
ISSN 1535-3702	 Experimental Biology and Medicine 2023; 248: 1313–1318

Copyright © 2023 by the Society for Experimental Biology and Medicine

Introduction

Chronic liver disease (CLD) is a progressive destruction of 
liver tissue and functions over time, and a leading cause of 
mortality worldwide as end-stage liver disease.1 In addi-
tion, its high prevalence and mortality in the economically 
active adult population aged 40–60 years contribute to its 
significant economic burden.2 However, there are no drugs 
for treating CLD. Liver transplantation is currently consid-
ered the only fundamental treatment for CLD, but it is not 
widely available because of the limited number of donor liv-
ers compared with the large pool of potential recipients.3 In 
addition, impaired liver recovery after liver resection may 
occur in both the live liver donors and the transplant recipi-
ents.4 Side effects including immune rejection response 
and biliary complications may also occur in recipients.5,6 

Hence, strategies for successful liver regeneration after liver 
resection are needed to maintain the metabolic functions 
of the liver for the survival of both donor and recipient. 
But a lack of understanding about liver regeneration has 
limited progress in the development of treatment strate-
gies. In this review, we provide insights for the development 
of liver regeneration strategies by explaining the process 
of liver regeneration after partial hepatectomy (PHx) and 
reviewing currently suggested possible treatments for liver 
regeneration.

Regenerative response of the liver to 
PHx

Over the past several decades, most of our understanding 
about liver regeneration has been acquired from studies 
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the process of liver regeneration after hepatectomy, focusing on various cytokines and signaling pathways. In addition, we review 
treatment strategies that have been studied to date to improve liver regeneration, such as promotion of hepatocyte proliferation and 
metabolism and transplantation of mesenchymal stem cells. This review helps to understand the physiological processes involved 
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Minireview

Impact Statement

We explain the process of liver regeneration after 
hepatectomy and the therapeutic strategies that 
could improve liver regeneration. Accumulated 
studies have reported that liver regeneration 
could be induced by promoting proliferation of and 
metabolism in hepatocytes and transplantation of 
mesenchymal stem cells. This review may provide 
clues to discover and develop successful treat-
ments for patients who undergo liver resection or 
transplantation.
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using the PHx model, in which two-thirds of the liver is sur-
gically removed.7 After PHx, the remaining liver enlarges to 
compensate for the loss of liver mass by facilitating hepato-
cyte proliferation.8 Immediately following PHx, remaining 
hepatocytes recognize various pathogen-associated molec-
ular patterns and damage-associated molecular patterns 
secreted by damaged cells or necrotic cells and begin to pre-
pare for cell proliferation.9,10 The liver plays a pivotal role in 
systemic glucose homeostasis, and within 4 h after PHx, the 
loss of liver tissue limits the glucose supply throughout the 
body, and the blood glucose level decreases markedly.11,12 To 
support the enormous energy demand required by hepatic 
cell proliferation, hepatic and systemic glucose alteration 
occurs.13 Then, hepatocyte proliferation occurs from 12 h and 
reaches a peak at 24 h after PHx.14 Liver mass increases sig-
nificantly in the period from 24 to 72 h post-PHx.14,15 During 
the same time frame, systemic glucose depletion stimulates 
lipolysis in adipose tissue and enhances transfer of fatty 
acids into the liver as an alternative energy source.16 Fatty 
acid intake in the liver leads to rapid accumulation of hepatic 
triglycerides (TG), in turn leading to transient regeneration-
associated steatosis.17 Following sufficient hepatic cell prolif-
eration, the remnant liver decreases excess cell proliferation 
through apoptosis between 60 and 96 h after PHx.18 Finally, 
the liver returns to its original size within five to seven days 
after PHx.19

During liver regeneration, mature hepatocytes in the 
remaining liver replicate to replenish the lost hepato-
cytes in response to various cytokines and growth factors, 
such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, 
and hepatocyte growth factor (HGF).20,21 TNF-α secreted 
from Kupffer cells stimulates them to release IL-6, which 
binds to glycoprotein 130 expressed by hepatocytes.22,23 
IL-6 interacting with glycoprotein 130 activates STAT3 in 
hepatocytes, and the activated STAT3 induces expression 
of genes related to proliferation, such as c-Jun, c-Fos, and 
c-Myc, and leads hepatocytes to enter cell cycle.23–25 Once 
hepatocytes undergo the cell cycle, various mitogens pro-
mote transition to the G1/M phase. The HGF, produced by 
non-parenchymal cells, stimulates the PI3K/AKT signal-
ing pathway that triggers the cell cycle transition to the 
S phase and promotes DNA synthesis in hepatocytes by 
inducing expression of cyclin D.26–28 In addition, Wnt pro-
teins released from non-parenchymal cells induce nuclear 
translocation of β-catenin in hepatocytes.29 Then, activated 
β-catenin upregulates the expression of mitogenic proteins, 
including c-myc and cyclin D1, in hepatocytes.30 In the 
presence of mitogens, hepatocytes continue the cell cycle 
and are capable of achieving the required liver mass. When 
sufficient liver mass is present, hepatocyte proliferation is 
suppressed by antiproliferative cytokines, including IL-1 
and transforming growth factor (TGF)-β.31,32 TGF-β, the 
most well-known antiproliferative cytokine, stimulates 
translocation of R-Smad into the nucleus, and there, acti-
vated R-Smad reduces expression of cyclin D, E and cyclin-
dependent kinase (CDK) 2, 4 to inhibit DNA synthesis in 
the hepatocytes.14,33 Downregulated DNA synthesis inhibits 
hepatocyte proliferation, leading to termination of liver 
regeneration.

Therapeutic strategies for liver 
regeneration after partial hepatectomy

As described above, liver regeneration is a complex and well-
orchestrated process in which various cytokines and cellular 
signals are intertwined. This being so, surgical intervention, 
including liver transplantation or liver resection, is consid-
ered an effective treatment for CLD. However, despite the 
strong regenerative capacity of the liver, unsuccessful liver 
restoration could result in post-hepatectomy liver failure, 
which is life-threatening.34–36 Therefore, promising therapeu-
tic strategies that facilitate the liver regeneration process are 
necessary. Until now, various attempts have been explored 
to promote liver regeneration by promoting hepatocyte 
proliferation and glucose/lipid metabolism and transplant-
ing mesenchymal stem cells (MSCs) into the resected liver 
(Figure 1). In this section, we review these therapeutic strat-
egies that have the potential to enhance liver regeneration.

Stimulating proliferation during liver regeneration

Hepatocyte proliferation in the remnant liver could be 
promoted by proliferative cytokines or activating directly 
signaling pathways.37 In the PHx liver, administration of 
anakinra, an IL-1 receptor antagonist, upregulated prolif-
erating cell nuclear antigen (PCNA) compared with the 
vehicle-giving group.38 Kalinin et al.39 demonstrated that 
treatment with the protein internalin B generated from 
Listeria monocytogenes, which mimics HGF, activated extra-
cellular signal-regulated kinase and upregulated expression 
of cyclin D1 and CDK 2, 4 in rats with PHx. Wnt/β-catenin 
signaling is also shown to contribute to liver mass recovery. 
In rats that underwent transplantation with a liver 30% of 
normal size after removal of the entire liver, treatment of 
Wnt agonist upregulated the expression of cyclin D1 and 
replenished ATP content, which serves as the energy supply 
for regeneration.40 The Wnt/β-catenin pathway activated 
by a thyroid hormone receptor-β agonist also increased 
cyclin D1 expression in PHx mice.41 Long non-coding RNA 
small nucleolar RNA host gene 12 (SNHG12) is known to 
be involved in cellular proliferation and metastasis in vari-
ous cancer cells by activating Wnt/β-catenin signaling.42,43 
In mice receiving PHx, SNHG12 overexpression signifi-
cantly increased PCNA-positive hepatocytes by stimulat-
ing Wnt/β-catenin signaling, whereas the liver regeneration 
promoted by SNHG overexpression was alleviated by Wnt 
inhibitor IWR-1.44 Inhibition of factors that interfere with the 
cell cycle can also boost liver regeneration. As a cell cycle 
halter, p21 suppressed cell cycle progression in hepatocytes 
and impeded liver regeneration.45,46 Ritschka et al.47 demon-
strated that senolytic compound ABT-737, which is a class 
of drugs that causes selective elimination of senescent cells, 
increased regenerative capacity in the livers of mice after 
PHx by inhibiting expression of p21. Counteracting the role 
of TGF-β is also a possible solution for helping hepatocyte 
proliferation in resected liver. Treatment with galunisertib, a 
small molecular inhibitor of TGF-β1 receptor type 1, upregu-
lated the levels of cyclin E1 and CDK2 and the number of 
hepatocytes expressing Ki-67 in the PHx liver, thereby pro-
moting liver regeneration.48
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Several studies have reported that advancing the induc-
tion of metabolic reprogramming promotes liver regenera-
tion. Pyruvate dehydrogenase kinase 4 (PDK4) is a crucial 
mediator for gluconeogenesis. PDK4 deletion enhanced 
hepatic insulin signaling and fatty acid uptake and acceler-
ated recovery of liver mass and hepatocyte proliferation in 
animal models of PHx.49 G49 is a dual agonist of glucagon-
like peptide-1/glucagon receptor and modulates glucose 
uptake and glycogen synthesis. G49 treatment increased the 
survival rate of mice with nonalcoholic steatohepatitis after 
PHx and elevated hepatocyte proliferation by enhancing 

glucose oxidative metabolism.50 In addition, it has been 
shown that disruption of hepatic lipid metabolism results 
in impaired liver regeneration, suggesting that promoting 
transient hepatic lipid accumulation is an important strat-
egy to enhance liver regeneration. Reduced lipid transport 
to and storage in the liver could interrupt liver restoration. 
Replication initiator 1 (REPIN1) is a transcriptional factor 
upregulating cluster of differentiation 36 (CD36), which is 
a well-known marker of lipid transport into hepatocytes.51 
Abshagen et al.52 showed that REPIN1 deletion lowered the 
expression of CD36 and fatty acid transport protein 5 and 

Figure 1.  A schematic description of therapeutic strategies to promote liver regeneration. Therapeutic factors and mesenchymal stem cells (MSCs) can facilitate 
liver regeneration by improving hepatocyte proliferation and metabolism. Proliferation-promoting factors, such as anakinra, internalin B, Wnt agonist, thyroid hormone 
receptor-β agonist, long non-coding RNA small nucleolar RNA host gene 12, ABT-737, and galunisertib, impact the cell cycle progression in hepatocytes. They 
upregulate the levels of proliferating cell nuclear antigen (PCNA), cyclin D1, E1, and cyclin-dependent kinase (CDK) 2,4, and downregulate expression of p21, 
promoting hepatocyte proliferation. Metabolism-promoting factors, such as G49, replication initiator 1, and adipocyte differentiation–related protein, enhance the 
expression of cluster of differentiation 36 (CD36) and fatty acid transport protein 5 (FATP5), which elevate uptake of glucose and lipid into hepatocytes and contribute 
to the increase of the metabolism supplying energy required for hepatocyte proliferation. Transplantation of MSCs also helps in liver regeneration through influencing 
hepatocyte proliferation and metabolism.
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suppressed transient hepatic steatosis. Adipocyte differen-
tiation-related protein (ADRP) inhibits very low-density 
lipoprotein secretion and increases hepatic TG storage.53 
ADRP-deficient mice had delayed liver regeneration because 
of decreased accumulation of hepatic TG after PHx.54 Based 
on these findings, promoting the proliferation-related sign-
aling pathway and the metabolism supplying the energy 
required for hepatocyte proliferation are promising strat-
egies for liver regeneration. Therefore, further studies on 
these mechanisms are needed to develop therapeutic agents 
for treating the resected liver.

Potential of MSCs and MSC-derived scretome for 
improving liver regeneration

Along with controlling various events that enhance regen-
erative capacity in liver tissue, stem cell transplantation is 
an additional therapeutic approach to promote better liver 
regeneration.55 Stem cells are widely studied and employed 
based on their regenerative ability. Among the various types 
of stem cells, MSCs are considered one of the most effec-
tive multipotent cells and are widely applied in various dis-
ease treatments as a regenerative therapy.56–58 Also, MSCs 
are known to promote hepatocyte proliferation, modulate 
immune and inflammatory responses, and regulate neo-
vascularization in the liver.20,59,60 MSCs isolated from rat 
bone marrow (BM-MSCs) transplanted into rats with PHx 
migrated to the liver, where they promoted hepatocyte pro-
liferation and improved the serum albumin level.61,62 Ding 
et  al.63 reported that BM-MSCs activated the AKT/GSK-
3β/β-catenin pathway, which upregulated liver glycogen 
synthesis and hepatocyte proliferation. Transplantation of 
rat BM-MSCs was also shown to activate mTOR signaling, 
which improved mitochondrial function and promoted fatty 
acid oxidation, supplying energy required for liver regen-
eration in rats with PHx.64 Furthermore, injecting normal 
BM-MSCs into albumin-deficient rats with PHx increased 
albumin-producing hepatocytes derived from the donor 
BM-MSCs.65 In addition to BM-MSCs, MSCs isolated from 
adipose tissue (AD-MSCs) were reported to promote liver 
regeneration in rodent models which had undergone hepa-
tectomy.66 Transplantation of AD-MSCs upregulated the 
hepatic regeneration-associated factors such as Erk1/2, JNK, 
p38 MAPK, c-Fos, and c-Jun and contributed to liver regen-
eration in rats after PHx.67 Transplantation of AD-MSCs 
decreased the apoptosis of hepatocytes, increased the prolif-
eration of hepatocytes, and facilitated the recovery of liver 
mass and function.67–69

Recently, a few studies have reported that factors secreted 
from MSCs have therapeutic effect on liver regeneration. 
Injection of exosome-rich secretome from rat BM-MSCs 
reduced liver damages and increased albumin level in mice 
that underwent PHx.70 Lee et al.71 demonstrated that con-
ditioned medium (CM) from lipopolysaccharide-precon-
ditioned AD-MSC had higher amounts of HGF, vascular 
endothelial growth factor, TNF-α, and IL-6 compared with 
CM from untreated AD-MSC, and the cytokines-plentiful CM 
increased the number of proliferative cells in partially hepa-
tectomized mice. Treatment CM obtained from human liver-
derived MSCs (L-MSCs) stimulated hepatocyte proliferation 

by upregulating TNF-α, HGF, and PCNA expression in mice 
with PHx.72 In addition, microvesicles released from human 
L-MSCs were shown to alleviate hepatocyte apoptosis by 
elevating cyclin A1 expression and improved hepatic regen-
eration in rats with PHx.73 However, because the roles of 
MSCs and MSC-derived secretome in liver regeneration have 
not yet been fully investigated, further research is required 
to explore the beneficial effects of MSCs in liver restoration.

Conclusions

Liver regeneration is a process involving various cytokines 
and signaling pathways to restore lost liver mass.37 If this 
process is compromised or delayed after liver resection, 
acute liver failure could develop, which may be life-threat-
ening for the patient. Therefore, researchers are conducting 
studies on promoting liver regeneration by inducing hepato-
cyte proliferation, regulating metabolism, and transplanting 
MSCs. However, compared to research on liver regenera-
tion in damaged tissue occurring as a result of CLD, stud-
ies on liver regeneration arising in the remnant liver after 
hepatectomy are limited. In addition, although the biological 
understanding of liver regeneration has greatly advanced to 
date, effective treatments for promoting liver regeneration 
are lacking because studies on clinical application are rare 
and the therapeutic effects and safety of these factors have 
not been verified. Therefore, more thorough research on fac-
tors involved in liver regeneration after hepatic resection is 
required to broaden our understanding and help discover 
and develop potential therapeutic targets to promote suc-
cessful liver regeneration.
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