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Introduction

Photoacoustic imaging (PAI) is an emerging non-invasive 
and non-ionizing biomedical imaging method that can 
achieve rich optical contrast with the spatiotemporal resolu-
tion of ultrasound imaging (USI).1–3 The key strength of PAI 
is that it can visualize molecular functional information of 
biological tissues up to a few centimeters by overcoming 
the shallow imaging depth of pure optical imaging tech-
niques.4–6 Therefore, PAI has been widely applied in vari-
ous biomedical fields, including hemodynamic analysis,7–12 

contrast-enhanced imaging,13–16 drug delivery monitor-
ing,17–20 and image-guided therapy.21–27

The basic principle of PAI is ultrasound (US) genera-
tion through the photoacoustic (PA) effect, which is energy 
transduction from light to acoustic waves.28 When biological 
tissue is irradiated with a short pulsed light with a typical 
pulse width of a few nanoseconds, optical chromophores in 
biological tissues absorb light energy according to their opti-
cal absorption characteristics. Subsequently, the absorbed 
light energy is released in two forms: (1) light emission with 
a shifted wavelength, which is the principle of fluorescence, 
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Abstract
Photoacoustic imaging has been developed as a new biomedical molecular 
imaging modality. Due to its similarity to conventional ultrasound imaging in 
terms of signal detection and image generation, dual-modal photoacoustic and 
ultrasound imaging has been applied to visualize physiological and morphological 
information in biological systems in vivo. By complementing each other, dual-
modal photoacoustic and ultrasound imaging showed synergistic advances in 
photoacoustic imaging with the guidance of ultrasound images. In this review, 
we introduce our recent progresses in dual-modal photoacoustic and ultrasound 
imaging systems at various scales of study, from preclinical small animals to 
clinical humans. A summary of the works reveals various strategies for combining 
the structural information of ultrasound images with the molecular information of 
photoacoustic images.
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Minireview

Impact Statement

Photoacoustic and ultrasound images can be 
obtained in a single imaging platform because of 
their similar data acquisition and image reconstruc-
tion procedures. Dual-modal images can provide 
complementary structural and molecular informa-
tion, providing more helpful information for biologi-
cal system analysis rather than simply integrating 
two different imaging technologies. There have 
been reports on the synergistic guidance of ultra-
sound imaging for improving photoacoustic imag-
ing performance, such as organ depth estimation, 
motion compensation, or multi-wavelength photoa-
coustic analysis. In this review, we introduce our 
recent reports on dual-modal photoacoustic and 
ultrasound imaging systems at various scales, from 
microscopy to tomography, that have explored the 
synergistic ultrasound guidance for photoacoustic 
analysis.
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and (2) heat release, which causes thermoelastic expansion. 
Because of the short pulse duration, the thermoelastic expan-
sion rapidly dissipates, and the optically absorbing chromo-
phores shrink to their original volume, producing acoustic 
waves referred to as PA waves.

Based on these principles, PAI visualizes the optical 
absorption characteristics of biological tissues. Therefore, it 
can provide molecular functional information similar to that 
obtained using pure optical imaging techniques.29 In addi-
tion to some endogenous chromophores, such as oxy- and 
deoxy-hemoglobins,30–32 melanin,33 and lipid,34–36 exogenous 
agents 37–41 also have been widely applied to enhance the 
contrast of PA images. By visualizing the biological distri-
bution of optical absorption characteristics, PAI has been 
utilized in preclinical small-animal studies42–45 and clinical 
human studies.46–49

In PAI, the generated PA waves can be captured using 
conventional US transducers and data acquisition systems. 
Therefore, PA and US images can be easily integrated into 
a single imaging platform.50–52 However, the underlying 

information in the two images is different, complementing 
each other: structural information from USI and molecular 
functional information from PAI (Figure 1). Therefore, dual-
modal PA and US imaging (PAUSI) is significant because it 
can obtain more helpful information for biological system 
analysis rather than simply integrating two different imag-
ing technologies.

USI has been a widely used clinical imaging modality due 
to its non-invasive and real-time imaging capabilities. One 
of the major limitations of USI is its inability to differentiate 
tissues with similar acoustic properties, which can result in 
misdiagnosis. In contrast, PAI is based on the absorption 
of light by tissue chromophores, enabling tissue differen-
tiation based on optical properties. Additionally, PAI can 
provide functional and molecular information in vivo, such 
as oxygen saturation levels and tissue metabolism, which 
is not possible with USI.53,54 However, PAI cannot visualize 
the optically transparent tissues, thus limiting the structural 
information in the PA images. Therefore, the structural infor-
mation in the US data can be used to compensate for the 

Figure 1. Schematic illustration of dual-modal PA and US imaging.
PA: photoacoustic; US: ultrasound; TR: transducer; Tx: transmission; Rx: reception.
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PA data, providing complementary information for more 
accurate analyses.

Here, we review our recent reports on US-guided PA 
analysis in biomedical applications, where the limitations 
of each image were successfully complemented based on 
the simultaneously achieved PA and US data. This review 
focuses on the implementation of PAUSI systems and their 
applications with improved PA data compensated by US 
data. From these results, we observed that dual-modal 
PAUSI systems have great potential in biomedical studies. 
In particular, US-assisted data modification can improve the 
quality of the PA data; therefore, a more accurate analysis 
can be performed.

Ultrasound-guided photoacoustic 
imaging with single-element 
transducers

Previously, we reported a PAI system that could provide 
whole-body PA images of small animals in vivo.55 The sys-
tem can obtain multispectral PA images with a tunable opti-
cal parametric oscillator (OPO) laser (Surelite OPO PLUS, 
Continuum, USA) pumped by a Q-switched Nd:YAG 
laser (Surelite III-10, Continuum, USA). The generated PA 
waves were detected by a single-element US transducer 
(V308, Olympus NDT, USA), amplified by a pulser/receiver 
(P/R) device (5072PR, Olympus NDT, USA), and stored in 
a data acquisition (DAQ) module (MSO 5204, Tektronix, 
USA). Using point-by-point scanning of the US transducer, 
whole-body PA responses of small animals were success-
fully visualized in vivo. The system has been applied in 
various biomedical studies, including lymphography,56 cys-
tography,57 tumor imaging,58 and image-guided therapy.59 
However, the slow imaging speed of the system, approxi-
mately 30 min for an imaging region of 60 × 40 mm2, is the 
main drawback of the system. The breathing motion of the 
mouse during scanning produced an axial distortion of the 
PA data. Applying maximum amplitude projection (MAP) 
to the data could hide the distortion, but it was not a funda-
mental solution. In addition, the long time interval between 
wavelengths makes the multispectral analysis inaccurate.

Recently, we demonstrated an updated system capable 
of simultaneous PA and US data acquisition.60 While using 
the configuration, the operation sequence of the system was 
modified (Figure 2(A)). In the updated sequence, two trig-
gers (one for USI and one for PAI) from the laser were used to 
synchronize the P/R and DAQ modules. PA and US images 
of a blood vessel-mimicking phantom showed the feasibility 
of complement analysis with dual-modal imaging (Figure 
2(B)). The different colors of the silicon tubes in the phantom 
were successfully delineated using multispectral PA images, 
whereas US images guided the position of the tubes.

In the following study, we demonstrated US-guided 
breath compensation using simultaneously obtained PA and 
US data from mice in vivo.61 For each cross-sectional B-mode 
US data, the skin profile was extracted using a simple thresh-
old method (Figure 3(A)). Spiking distortions due to the 
breathing motion of the mice were successfully corrected by 
applying a spatial low-pass filter (Figure 3(B)). By calculating 
the pictorial difference between the skin profiles before and 

after correction, the PA data could also be corrected (Figure 
3(A)). The resulting three-dimensional (3D) PA images 
showed improved image quality without any breathing dis-
tortions (Figure 3(C)). Consequently, MAP images in the x-y, 
x-z, and y-z planes were successfully acquired, whereas only 
MAP images in the x-y plane were provided in the previous 
reports due to the breathing distortion in the axial direction. 
Moreover, the 3D distribution of hemoglobin oxygen satura-
tion (sO2) was successfully demonstrated through pixel-wise 
spectral unmixing of multispectral PA data (Figure 3(D)). 
The successful 3D visualization with US-guided breath com-
pensation showed great potential for analyzing the optical 
absorption characteristics of small animals in vivo.

Ultrasound-guided photoacoustic 
imaging with transparent transducers

In the previous PAUSI, the laser beam path was designed 
to bypass the US transducer. This made the imaging probe 
bulky and required repetitive beam alignment to achieve an 
optimized beam delivery. To overcome this limitation, some 
PAI systems used opto-acoustic combiners to match the paths 
of optical illumination and acoustic sensing.62–64 However, 
the proposed imaging probes are bulky and increase system 
complexity. In addition, opto-acoustic combiners limit the 
numerical aperture and degrade the signal-to-noise ratio 
(SNR). Moreover, it was not guaranteed that the obtained 
PA and US images were in the same plane because of the off-
axis problem of the optical and acoustic paths. To overcome 
these problems, transparent US transducers (TUTs) that can 
directly transmit PAI excitation light have emerged as an 
alternative.65–68

Recently, we developed a lithium niobate (LNO) TUT and 
demonstrated a quadruple imaging system that can provide 
PAI, USI, fluorescence imaging (FLI), and optical coherence 
tomography (OCT).69 In the configuration of the system, four 
light sources (two for multispectral PAI, one for FLI, and 
one for OCT) were used and synchronized (Figure 4(A)). 
The TUT was implemented using a piezoelectric LNO sin-
gle crystal coated with transparent silver nanowires (Figure 
4(B)). The resulting TUT exhibited approximately 70% light 
transparency with a center frequency of 30 MHz. The feasi-
bility of the quadruple imaging system was evaluated by 
imaging the eyes of the chemically injured rats. Corneal 
neovascularization (CNV) and inflammation were induced 
by applying alkali burns and then quadruple images were 
acquired to investigate morphological and physiological 
responses. From the PA images before and after the alkali 
burn, CNV was verified by analyzing cross-sectional B-mode 
images and depth-encoded MAP images (Figure 5(A)). We 
observed that the optically transparent cornea was invisible 
in the PA images. In contrast, USI visualized morphological 
changes in the eye, including the appearance of cataracts in 
the lens, which may cause vision loss (Figure 5(B)). OCT also 
visualized morphological changes in the cornea by provid-
ing structural layers of the eye (Figure 5(C)). After alkali 
burn, the central corneal thickness increased by 96 ± 31 μm 
compared with the initial thickness. In FLI, corneal epithelial 
inflammation, which may cause corneal edema, was visu-
alized by fluorescein staining (Figure 5(D)). By providing 
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multimodal images, the proposed system shows great 
potential for use in various biomedical studies with a broad 
impact.

Although TUTs have demonstrated superior performance 
compared with conventional US transducers, the two most 
commonly used piezoelectric materials, poly(vinylidene 
fluoride) (PVDF) and LNO, exhibit inherent limitations.67 
PVDF has low optical transmittance and low sensitivity due 
to its low electromechanical coupling coefficient and high 
losses, which limit its usefulness in TUTs. LNO, on the other 
hand, exhibits high sensitivity due to its high electromechan-
ical coupling, but it is difficult to focus due to its physical 

characteristics. Therefore, the sensitivity of TUT can be maxi-
mized through the discovery of new piezoelectric materials 
and the establishment of a precise fabrication protocol.

Ultrasound-guided photoacoustic 
imaging with array transducers

The major drawback of single-element transducer systems is 
their low imaging speed, which is not feasible for monitoring 
temporal variation in a large area. To achieve fast imaging, 
various types of array transducers have been benchmarked.70 
Those systems are typically implemented on USI platforms 

Figure 2. Simultaneous dual-modal PA and US imaging system: (A) schematic configuration of the system and (B) photograph, US, PA, and unmixed images of the 
blood vessel mimicking phantom.
Source: The images are reproduced with permission from Park et al.60

PA: photoacoustic; US: ultrasound; TR: transducer; OC: optical condenser; CL: conical lens; OPO: optical parametric oscillator; P/R: pulser-receiver; DAQ: data 
acquisition module.
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Figure 3. US-guided breath compensation for 3D PA images: (A) schematic configuration for the process of US-guided breath compensation, (B) the surface profile 
of the skin layer before and after breath compensation, (C) 3D and MAP images of whole-body mice in vivo, and (D) 3D sO2 distribution at various angles of view.
Source: The images are reproduced with permission from Lee et al.61

PA: photoacoustic; US: ultrasound; 3D: three-dimensional; Comp.: compensation; sO2: hemoglobin oxygen saturation; MAP: maximum amplitude projection.



Lee et al.  Complementation of morphological and physiological information  767

to use widely available US transducers.71–73 We have also 
demonstrated clinical PAUSI, which consists of an FDA-
approved US machine and a mobile laser system.74,75 After 
optimization, the system was successfully demonstrated for 
both clinical human and preclinical small-animal studies 
with real-time parameter control and a handheld operative 
imaging probe.76,77

In the small-animal studies, a conventional 128-element 
linear array US transducer was typically used to achieve 
both PA and US data simultaneously. By scanning the linear 
array transducer in the elevational direction, whole-body 
3D images were also achieved.78,79 To improve the uniform-
ity of lateral and elevation resolutions, we recently applied 
a 1024-element two-dimensional (2D) US transducer array 
for dual-modal 3D PAUSI.80 The transducer consists of 
32 × 32 piezoelectric elements with a pitch size of 300 μm 
in both lateral and elevational directions (Figure 6(A)). By 
the 2D array of transducers, MAP images of 9.6 × 9.6 mm2 
area can be obtained from four laser pulses because the data 
acquisition system used 256 receiver channels. To enlarge 
the imaging area, multiple volumes were merged by scan-
ning the transducer. A wide-field imaging capability was 
validated by visualizing the abdomen area (45 × 45 mm2) of 
rats in vivo (Figure 6(B)). To minimize phase aberration due 
to different sound speed in water and tissue, we applied 
dual-speed delay-and-sum reconstruction on PA images 
by estimating the water layer depth from the US images. 
From the overlaid PA and US images before and after tran-
surethral injection of methylene blue solution, the position 
of the bladder was identified from the US images whereas 

PA images were not able to visualize due to the lack of opti-
cal absorption (Figure 6(C)). In contrast, PA images clearly 
verified the presence of methylene blue in the bladder. The 
results showed the feasibility of the 2D array transducer for 
multiplex PAUSI with a wide field of view and a uniform 
spatial resolution.

Several clinical studies have also demonstrated that US 
images can synergistically improve PA images for better 
quantitative or structural analysis of diseases rather than 
simply visualizing complementary information.81 We have 
applied our PAUSI system to clinical human studies includ-
ing multiparametric thyroid nodule analysis,82 melanoma 
boundary delineation,83,84 and triple-modal (PA, US, and 
magnetic resonance imaging) angiography.85 Recently, we 
reported the usefulness of dual-modal PAUSI for the struc-
tural and quantitative analysis of peripheral vasculature 
in human feet.86 We designed a custom-made foot scanner 
to obtain 3D PA and US images of the feet (Figure 7(A)). 
In particular, the imaging probe scanned the dorsal con-
tours of the feet to improve the reliability of the imaging 
results. Contours were obtained from pre-scanned 3D US 
images using a thresholding-based skin detection algorithm. 
Contour scanning allows equalized optical illumination 
along the elevation contour of the foot, whereas conven-
tional linear scanning is vulnerable to the arbitrary curvature 
of the foot. Another synergistic combination of PA and US 
images was observed from the multistructural visualization 
of the vasculature, bone, and skin of the feet using multiscale 
Frangi vesselness filtering, Log-Gabor filtering, and intensity 
thresholding, respectively (Figure 7(B)). In contrast to the 

Figure 4. Quadruple imaging system with a TUT: (A) schematic configuration of the system and (B) schematic configuration and photograph of the TUT.
Source: The images are reproduced with permission from Park et al.69

PA: photoacoustic; US: ultrasound; OCT: optical coherence tomography; FL: fluorescence; TUT: transparent ultrasound transducer; M: mirror; FM: flipping mirror; DM: 
dichroic mirror; GM: galvanometer; OL: objective lens; OF: optical filter; ND: neutral density filter; C: collimator; CL: collimation lens; SMF: single-mode fiber; WT: water 
tank; CMOS: complementary metal oxide semiconductor; SLED: superluminescent light-emitting diode; SPECT: spectrometer; PC: personal computer; OH: outer 
housing; IH: inner housing; AgNW: silver nanowire; PL: parylene coating layer; IE: insulation epoxy; BL: backing layer; LNO: lithium niobite; AL: acoustic lens.
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3D PA image that shows the microvasculature of the foot, 
the extracted 3D US vascular image could complementa-
rily show large vascular networks. The extracted US bone 
image provided a landmark to identify each vessel, and the 
US skin image was used to visualize the depth of each ves-
sel. The US skin image was also used to compensate for the 
depth-wise optical attenuation of the multi-wavelength PAI 
(Figure 7(C)). We performed a pressure cuff study to induce 
venous occlusion in 10 feet of 6 healthy volunteers. The 
results showed statistically significant changes in the total 

hemoglobin concentration level and PA vascular density in 
the big toe area.

Conclusions

We reviewed our results on dual-modal PAUSI systems 
for US-assisted PA analysis in preclinical small-animal and 
clinical human studies. The details of the reviewed studies 
are summarized in Table 1. In the single-element PAUSI sys-
tem for whole-body imaging of mice, US images provided 

Figure 5. Quadruple images of rat’s eyes using TUT before and after alkali burn: (A) PA MAP, B-scan, and depth-encoded MAP images. The cross-sectional B-scan 
image showed the generation of CNV (yellow dashed region) alkali burn; (B) cross-sectional US B-scan images; (C) OCT images showing structural layers; and (D) 
FL images overlaid on the corresponding photographs.
Source: The images are reproduced with permission from Park et al.69

PA: photoacoustic; US: ultrasound; OCT: optical coherence tomography; FL: fluorescence; TUT: transparent ultrasound transducer; MAP: maximum amplitude 
projection; CNV: corneal neovascularization; CCT: central corneal thickness; FM: fibrous membrane.
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morphological information about the skin surface, which 
was used to estimate the depths of signals in PA images 
and to compensate for breath-induced motion artifacts. 
The TUT-based quadruple-modal PA/US/OCT/FL imag-
ing system effectively combined all modalities, where US 
images aided the measurement of the structural differences 
for quantitative PA analysis. The clinical PAUSI system has 
been successfully applied in studies on thyroid cancer and 
peripheral vasculature imaging. The results demonstrated 
that US images could be used to better determine the region 
of interest (ROI) and compensate for the heterogeneous 
optical fluence when analyzing multispectral PA responses. 
Furthermore, 3D US images of the feet provided various 
structural features (vasculature, bone, and skin) to support 
the structural identification of the PA microvasculature and 
enabled feet contour scans that improved the reliability of 
the multispectral PAI. Based on these results, dual-modal 
PAUSI can be regarded as a potential research direction to 
synergistically improve PA images; therefore, future devel-
opments in dual-modal PAUSI techniques are strongly 
encouraged.

The dual-modal PAUSI is currently receiving significant 
interest from the global research community, as evidenced 
by the ongoing efforts to optimize systems by utilizing 
various array transducers and advanced image reconstruc-
tion algorithms. Researchers have also explored specific 
applications, including breast cancer,87–89 thyroid,90,91 car-
diovascular,92 prostate,93,94 and brain imaging,95,96 result-
ing in promising findings that enable the visualization of 

microvascular networks, plaque detection, and monitoring 
of cerebral blood flow. To further enhance the accuracy and 
quality of PAUSI systems, deep learning methods are being 
employed to train models on large datasets, enabling the 
acquisition of complex relationships between PA and US 
signals.97–100 These advancements hold great potential for 
improving tissue differentiation and producing more precise 
image reconstructions.

Optimizing PA image quality has been a key focus of 
research, but achieving clinical-grade US image quality 
is also critical for the full utilization of US guidance in PA 
imaging. Previous studies have demonstrated degraded 
US image quality due to two potential factors: the presence 
of a deep water layer between the US transducer and the 
imaging target, and the limited implementation of image 
processing algorithms. To maximize light delivery into the 
tissue, we designed our system to contain a 30 mm deep 
water layer between the US transducer and the imaging tar-
get, allowing direct laser illumination of the target surface. 
However, the water layer can create heterogeneity in the 
speed of sound throughout the ROI, potentially inducing 
phase aberration. Additionally, the small lateral aperture size 
of matrix transducer arrays can significantly degrade image 
reconstruction in deep regions, which may be further com-
pounded by the deep water layer. The US images in prior 
studies were typically reconstructed using basic delay-and-
sum algorithms without much post-processing. To address 
these issues, potential solutions include optimizing light 
delivery to reduce water layer thickness, dual-speed image 

Figure 6. Dual-modal PA and US images of abdomen area in rats with a 2D matrix US transducer: (A) photograph and schematic illustration of the imaging probe, 
(B) photograph of the rat with the imaging area, and (C) overlaid PA and US images of the rat before and after transurethral injection of methylene blue solution.
Source: The images are reproduced with permission from Kim et al.80

PA: photoacoustic; US: ultrasound; TR: transducer; FB: fiber bundle.
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reconstruction, accelerating real-time image reconstruction 
software, using plane-wave mode with coherent angular 
compounding instead of scanline mode, or implementing 
speckle reduction imaging techniques such as frequency 
compounding or smoothing filters.

Overall, PAUSI has demonstrated significant potential for 
non-invasive imaging of biological tissue. The technology 

holds promise for various applications in disease diagnosis, 
monitoring, and treatment. Continued research and develop-
ment of PAUSI could open up new avenues for the diagnosis 
and treatment of diseases such as tumors, cardiovascular 
diseases, and central nervous system disorders. Therefore, 
further investigation and studies of the dual-modal PAUSI 
technology are highly recommended.

Figure 7. Dual-modal PA and US images of human feet in vivo: (A) photograph of the custom-made foot scanner; (B) US skin, US bone, US vessel, and PA vessel 
images of a human foot in vivo; and (C) optical fluence compensation using the background PA signal segmented using the US skin contour.
Source: The images are reproduced with permission from Choi et al.86

PA: photoacoustic; US: ultrasound; MIP: maximum intensity projection; MAP: maximum amplitude projection.
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table 1. Summary of dual-modal PA and US imaging systems.
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Laser
 PRF (Hz) 10 10 5000 10 10
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DAQ
 US TR Spherically focused Spherically focused TUT 2D array Linear array
 fC (MHz) 5 5 30 3.3 8.5
 NE 1 1 1 1024 128
 Platform P/R + DAQ P/R + DAQ P/R + DAQ Programmable US Programmable US
Imaging
 Scanning Raster

0.2 × 0.5 mm2 step
Raster
0.2 × 0.2 mm2 step

Raster
0.625 × 5 μm2 step

Raster
0.9 × 0.9 mm2 step

Translation
0.5 mm step

 Dimension 2D MAP 2D MAP, 3D 2D MAP, 3D 2D MAP, 3D 2D MAP, 3D
 Scanning time ~30 min/wavelength ~100 min/wavelength ~9 min/wavelength ~30 min/wavelength ~1 min/wavelength
 ROI 60(X) × 40(Y)  

mm2
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mm3

5(X) × 5(Y) × 3(Z) 
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mm3

 Target Whole-body
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Whole-body
(Mouse)
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(Rat)

Bladder, lymph node
(Rat)
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(Human)
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using US guidance

•  Structural 
information

•  Depth-encoded 
PA

•  Breathing motion 
compensation

• 3D sO2 distribution

•  Quadruple US, 
PA, OCT, FL 
imaging

•  Structural 
information

•  US speed 
compensated 
image generation

•  Position of the 
bladder

• Contour scanning
•  Multistructural imaging
•  Optical fluence 

compensation
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TUT: transparent ultrasound transducer; fC: center frequency of TR; NE: number of element of TR; P/R: pulser-receiver; ROI: region of interest; 2D: two-dimensional; 
3D: three-dimensional; MAP: maximum amplitude projection; sO2: hemoglobin oxygen saturation; OCT: optical coherence tomography; FL: fluorescence; N/A: not 
applicable.
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