatory mechanism to 
prevent large water reabsorption in the PT and the conse-
quent expansion of ECF.26 Furthermore, the downregulation 
of AQP1 also could be associated with low Ang II levels as 
Ang II has been reported to increase AQP1 expression in the 
PT cells.65

AQP2 is well recognized as an AVP-regulated water chan-
nel that is expressed in the principal cell of the CD. It plays a 
key role in urine concentration and body-water homeostasis 
through short- and long-term regulations of water perme-
ability at the CD.66,67 The low mRNA level of AQP2 in WKY 
rats in this study is in accordance with the study by Roxas 
et al.,68 which showed low expression of AQP2 transcript 
in SD rats fed with an HS diet. In addition, stimulation of 
thirst by HS diet may also be a possible explanation for the 
suppressed AQP2 in both strains of rats which excessive 
water drinking keeps circulating AVP levels very low, result-
ing presumably in suppressed AQP2 levels in the kidneys.69 
However, the observed change in SHRs requires further 
studies.

Meanwhile, AQP7 localized at the brush border of PT 
where AQP1 is also located has been classified as aquaglyc-
eroporins because of its credibility to transport water, glyc-
erol, and urea just like AQP3. In this study, mRNA expression 
of AQP7 level (Figure 5(F)) was low in both strains of rats 
being fed with HS diet. This observed change in AQP7 is in 
a similar manner as that of AQP1, suggesting a substantial 
contribution of AQP7 in water reabsorption in the PT. This 
observation is in support with the study by Sohara et al.70 
that showed AQP1/AQP7 double knockout mice showed 
reduced urinary concentrating ability compared with AQP1 
solo knockout mice. However, compared to AQP1, the con-
tribution of AQP7 to water permeability in PT is small and 
remains to be further examined.

However, the mRNA expression levels of AQP3 and AQP4 
(Figure 5(C) and (D)) were enhanced in both strains of rats 
fed with the HS diet. Both AQP3 and AQP4 are constitutively 
localized in the basolateral membrane in principal cells of 
CD. To be more precise, AQP3 is found in cortical and outer 
medullary CD, whereas AQP4 is located primarily in inner 
medullary CD. They both represent potential exit pathways, 
that is, the increased intracellular water absorbed by AQP2 
is transported to blood by AQP3 and AQP430 according to 
an osmotic gradient. The upregulation of AQP3 and AQP4 
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mRNA expression as a consequence of the HS diet in this 
study indicates that the increased water reabsorption in CD 
may contribute to extracellular volume expansion, which 
is a typical characteristic of salt-sensitive HPN. This is fur-
ther supported by our findings (Figure 1) that showed the 
higher MAP in SHRs and WKY rats consuming the HS diet. 
Furthermore, SHRs are known to have a high AQP3 level.26,71

Interestingly, AQP6 displayed upregulation in mRNA 
levels in SHRs and WKY rats. The AQP6 is known to have 
low water permeability, acting mainly as an anion trans-
porter, is thought to be involved in urinary acid secretion.13,14 
Furthermore, AQP6 is co-localized with H+ ATPase, suggest-
ing that low pH could activate the protein. These indicate 
that AQP6 is most likely not involved in the transepithelial 
water transport;72 therefore, the upregulation of its mRNA 
(Figure 5(E)) level as a consequence of the HS diet hugely 
remains unexplained.

This study showed that both SHRs and WKY rats pos-
sessed similar responses to HS intake though a higher BP is 
seen in SHRs. This could be explained based on other studies 
that reported SHRs to be relatively resistant or less suscepti-
ble to kidney damage until the age of 1 year73 and other mech-
anisms such as changes in sodium transport at brain tissue, 
hyperactivity of the sympathetic nervous system,74,75 differ-
ential regulation of tissue-specific RAS, structural changes in 
kidney that includes a low number of glomeruli.76 Another 
possible reason for higher MAP in SHRs is SHRs have vas-
cular smooth muscle cells that take up sodium excessively 
due to alteration of Na+-K+ pump;77 consequently, increases 
intracellular sodium concentration [Na+]i than induces a rise 
in calcium concentration via sodium–calcium exchanger that 
further causes vasoconstriction. Therefore, an augmentation 
in sodium load such as high dietary salt intake is predicted 
to elevate the [Na+]i even more,78 thus elevating the MAP 
unlike in WKY rats.34

Conclusions

In summary, HS intake markedly increased MAP in SHRs, 
which does not seem to be associated with renal expres-
sions of ENaC and AQP subunits. The lower expression of 
ENaC and AQP subunits as a consequence of HS intake sug-
gests stimulation of the BP regulatory system in SHRs in 
an attempt to maintain the MAP; and here it is likely via 
natriuresis activated by ANP. A significantly higher plasma 
ANP level and lower plasma aldosterone level seen in this 
study strongly correlate with the suppression of ENaC and 
AQP subunits. Furthermore, the present finding suggests 
that the kidney sodium- and water-handling channels may 
not be directly responsible for the increase in MAP by HS 
diet intake in SHRs. Thus, the role of ENaC and AQP subu-
nits in salt-sensitive HPN is more toward the maintenance 
of BP rather than causing it to be elevated.
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