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Dendritic cells: function and 
classification

Dendritic cells (DCs) are professional antigen-presenting 
cells responsible for initiating and controlling adaptive 
immune responses. They are perfectly positioned to act as 
sentinels and capture antigens whenever and wherever they 
enter the body. After capture, DCs specialize in the process-
ing and presentation of antigens through major histocompat-
ibility complexes (MHCs). Therefore, DCs provide the main 
signals required for T cell activation, such as antigen rec-
ognition, costimulation, and cytokine production.1 DCs are 
essential to promote adaptive responses mediated by CD4+ 
and CD8+ T cells to support immunity to a variety of patho-
gens.2,3 However, DCs also promote tolerogenic immune 
responses in the absence of inflammation/infection either 
by deleting specific T cells or by expanding regulatory T 
cells.4,5 This important role allows them to regulate autoim-
mune responses.

DCs were initially classified according to their location 
and expression of several membrane markers. Currently, 
they are divided according to their ontogeny based on the 
expression of different transcriptional factors.6 In this way, 
DCs are classified in three main subsets: plasmacytoid 
dendritic cells (pDCs), conventional type 1 dendritic cells 
(cDC1s), and conventional type 2 dendritic cells (cDC2s). 
While pDCs are mainly found in lymphoid tissues and in 
the blood, cDC1s and cDC2s are found in lymphoid and non-
lymphoid organs including lung, liver, skin, and gut. The 
main function of pDCs is the production of type 1 interferons 
(IFNs) during viral infections.7 Whereas cDC1s are highly 
specialized in antigen cross-presentation to CD8+ T cells, 
as well as CD4+ T helper (Th)1 and T regulatory (Treg) cell 
polarization, cDC2s have been associated with the instruc-
tion of Th17 and T follicular helper cells (Tfh).8–10

cDCs in secondary lymphoid organs exist in an immature 
state, allowing them to sample their environment and cap-
ture antigens. Immature cDCs express lower levels of MHC 
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Abstract
Dendritic cells are central to the development of immunity, as they are specialized 
in initiating antigen-specific immune responses. In this review, we briefly present 
the existing knowledge on dendritic cell biology and how their division in different 
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receptors, to deliver antigens directly to these cells. Promising preclinical studies 
have shown that it is possible to modulate the development of immune responses 
to different pathogens when monoclonal antibodies fused to pathogen-derived 
antigens are used to deliver the antigen to different subsets of dendritic cells. 
This approach can be used to improve the efficacy of vaccines against different 
pathogens.
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Minireview

Impact Statement

Dendritic cells are the most effective antigen-
presenting cells described to date. Their biology, 
positioning in the body, and migratory capacity 
allow them to continuously sense the environ-
ment and quickly detect infection/inflammation. In 
this way, they acquire antigens and take them to 
the lymphoid organs to initiate adaptive immune 
responses. Their central role makes them excellent 
targets for manipulating immune responses. The 
use of monoclonal antibodies to direct antigens of 
interest to these cells has been used as a promising 
vaccination strategy, since a relatively small amount 
of antigen can induce strong immune responses.
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molecules and co-stimulatory molecules, making them poor 
stimulators of T cells. However, upon encountering micro-
bial products, inflammatory signals, or cytokines, matura-
tion occurs with a series of molecular and morphological 
changes, transforming them into potent antigen-presenting 
cells. During maturation, cDCs upregulate the expression of 
MHC and co-stimulatory molecules such as CD80, CD86, and 
CD40, which are essential for T cell activation. The process of 
cDC maturation is regulated by different factors, including 
cytokines, chemokines, and danger signals. The interleukin-1 
(IL-1) cytokine is known to promote cDC maturation by up-
regulating the expression of MHC class II (MHC II) molecules, 
co-stimulatory molecules, and cytokine production. Other 
cytokines, such as IFN-gamma (IFNγ) and tumor necrosis 
factor-alpha (TNF-α), also play a role in cDC maturation and 
activation. In addition to cytokines, the maturation of cDCs in 
the spleen is also influenced by chemokines, such as CXCL12 
and CCL19, which promote cDCs migration to T cell rich areas 
of the secondary lymphoid organs. Once in these areas, cDCs 
encounter T cells and begin to present antigens and co-stimu-
latory molecules, initiating the activation of T cells.11–14 In this 
way, DCs link innate and adaptive immune responses.

DC surface receptors: sensing the 
environment

The central role of DCs in the induction of adaptive immune 
responses relies on their incredible capacity to sense the 
environment and respond to infection/inflammation. In this 
way, DCs express a myriad of receptors, often also expressed 
by other immune cells, which are not only capable of recog-
nizing different classes of pathogens and/or inflammatory 
mediators, but can also improve their capacity to process and 
present antigens, and travel from the periphery to lymphoid 
organs where antigen presentation and T cell priming actu-
ally take place.15

On the cell surface, CD11c, CD45, and MHCII are mark-
ers constitutively expressed by DCs. Upon stimulation, they 
also upregulate the costimulatory molecules CD40, CD80, 
and CD86. Other cell surface molecules also expressed on 
the surface of the DCs help to define the different subsets. 
For example, CD8α and CD103 are used to distinguish 
cDC1s from nonlymphoid and lymphoid tissues, respec-
tively, while CD11b and CD172a (SIRPα) distinguish cDC2s. 
cDC1s also express the XC-chemokine receptor 1 (XCR1)16 
and distinct C-type lectin receptors compared to cDC2s. 
Differentially expressed C-type lectin receptors include 
DEC205 (CD205 or LY75), CLEC9A (or DNGR1), and CD207 
(CLEC4K or langerin), which are expressed primarily by 
cDC1s, while DC inhibitory receptor 2 (DCIR2; or CLEC4A4) 
and DC-associated C-type lectin-1 (dectin-1; or CLEC7A) are 
expressed by cDC2s.17–20

Model antigens delivery to DCs: 
establishing the requirements 
for induction of specific immune 
responses

Antigen targeting to DCs consists of a strategy to deliver 
recombinant antigens directly to these cells. Generally, 

antigens are coupled to receptor ligands or genetically fused 
to mAbs directed to receptors expressed on the membrane 
of DCs (Figure 1).21

Initial studies involving DC targeting were conducted 
with mAbs specific for Fcγ receptors (FcγRs), MHC II, and 
CD40, and showed that antigen delivery through these 
receptors improves adaptive cellular and humoral immu-
nity, the latter not requiring the administration of additional 
adjuvants.22–25 Other DC surface receptors such as the CD11c 
and CD11b integrins were also targeted. The targeting of 
ovalbumin (OVA) to CD11c induced better proliferation of 
CD4+ and CD8+ transgenic T cells compared to targeting to 
MHC II,26 and better humoral immune responses compared 
to targeting CD11b, MHC II, and CD40, after a single dose 
and without any adjuvant.27 XCR1-expressing DCs were also 
targeted through constructs containing its ligand Xcl1 fused 
to OVA. Strong proliferation of CD4+ and CD8+ transgenic 
T cells was also observed.28

The last 20 years have experienced an exponential increase 
in research using mAbs directed at C-type lectin endocytic 
receptors such as DEC205, CLEC9A, CLEC12A, mannose 
receptor 1 (or CD206), DC-specific ICAM3‑grabbing non-
integrin (DC‑SIGN; or CD209), CD207, DC inhibitory recep-
tor (DCIR; or CLEC4A), DCIR2, and dectin-1, among others 
(Figure 1).29

The first attempts to use mAbs to target antigens to DC 
C-type lectin endocytic receptors were made at Rockefeller 
University by Michel Nussenzweig and Ralph Steinman 
groups.4,30 Hawiger et al.4 and Bonifaz et al.30 demonstrated 
that model antigens such as chicken egg lysozyme (HEL) or 
OVA could be selectively delivered to cDC1s in vivo through 
the DEC205 receptor, using a chimeric αDEC205 (clone NLDC-
145) mAb coupled to the antigen (αDEC-HEL or αDEC-OVA). 
The antigen sent to cDC1s was effectively processed and pre-
sented to both transgenic CD4+ and CD8+ T cells. When 
the chimeric mAb was injected without a DC maturation 
stimulus, the result was the induction of peripheral tolerance 
(measured by the deletion of transgenic specific T cells). On 
the contrary, the combined administration of chimeric mAb 
together with a DC maturation stimulus (such as the agonist 
αCD40 mAb) led to prolonged CD4+ and CD8+ T cells acti-
vation. Furthermore, immunity induced by targeting DEC205 
was long-lasting and more effective than administration of 
more potent adjuvants, such as complete Freund’s adjuvant. 
Promising initial results also demonstrated that it was possible 
to use αDEC205 chimeric mAb in vaccination protocols. Mice 
vaccinated with αDEC-OVA together with αCD40 resisted 
challenge with a transgenic vaccinia virus and with a tumor 
line expressing OVA. This protective response was dependent 
on CD4+ and CD8+ T cells activation.31 Furthermore, immu-
nization with αDEC-OVA together with αCD40+Poly (I:C) 
triggered the activation of memory CD4+ T cells that were 
essential for the production of anti-OVA.32 It is important to 
mention that Treg cells were also induced when αDEC-OVA 
was injected without any DC maturation stimulus.5

The first evidence that αDCIR2 (clone 33D1) mAb was 
able to target antigens to cDC2s was published in 2007. 
Immunization of animals with αDCIR2-OVA induced 
proliferation of transgenic CD4+ T cells much more effi-
ciently than when the αDEC-OVA mAb was used.18 
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Complementary studies showed that cDC2s expressing the 
DCIR2 receptor were more efficient than cDC1s in inducing 
Tfh cells, leading to efficient humoral immunity.9,10 These 
experiments with chimeric mAbs fused to model antigens 
were important because they established a functional dif-
ference between the cDC subsets that later became named 
cDC1s and cDC2s.33

The ability of CLEC9A to induce immune responses 
was studied using an αCLEC9A mAb fused to OVA. The 
targeting of OVA to CLEC9A induced the proliferation of 
CD4+- and CD8+-specific transgenic T cells, as well as 
antibody responses even in the absence of any adjuvant.34,35 
Furthermore, OVA peptide targeting to CLEC9A in the 

presence of αCD40 was also able to induce cytotoxic T lym-
phocytes (CTLs) and protect mice from a tumor cell line 
expressing OVA.36 A strong Th1 cell response was also elic-
ited after an OVA-derived CD4+ T cell epitope was deliv-
ered to CLEC9A together with Poly (I:C) as adjuvant. When 
curdlan (an agonist of Dectin-1) was administered together 
with the αCLEC9A mAb, a Th17 response was elicited. The 
absence of a DC maturation stimuli led to the induction of 
Treg,37 as previously observed for DEC205 receptor.5 OVA 
was also used to study antigen delivery to CLEC12A through 
an αCLEC12A-OVA mAb. The results showed that antigen 
delivery to CLEC12A induced specific cellular and humoral 
immune responses only in the presence of an adjuvant.38,39

Figure 1.  Receptors used for antigen delivery to conventional dendritic cell subsets, and the resulting T and B cell responses. Created with BioRender.com.
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Mannose receptor 1 and DC-SIGN were targeted using 
a highly glycosylated (o-glycan oligomannoses) immuno-
globulin protein fused to OVA. Mouse immunization with 
this protein in the presence of the AbISCO®-100 adjuvant 
led to high and broad anti-OVA antibody responses together 
with the induction of Th1, Th2, and CTL responses.40

Delivery of clinically relevant antigens 
to DCs

The findings described above opened the possibility of using 
αDEC205 and αDCIR2 fused to clinically relevant antigens 
for the induction of protective immunity against different 
pathogens or against tumors.

The αDEC205 mAb was fused to the circumsporo-
zoite protein (CSP) expressed by the sporozoite forms of 
Plasmodium yoelii (a species that causes malaria in rodents). 
Administration of a single dose of αDEC-CSP in the pres-
ence of αCD40+poly (I:C) induced specific IFNγ-producing 
CD4+ and CD8+ T cells in different mouse strains. In addi-
tion, the induction of an antibody response, measured by the 
assessment of anti-CSP antibody titers, was also observed 
after administration of an additional dose, in the absence of 
any other adjuvant.32 Immunization of rhesus monkeys with 
three doses of αDEC205 fused to Plasmodium falciparum (a 
species that causes human malaria) CSP together with Poly 
(I:C) induced polyfunctional CD4+ T cells, as well as anti-
CSP antibodies that blocked 43% of the parasite invasion 
in vitro.41 Another protein derived from Plasmodium vivax 
(another species that causes human malaria) merozoite sur-
face protein 1 (MSP1), named MSP142, was also targeted at 
cDC1s by fusion with αDEC205. The results showed that 
high antibody titers were obtained, especially against a por-
tion of this molecule known as MSP119.42 Furthermore, the 
immunogenicity of the MSP119 protein itself was increased 
after its fusion with a synthetic CD4+ T cell epitope (Pan-
allelic DR epitope; PADRE) designed to enhance humoral 
immune responses.43

Our group has extensively used the fusion protein 
MSP119-PADRE not only to study the possibility of develop-
ing an effective vaccine against Plasmodium vivax malaria but 
also to explore, in a little more detail, the biology of cDCs. 
To this end, we compared the T cell and antibody responses 
induced after MSP119-PADRE delivery to cDC1s via DEC205 
and to cDC2s via DCIR2 shortly after (on days 2, 3, 4, 5, 
and 6) the administration of αDEC205-MSP119-PADRE 
and αDCIR2-MSP119-PADRE together with Poly (I: C). Our 
results confirmed and extended previously published data, 
since we showed that DCIR2 antigen targeting increased 
Tfh cell frequencies on day 5 after immunization, suggest-
ing that cDC2s are particularly good to prime these cells. In 
addition, we detected an increased frequency of germinal 
center B cells and plasma cells, suggesting that Tfh cells sup-
port the formation of germinal centers and also plasma cell 
differentiation. Besides the activation of Th1 cells induced 
by DEC205 targeting to cDC1s, our results also showed 
that, after a booster dose, αDEC205-MSP119-PADRE mAb 
induced Th1-like Tfh cells, which probably contributed to the 
observed IgG class switch and to the increase of anti-MSP119 
antibody titers. More importantly, a subset of Treg capable 

of producing IL-10 was also detected.44 These results are 
relevant to show that, despite their different functions, DCs 
from different subsets are plastic and can lead to different 
immune outcomes depending on the context in which they 
present the antigen. More recently, we have used antigen 
targeting to DCs to study in more detail their signaling path-
ways. We have shown that the canonical signal transducer 
and activator of transcription 3 (STAT3) pathway regulates 
the capacity of cDC1s to support CD4+ T cell responses after 
antigen delivery to the DEC205 receptor,45 while the STAT6 
pathway controls B cell positioning in the germinal centers 
after antigen delivery to the DCIR2 receptor.46

Proteins derived from other protozoans have also been 
targeted to cDCs in vivo. The protective capacity of a vac-
cine against Leishmania major was investigated when the 
αDEC205 sequence was fused to stress-inducible protein 
1 (LmSTI1a). Targeting of this protein to mature cDC1s 
increased the number of antigen-specific CD4+ T cells 
that produced IFNγ, IL-2, and TNF-α in two mouse strains. 
Furthermore, using an LmSTI1a protein peptide library, it 
was possible to map at least two distinct MHC II epitopes 
in this protein in each mouse strain. Protection against a 
Leishmania major challenge was also obtained in BALB/c mice 
(a highly susceptible strain) after challenge.47 Trypanosoma 
cruzi amastigote surface protein 2 (ASP-2) was also fused to 
αDEC205 and used to immunize animals together with Poly 
(I:C) as adjuvant. As previously demonstrated with proteins 
from other pathogens, it was possible to map a new CD4+ T 
cell epitope present in this protein.48 Toxoplasma gondii tachy-
zoites main surface antigen, SAG1, was fused to a variable 
chain fragment of the αDEC205 mAb (scDEC). Intranasal 
and subcutaneous immunizations together with Poly (I:C) 
induced protective responses against chronic infection that 
were probably mediated by polyfunctional Th1 cells.49

The αDEC205 mAb was also coupled to the human 
immunodeficiency virus (HIV) gag p24 protein, and the 
administration of a single dose of αDEC-gag p24, together 
with αCD40 agonist mAb and Poly (I:C), was able to induce 
a strong immune response mediated mainly by IFNγ-
producing CD4+ T cells. Protection was also observed when 
immunized animals were challenged with a transgenic vac-
cinia virus expressing the gag protein. The interesting results 
obtained with these experiments showed that relatively low 
concentrations of chimeric mAbs (between 3 and 10 µg per 
animal) were able to induce strong immune responses.50 The 
αDEC-gag p24 mAb was also used to test different adju-
vants that could induce DC maturation. The most potent 
adjuvant for this type of immunization was Poly (I:C), along 
with other more stable and less toxic analogues such as Poly 
ICLC51 or Poly (I:C12U).52 At the same time, the number of 
doses was also tested, and it was noticed that a homologous 
prime-boost strategy was more efficient than the adminis-
tration of only one dose.51,52 Another strategy using the p24 
gag protein involved the administration of αDEC-gag p24 
as a single chain (sc). Immunization of mice with two doses 
of scDEC-gag p24 in the presence of Poly ICLC was able to 
induce protection after an intranasal challenge with a vac-
cinia virus expressing the gag protein.53 This type of strategy 
is also very promising because it is easier to scale up for 
mass administration, since a single-chain antibody is easier 
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to produce than a whole antibody containing two chains. 
Antigen delivery to the DEC205 receptor was also used in an 
attempt to increase the immunogenicity of DNA vaccines. In 
this case, a plasmid encoding scDEC205 fused to the HIV p41 
gag protein was used to immunize mice. The results showed 
that, after electroporation with only one dose of the plasmid 
encoding the scDEC-gag p41, a specific and polyfunctional 
CD4+ and CD8+ T cell response was detected and provided 
protection against challenge with a vaccinia virus express-
ing the gag protein.54 These results showed that the effec-
tiveness of a DNA vaccine could be improved by including 
sequences, such as single-chain antibodies, to deliver the 
antigen to DCs.

The protein gap p24 was also fused to αDEC205, αDCIR2, 
αCLEC9A and αLangerin to more systematically compare 
the immune responses elicited in the presence of αCD40+ 
Poly (I:C) as adjuvant. Comparable levels of Th1 and CD8+ 
T cells producing IFNγ were observed when the antigen was 
delivered to DEC205, CLEC9A, and Langerin, corroborat-
ing data showing that cDC1s are indeed well specialized in 
antigen cross-presentation to CD8+ T cells, as well as Th1 
polarization.55

In addition to the p24 gag protein, the αDEC205 mAb was 
also conjugated to a sequence containing eight conserved 
epitopes derived from different HIV proteins that were rec-
ognized by T lymphocytes from 90% of HIV-1-infected indi-
viduals (clade B) in different clinical stages of the disease.56 
This chimeric protein was created in an attempt to present 
HIV immunogenic epitopes outside the context of their 
flanking proteins, in order to suppress the escape mecha-
nisms developed by this virus throughout its evolution in 
the human host. The results demonstrated that the injection 
of two doses of αDEC205 fused to the eight epitopes (αDEC-
HIVBr8), together with Poly (I:C), was capable of inducing a 
broad and polyfunctional response of both CD4+ and CD8+ 
T lymphocytes, especially when this strategy was compared 
with immunization with two doses of a DNA vaccine encod-
ing identical epitopes.57

In addition to HIV, proteins from other viruses were also 
targeted using both αDEC205 and αDCIR2 mAbs. In the 
case of dengue 2 virus, immunization with two doses of 
chimeric mAbs fused to the nonstructural protein 1 (NS1) 
together with Poly (I:C) induced high anti-NS1 antibody 
titers. However, partial protection was only observed in 
animals immunized with αDEC205-NS1 and was depend-
ent both on CD4+ and CD8+ T cells.58 In another strategy, 
the animals were immunized with three doses of a plasmid 
encoding domain III of the viral envelope protein (EDIII) 
fused to scDEC205. As a control without targeting, a single 
chain encoding a mAb unable to bind to any murine recep-
tor was used. In this case, higher anti-EDIII antibody titers 
and a more robust polyfunctional CD4+ T cell response 
were obtained in animals administered with the plasmid 
that encoded the scDEC-EDIII. However, sera obtained from 
immunized animals in both groups were able to block inva-
sion by the dengue 2 virus in eukaryotic cells.59

The αDEC205 and αDCIR2 mAbs were further coupled 
to the LcrV antigen of Yersinia pestis, the bacteria that causes 
bubonic plague, and used to immunize mice. A homolo-
gous prime-boost strategy, in which two doses of each mAb 

were injected together with Poly (I:C), showed that protec-
tive antibody titers against this pathogen were higher in 
αDCIR2-LcrV immunized mice.60

In addition to studies conducted with Yersinia pestis, the 
sequence of the C-terminal portion of the botulinum neuro-
toxin heavy chain (serotype A) derived from the bacterium 
Clostridium botulinum was cloned in phase with the sequence 
of scDEC205, the plasmid being used to immunize animals. 
After administration of only two doses of the targeted DNA 
vaccine, it was possible to observe DC maturation at the 
inoculation site, proliferation of T lymphocytes, and the pro-
duction of high levels of antibodies capable of protecting 
animals against a lethal challenge with botulinum toxin.61

The αDEC205 mAb was also fused to antigens expressed 
in tumors and used in immunization protocols. When the 
survivin antigen was directed at cDC1s, a robust CD4+ T 
cell response was observed, mainly after depletion of Treg. 
However, in this particular model, activation of CD8+ T cells 
was not observed.62 On the contrary, when the soluble form 
of the human epidermal growth factor receptor, an antigen 
highly expressed in breast cancer, was sent to the cDC1s, both 
CD4+ and CD8+ T lymphocytes were activated, with sig-
nificant protection was observed in a breast tumor model.63 
A single study showed protection against melanoma in ani-
mals immunized with either αDCIR2-OVA or αDEC-OVA 
challenged with an OVA expressing melanoma cell line. 
In this case, immunization was performed with the mAbs 
administered together with of αCD40+Poly (I:C), and pro-
tection was evaluated both in prophylactic and therapeutic 
schemes.64 Protection against tumors associated with human 
papilloma virus (HPV) was also evaluated after immuniza-
tion with αDEC205 genetically fused to HPV16 oncoprotein 
E7. Mice challenged with E7+ tumors were vaccinated with 
αDEC-E7 mAb together with Poly (I:C) and protection with 
prevention of tumor recurrence, mediated by the induction 
of CD8+-specific T lymphocytes, was observed.65

Taken together, these data show that it is possible to 
experimentally treat some types of cancer with this targeting 
strategy. Results like these paved the way for clinical trials. 
In fact, two phase 1 clinical trials were carried out using a 
human αDEC205 mAb (clone 3G9) fused to the NY-ESO-1 
antigen.66 In preclinical studies, targeting the DEC205 recep-
tor through 3G9 mAb efficiently cross-presented NY-ESO-1 
to CD8+ T cells when compared to the NY-ESO-1 pro-
tein administered alone.67 In the first clinical phase study, 
3G9-NY-ESO-1 mAb was injected in conjunction with the 
adjuvants resiquimod (a 7/8 TLR agonist), Poly ICLC, or 
both, in increasing doses. Combinations of this mAb with 
adjuvants were administered to 45 patients with advanced-
stage tumors expressing the NY-ESO-1 antigen. Treatment 
induced T and B cell responses to NY-ESO-1 at various 
doses and combinations of adjuvants, and high toxicity was 
not reported. Thirteen patients had the disease stabilized 
at intervals ranging from 2.4 to 13.4 months, and in two 
patients, the tumor regressed.68 3G9-NY-ESO-1 with Poly 
ICLC was also administered to patients with acute myeloid 
leukemia who received the drug decitabine (which induces 
increased expression of NY-ESO-1). In several patients, 
induction of specific T cell responses was also observed.69 
An αDEC205-NY-ESO-1 was also used in a phase II clinical 
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trial after the administration of the fms-like tyrosine kinase 3 
ligand (FLT3L) to patients with melanoma. FLT3L expanded 
DCs and led to increased proliferation of cDC1s and cDC2s 
subsets. The subsequent administration of αDEC205-NY-
ESO-1 resulted in an improved immune response against 
NY-ESO-1+ tumors, as well as an increased duration of the 
response compared to the phase 1 clinical trial.70

The results gathered in this section clearly show that anti-
gen delivery to DCs is an efficient way to induce immune 
responses not only in mice, but also in humans. The different 
immune outcomes elicited by targeting different receptors 
can be exploited to customize the required immune response 
for a specific pathogen and cancer type.

Antigen targeting to DCs: what is 
next?

Antigen targeting is a strategy that increases the immuno-
genicity of recombinant proteins based on DCs ability to 
support cellular immune responses. The use of chimeric 
mAbs fused with antigens has also been shown to be an 
efficient approach to studying the biology and function of 
different DC subsets in vivo. This approach provides for 
a better understanding of how DCs control their function 
and regulate adaptive immune responses. In addition, the 
knowledge generated is helping in the development of new 
vaccines and therapies based on specific functions of each 
DC subset.
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