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Introduction

The retina is a neurovascular network that can be a target of 
eye diseases. Systemic conditions such as diabetes mellitus 
(DM), hypertension, and inflammatory diseases can also cause 
retinal neurovascular abnormalities.1 Many eye diseases in the 
early stages, such as diabetic retinopathy (DR) and retinal vas-
culitis, are asymptomatic with regard to visual function.2 If the 
retinopathy progresses unchecked, the impairment may be 
irrecoverable. Therefore, development of quantitative imag-
ing biomarkers is essential for early diagnosis and treatment 
evaluation. Clinical observations have demonstrated different 
retinopathies affect arteries and veins differently. For example, 
arterial narrowing can be observed in DR eyes,3 whereas vein 
narrowing at the site of arteriovenous nicking can be observed 
in patients with atherosclerosis.4

There are various imaging modalities used to visual-
ize vascular alterations. Traditional fundus photogra-
phy is used as it requires less time and light for imaging.5 
However, fundus photography lacks the resolution to cap-
ture capillary changes. Fluorescein angiography (FA) can be 
used to enhance vascular alterations, in particular leakage 
and hyperfluorescence of microaneurysms.6 However, FA 
requires the use of exogenous dyes; therefore, it is an inva-
sive procedure. Optical coherence tomography (OCT), on 
the contrary, is a non-invasive imaging modality that can 
provide cross-sectional imaging to visualize individual reti-
nal layers. As a functional extension of OCT modality, optical 
coherence tomography angiography (OCTA) can visualize 
the retinal vasculatures with high resolution.

Recently, quantitative OCTA feature analysis has been 
explored for the detection of eye diseases. Chu et al.7 
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Minireview

Impact Statement

Systemic disease and various retinopathies 
can differentially impact the arteries and veins. 
Traditional fundus photographs cannot provide 
sufficient image resolution and contrast to visualize 
retinal vascular details. On the contrary, optical 
coherence tomography angiography (OCTA) can 
provide high-resolution imaging to reveal subtle 
microvascular changes. This article summarizes the 
technical rationale of deep learning for artery–vein 
(AV) classification in OCTA. The development of 
automated artificial intelligence for clinical use will 
foster improved screening of eye disorders.
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developed several OCTA features and demonstrated dif-
ferentiation of various eye diseases, such as non-prolifera-
tive diabetic retinopathy (NPDR) and retinal vein occlusion 
(RVO). By performing OCTA processing, they can derive 
parameters such as vessel diameter index (VDI) that esti-
mates the vessel width and vessel area density (VAD). Alam 
et al.8 further differentiated the vessels into arteries and 
veins and explored that differential artery–vein (AV) analy-
sis can enhance the staging of NPDR. These observations 
suggest that there is arterial narrowing and venous dilation 
in NPDR. Ishibazawa et al.9 observed greater arterial adja-
cent non-perfusion compared to venous adjacent non-per-
fusion in all stages of NPDR. Another study by Alam et al.10 
observed increased venous tortuosity with sickle cell retin-
opathy (SCR) stage progression. Muraoka et al.11 observed 
increased retinal non-perfusion area size in eyes with branch 
retinal vein occlusion (BRVO) caused by venous narrowing 
as compared to BRVO caused by arterial narrowing.

Therefore, AV classification in OCTA is a crucial step for 
quantitative analysis of AV alterations. Current methods 
for AV classification are primarily based on color fundus 
photography, as the arteries and veins can be accurately 
differentiated, whereas in OCTA, the vessels are grayscale. 
Therefore, these methods require the use of either manual 
vessel tracking or the employment of complex algorithms 
for AV classification from color fundus to OCTA. Recent 
advances in artificial intelligence, specifically the develop-
ment of deep learning (DL) algorithms, can enable auto-
mated AV classification using OCTA images.

In this article, we provide a brief review of DL for AV clas-
sification in OCTA of the retina. Following section “Basics of 
DL,” we describe the basic principles of DL and discuss the 
differences between classical machine learning (ML) and 
DL approaches. Section “Traditional methods for AV clas-
sification” describes traditional methods for AV classifica-
tion, where we discuss fundus and OCT-based approaches. 
In section “DL AV classification,” we review recent studies 
that involve multimodal and unimodal DL methods for AV 
classification. Section “Discussion” discusses current limita-
tions and prospective developments for DL AV classification 
in OCTA.

Basics of DL

Artificial intelligence (AI) is a rapidly developing research 
area and one branch of AI is ML. The main principle of ML 
is the development of algorithms that can learn from a data 
set without being explicitly programed.12 A recent subset of 
ML, known as DL, has grown in popularity in recent years 
and has garnered immense interests in numerous research 
areas. Commonly, DL refers to the use of a specific algorithm, 
the convolutional neural network (CNN). The processes of a 
CNN simulate the human visual pathway. The CNN gets its 
name from the use of the convolutional layers, which consist 
of sets of trainable filters that are adept to process spatial 
patterns.13 For ML implementation, the user would partition 
the data set into two categories, the training data set and the 
testing data set. The training data set is to optimize the algo-
rithm and the testing data set is to evaluate the performance 
of the algorithm. There are different tasks or applications in 

which the model can perform, such as classification, the goal 
of categorizing the data, and regression, the goal of predict-
ing continuous values.

For the implementation of ML algorithms, the pipeline 
can be broadly divided into two segments. First, data set 
preparation segment where the image is acquired and digi-
tal image processing is performed, such as image filtering 
to reduce image noise or image binarization for feature 
extraction. Then, feature extraction and quantification are 
performed. Features such as VDI or VAD are measured and 
compiled into a data set. Second, an ML algorithm or model 
was trained using the compiled training data set. In contrast 
to traditional ML algorithms, such as the k-nearest neigh-
bors (kNNs) or support vector machine, the input into a 
CNN is the image itself. The CNN is trained on the image 
data set and learns how to perform both the feature extrac-
tion and classification. Therefore, the user does not have 
to perform manual feature development and extraction. A 
comparative illustration of the pipelines for ML and DL is 
shown in Figure 1. Once the model has been trained, its 
performance must be evaluated.

Performance metrics

One task that is commonly explored and is the focus of this 
minireview is pixel-wise classification, also referred to as seg-
mentation. Formally, segmentation is defined as the process 
of partitioning an image into component regions or objects, 
thereby the change of representation enables easier analysis 
of the region of interest in an image.14 An example is AV 
classification in retinal photographs. Different retinopathies 
affect the arteries and veins in separate ways. Therefore, it 
would be valuable to develop robust and automated AV clas-
sification tools to discern AV alterations. In order to evaluate 
the performance of segmentation models, there are several 
evaluation metrics that are employed, namely, accuracy, 
intersection-over-union (IOU) and F1-score, which can be 
defined as the following

	 Accuracy
TP TN

TP FN TN FP
=

+
+ + +

	 (1)

	 IOU
TP

TP FP FN
=

+ +
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	 F1
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2TP FP FN
=

×
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where TP  is the true positive, TN  is the true negative, FP  
is the false positive, and FN  is the false negative of the 
vessel segmentation.

In the accuracy metric, there are technically two different 
classes that are evaluated, that is, the segmented and non-
segmented regions. Therefore, the whole image is involved, 
which can be visualized by Figure 2(A). To determine accu-
racy, we measure the TP which is the region of overlap 
between the two circles, and the TN which reflects the white 
pixels of the image. The disadvantage of accuracy is when 
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there is a class imbalance, that is, the non-segmented region 
is larger than the segmented region. Therefore, in image seg-
mentation task metrics such as IOU and F1 are commonly 
used, as each only involves a specific class. Comparative 
illustration representing IOU and F1 is shown in Figure 2(B) 
and (C). The value range for accuracy, IOU, and F1 is from 0 
to 1. The IOU and F1 metrics can be thought of as the “accu-
racy” for each individual class, thereby minimizing the effect 
of class imbalances in performance evaluations.

Interpretability methods

As DL has made significant breakthroughs in multiple tasks 
such as image classification, object detection, and semantic 
segmentation, the lack of interpretability can pose a chal-
lenge to the adoption of AI tools. For example, if the model 
fails to predict correctly, without a mechanism to understand 
the results, technical improvement and usability can dimin-
ish. Several studies have explored methods to improve the 
interpretability of CNNs. Zeiler et al.15 employed occlusion 
tests to input images to identify areas of high importance in 
image classification. This method, however, relies on itera-
tive masking of image regions to produce a heat map, thus 
requiring high computational power and time. Recently, 
class activation maps (CAMs) have been favored to identify 
areas of high importance.16 CAMs have become popular due 
to its quick and simple approach of using the convolutional 
weights and single back propagation. Illustrations of CAM 
maps are shown in Figure 3. The use of heat maps can help 
the user to better understand the network predictions and 
the type of features that are developed.

Traditional methods for AV 
classification

Fundus methods

Traditionally, fundus photography is the gold standard 
for AV classification. A fundus photograph contains color 
information from the oxyhemoglobin and deoxyhemo-
globin level, which can be utilized for the AV classification. 
Therefore, initial studies that endeavor to perform AV clas-
sification in OCTA utilized fundus photographs, that is, two 
imaging modalities. These methods typically first identify 
the arteries and veins in fundus photographs, and then over-
lay that information onto the OCTA image.

To determine arteries and veins, Alam et al.17 employed 
optical density ratio (ODR) to classify artery and veins in 
color fundus images. In this work, they measured the optical 
density (OD) of the vessels by taking a ratio of the intensity of 
the vessel compared to the surrounding background. Then, 
the ODR between the red and green channels is determined. 
The rationale behind this is that the red channel is oxygen 
sensitive, and the green channel is oxygen insensitive. Thus, 
when comparing the ODR for all of the vessels, the vein ODR 
is lower than the artery ODR. Based on this methodology, 
Alam et al.8 explored the use of color fundus image–guided 
AV classification in OCTA. In principle, the color fundus 
contains the information to differentiate arteries and veins. 
Their proposed method first classified AV nodes around the 
optic nerve head (ONH). Next, they generated an AV vessel 
map based on the fundus and a binary vessel map based on 
the OCTA images. Then, they performed image registration 

Figure 1.  The basic pipelines for (A) traditional machine learning and (B) deep learning models.

Figure 2.  Illustration of evaluation metrics, (A) an example image showing the overlap between the two segmentation areas, and of the (B) IOU and (C) F1 metrics.



750   Experimental Biology and Medicine   Volume 248   May 2023

to overlay the two vessel maps. Finally, a vessel tracking 
algorithm is employed to trace the AV information from the 
fundus AV map into the OCTA vessel map. The proposed 
methodology is shown in Figure 4.

OCT methods

While fundus photography can provide information for 
AV classification, the use of two imaging modalities may 
be a burden for clinical deployment. In principle, OCTA 
is derived from OCT and OCT can be used to differenti-
ate arteries and veins. Son et al.18 leveraged near-infrared 
oximetry–guided AV classification using OCT. Since OCT 
contains spectral information, sub-band OCTs correspond-
ing to different spectrums can be generated. In their analy-
sis, they measured the ODs at two different wavelengths, 
namely, 765 and 855 nm as those two wavelengths have 
discernible differences in extinction coefficients between 
oxyhemoglobin and deoxyhemoglobin. They also measured 
the OD at the isosbestic wavelength of 805 nm. The ODRs 
of 765 nm/805 nm and 855 nm/805 nm were compared and 
the result of this study suggests that the ODR determined 
between wavelengths of 765 nm/805 nm could provide bet-
ter performance for AV classification.

Alam et al.19 explored the use of OCT-guided AV classifi-
cation in OCTA. In their methodology, they first identified 
vessel source nodes at the boundaries of the image, where the 
vessel width is the largest. In their work, they derived four 
unique features for AV source node classification, namely, 
ratio-of-width-to-central-reflex (RWCR), average maximum 
profile brightness (AMPB), average median profile intensity 
(AMPI), and optical density of vessel boundary (ODVB). 

Using these four features, they used a k-means clustering 
algorithm to classify each source node as artery or vein. An 
illustration of this method is shown in Figure 5. In both stud-
ies, after AV classification in OCT, an OCT-AV vessel map is 
generated. The OCT-AV vessel map can be overlayed onto 
the OCTA vessel map, and a vessel tracking algorithm is 
employed to guide the information from OCT into OCTA.

The previous methods primarily derived AV features 
using the enface or lateral projections. Recent studies have 
demonstrated depth-resolved features can be derived for AV 
classification. Kim et al.20 explored the use of vascular mor-
phology and blood flow signatures for differential AV clas-
sification in OCT. In their study, they showed that in OCT, 
the arteries have discernible vessel boundaries, whereas 
in veins, the boundaries were less apparent. Another set 
of characteristics is that arterial lumens have homogene-
ous intensity brightness, and venous lumens have distinct 
hypo- and hyper-reflective flow signatures. These lumen 
characteristics were also confirmed in OCTA, suggesting dis-
tinct laminar flow patterns in arteries and veins. Their work 
primarily highlighted the depth-resolved vascular profile 
features in animal models.

Adejumo et al.21 explored depth-resolved vascular fea-
tures in human retina using a commercial OCTA system. The 
observations in this study showed both hyper-reflective wall 
boundaries and layered intensity distribution in arteries, 
whereas there is only a layered intensity distribution in veins 
(Figure 6(A)). Further analysis into the relationship between 
vessel boundary and vessel size reveals that as the vessel size 
decreases, there is a distinct lower hyper-reflective boundary 
in veins as compared to the hypo-reflective zone in larger 
veins (Figure 6(B)). This may be due to the merging of small 

Figure 3.  An overview of CAMs. Given an image, for example, OCTA image and a class of interest (e.g. “severe”) as input, we forward propagate the image through 
the CNN part of the model and then task-specific computations are utilized to obtain a raw score for the category. The gradients are set to zero for all classes except 
the target class (severe), which is set to one. The signal is then backpropagated to the rectified convolutional feature maps of interest, which we then combine 
together to compute a heatmap.
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venous to form a large venous branch; therefore, the increase 
in blood volume may result in OCT signal attenuation. In 
addition to flow information, Adejumo et al. observed the 
morphological differences in OCTA between arteries and 
veins, in particular, they observed distinct capillary-free 
zones surrounding arteries (Figure 6(C4) and (C5)). Using 
flow and morphological features in OCT and OCTA, AV clas-
sification can be accomplished (Figure 6(D)). These studies 
highlight that both OCT and OCTA contain important char-
acteristics for AV classification. Therefore, both OCT and 
OCTA can be used in DL for automated AV classification.

DL AV classification

In this section, we discuss two different approaches to 
DL-based AV classification, namely, the multimodal and 

unimodal AV classification. In the multimodal studies, both 
OCT and OCTA are combined together to generate an AV 
map, whereas in the unimodal studies, only OCTA is used 
as input into the DL model.

Multimodal AV classification

The first DL-based AV classification study proposed  
AV-Net, a fully CNN for the automated AV classification 
(Figure 7(A)).22 This study employed a multimodal training 
process that involved both OCT and OCTA. The approach 
inferred that the enface OCT can provide important intensity 
information for AV classification, and the enface OCTA con-
tains the blood flow information and detailed vascular net-
work, hence the dual modality. AV-Net is comprised of two 
parts – an encoder and a decoder. The encoder is equivalent 

Figure 4.  (A) Color fundus image, (B) artery–vein source node classification on a vessel map based on fundus image, (C) OCTA enface image, (D) corresponding 
binary vessel map, (E) image registration between the fundus and OCTA vessel maps, and (F) AV tracking from fundus into OCTA. (G) Representative AV vessel map, 
(H) AV skeleton map, (I) artery, and (J) vein skeleton maps.
Source: Modified from Alam et al.8
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to the classification CNNs, such as VGG16, in that it takes in 
an image input and performs feature extraction. The decoder 
identifies and maps the image features to produce an out-
put image. Furthermore, this study explored the use of dif-
ferent loss functions and the effects of transfer learning on 
AV-Net performance. The best performing model reports an 
average IOU of 70.72% and F1-score of 82.81%, suggesting 
satisfactory performance. Qualitative observations as shown 
in Figure 7(C) suggested that since this method relied on 
pixel-wise classification, there were misclassified pixels in 
the predicted AV map, and the vessels were more dilated 
compared to the ground truth.

In a subsequent study by Abtahi et al.,23 they further 
explored fusion operations using AV-Net. In their study, 
they evaluated individual modality inputs, that is, OCT and 
OCTA only architectures, and the effects on distinct stages 
of modality fusion, that is, early and late-stage fusion. Their 
collective network architectures were termed MF-AV-Net 
and are illustrated in Figure 8(A). Their study also included 
the use of both 6 mm × 6 mm and 3 mm × 3 mm field-of-view 

(FOV) OCTA images. In this study, they revealed that OCTA-
only architecture and OCT-OCTA early and late-stage fusion 
yielded competitive performances. However, the best per-
forming network architecture was the late-stage fusion 
architecture, yielding an accuracy of 96.02% and 94.00% for 
the 6 mm × 6 mm and 3 mm × 3 mm OCTA data sets, respec-
tively. The MF-AV-Net on the 3 mm × 3 mm data set was able 
to reveal AV at capillary level detail (Figure 8(B4)).

Unimodal AV classification

In the study by Gao et al.,24 they proposed a DL-based 
method to differentiate arteries from veins in montaged 
wide-field OCTA. Where they proposed a CNN entitled 
classification of artery and vein network (CAVnet) that can 
classify AV using 6 mm × 17 mm wide-field OCTA images. 
In their data set, for each eye, three scans were taken, namely, 
the macular and the adjacent nasal and temporal areas. 
As a unimodal method, their input receives single chan-
nel, grayscale OCTA images and outputs a multichannel 

Figure 5.  Illustration of the OCT-guided AV classification in OCTA. First OCT image processing is performed on (A) a representative OCT enface, resulting in (B) a 
filtered OCT image, which can be utilized to extract the (C) binarized OCT and (D) segmented OCT vessel maps. Next, the (E) source nodes in the segmented OCT 
vessel maps are identified, and (F) feature quantification is determined. (G) k-means clustering algorithm is employed on the quantitative features for AV classification. 
(H) The source nodes are classified as arteries or veins based on the quantitative features. (I) Representative OCTA enface image and (J) corresponding binary 
OCTA vessel map. (K) The AV map derived from OCT image is overlayed onto (J) and (L) vessel tracking is used to generate an AV map in OCTA.
Source: Modified from Alam et al.19
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Figure 6.  Representative cross-sectional B-scans for (A1) arteries and (A2) veins at the first, second, and third vessel branches. Normalized intensity maps 
constructed from (B1) arteries and (B2) veins for various vessel sizes. Representative (C1) fundus image, (C2) enlarged area of the fundus, and (C3) corresponding 
enlarged area in OCTA. Representative OCTA (C4) cross-sectional view and (C5) enface of capillary-free zone. (D1) Representative montaged OCT enface showing 
AV source node classification, (D2) AV map in OCT, and (D3) AV map in OCTA.
Source: Modified from Adejumo et al.21

Figure 7.  Network architecture for AV-Net, (A) overview of the blocks in AV-Net architecture. AV-Net takes in an input of size 320 × 320 with two channels, 
corresponding to OCTA and OCT and outputs an RGB map of the same size. (B) The representative blocks. Representative examples of (C1) OCTA, (C2) OCT 
enface images, and (C3) ground truth and (C4) AV-Net-predicted AV map, from healthy and mild DR eye, left and right column, respectively.
Source: Modified from Alam et al.22



754   Experimental Biology and Medicine   Volume 248   May 2023

AV map. For training purposes, individual 6 mm × 6 mm 
OCTA images were used as input, as it allowed easier use 
of data augmentation in the form of random flips, horizon-
tal and vertical, and transpositions. For testing individual 
(6 mm × 6 mm) or wide-field images (6 mm × 17 mm) can 
be used. To validate CAVnet, the authors used a data set 
composed of healthy, diabetic patients with no retinopa-
thy, DR, and BRVO. In addition, they validated CAVnet 
on a different imaging device with a different FOV, that is, 
9 mm × 9 mm. To generate the ground truth for their data 
set, they used fundus photography for AV classification. 
The CAVnet architecture is based on a U-shaped architec-
ture, with the addition of atrous convolutions to improve 
the receptive field of their network. The design of CAVnet 
is illustrated in Figure 9(A). The authors also explored the 
use of DL-predicted AV maps to generate vessel caliber and 
tortuosity maps in healthy and diseased eyes, demonstrat-
ing the clinical application of automated DL AV methods 
(Figure 9(C)).

For quantitative evaluation, on the 6 mm × 6 mm test data 
set, CAVnet achieved an average F1-score and IOU of 94.2% 
and of 89.3% for arteries, respectively, and 94.1% and 89.2% 
for veins, respectively. On the 9 mm × 9 mm test data set, 
CAVnet achieved an average F1-score and IOU of 92.6% and 
86.4% for arteries, respectively, and 92.1% and 85.5% for veins, 
respectively. While the performance on the 9 mm × 9 mm is 
slightly worse than the 6 mm × 6 mm, as the FOV is different 
from the trained data set, it suggests good generalizability. 
Overall, CAVnet demonstrates robust performance on eyes 
with different disease states, different imaging devices, and 
different FOVs. Qualitatively, the network reported reliable 
performance to predict both large and small vessels (Figure 
9(B2)). However, similar to AV-Net, CAVnet follows a pixel-
wise classification network; therefore, CAVnet can mislabel 
various pixels/areas (Figure 9(B2)). Furthermore, there are 
areas in the prediction with discontinuity between vessels.

In the study by Xu et al.,25 they proposed a cascaded neu-
ral network to automatically segment and differentiate AV 

Figure 8.  (A) Representative architectures for AV classification using (A1) OCT-only architecture, (A2) OCTA-only architecture, (A3) early fusion OCT-OCTA, and (A4) 
late fusion OCT-OCTA architectures. Representative (B1) 6 mm × 6 mm OCTA image and (B2) corresponding AV map. Representative (B3) 3 mm × 3 mm OCTA and 
(B4) corresponding AV map. Representative (B5) zoomed OCTA image showing capillary-free zone, (B6) corresponding AV map and zoomed in area of (B5) and the 
saliency maps for (B7) arteries and (B8) veins corresponding to the yellow area and the dark blue areas, respectively.
Source: Modified from Abtahi et al.23
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solely based on OCTA. In their design, they involved two 
different blocks – a CNN block to generate an initial segmen-
tation and a graph neural network (GNN) block that corrects 
the discontinuities of the initial segmentation. The authors 
collectively termed their method as AV-casNet (Figure 10(A)). 
The CNN block is based on a U-Net architecture that takes 
in the initial input of OCTA, which performs early fusion of 
different enface projections, namely, from the vitreous, optic 
nerve head (ONH), peripapillary capillary and choroid, 
and outputs a preliminary AV segmentation. The output of 
the CNN block is the input into the GNN block. The GNN 
block is further divided into two steps: (1) the superpixel 
and graph construction and (2) the graph attention network 
(GAT), a neural network that operates on graph-structured 
data.26 The superpixel construction step takes the initial seg-
mentation and generates a superpixel image. Next, the graph 
construction determines the candidate superpixels for vessel 
repairment. Then, a GAT performs the vessel repairment. 
Examples of the images are shown in Figure 10(C).

The data set used to train and validate the proposed 
AV-casNet is comprised of healthy control subjects with 
OCTA scans centered at the ONH, with images taken with 
3 mm × 3 mm and 6 mm × 6 mm FOVs. Ground truths were 
established using fundus photography. Several ablation 
studies were conducted, namely, the comparison of differ-
ent CNN architectures, for example, U-Net, DeepLabV3, 
TransU-Net, and different GNN architectures, that is, GAT 
and GATv2. All CNN architectures yielded competitive per-
formances; however, U-Net was chosen by the authors due 

to its high specificity and lower network complexity. For 
their GNN architectures, GATv2 had superior performance 
over GAT. Therefore, the final AV-casNet utilized U-Net and 
GATv2 for their CNN and GNN blocks, respectively.

Current available methods for differential AV analysis 
are limited to the binarization of the retinal vasculature in 
OCTA. Recent studies demonstrate the use of vessel signal 
intensity, such as flux, has improved sensitivity to detect 
vascular perfusion abnormalities.27,28 Therefore, Abtahi et 
al.,29 proposed AVA-Net, a unimodal CNN model to segment 
artery–vein area (AVA) in OCTA. The AVA-Net design fol-
lows the encoder–decoder architecture; the encoder network 
utilizes atrous convolutions to increase the receptive field of 
each layer. The input into AVA-Net is OCTA enface and the 
output is grayscale AVA map, since AVA-Net is a binary clas-
sifier, that is, two categories (Figure 11(A)).

The data set was comprised of healthy subjects and dia-
betic patients without retinopathy (NoDR) and with NPDR 
(mild, moderate, and severe). Examples of AVA-Net per-
formance on the different NPDR stages can be visualized 
in Figure 12. To generate their ground truths, they used 
manually generated AV maps and performed kNN classi-
fication on background pixels (Figure 11(C)). Based on their 
cross-validation results, they reported an average IOU, F1, 
and accuracy of 78.02%, 87.65%, and 86.33%, respectively. 
In addition to their novel AVA-Net design, they performed 
quantitative analysis of a variety of unique features, such 
as perfusion intensity density ratio (PIDR) and artery–vein 
area ratio (AVAR), on the early stages of DR, that is, control, 

Figure 9.  (A) CAVnet architecture with example input OCTA image and corresponding ground truth. An example of (B1) montage OCTA and (B2) CAVnet-predicted 
AV map for a severe/PDR eye. (C) Examples of healthy and BRVO eyes, (C1) OCTA input, (C2) ground truth, (C3) vessel caliber map, and (C4) vessel tortuosity map.
Source: Modified from Gao et al.24
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NoDR, and mild NPDR. Their study reported that the 
AV-PIDR quantitative feature is the best feature to differen-
tiate all stages in early DR.

Discussion

Classification of arteries and veins has been established in 
traditional imaging modalities, such as fundus photography 
and OCTA due to the color and morphological information 
that can be used for AV differentiation. However, fundus 
photography and OCT cannot provide high detailed visuali-
zation of the vasculature. OCTA, on the contrary, is a strategy 
for non-invasive, high-resolution examination of retinal vas-
culature at the microcapillary level. Differential AV analysis 
in OCTA has been explored and shows tremendous poten-
tial for screening and diagnosis purposes. Methods for AV 
classification in OCTA have been established using fundus 
photography and OCT-based methods. However, the use 
of multiple imagers and the complexity of these algorithms 
make clinical deployment challenging. DL can be an alterna-
tive for automated AV classification in OCTA.

Multimodal and unimodal approaches

In this research field, two types of DL-based AV classifica-
tion have been explored, namely, multimodal and unimodal 

approaches. Multimodal approaches utilized fusion strat-
egies for AV classification using OCT and OCTA. These 
approaches are based on previous established works that 
suggest that OCT is needed as it provides the intensity 
information to differentiate arteries and veins. Alam et al.22 
first demonstrated AV classification in OCTA by employing 
early fusion of OCT and OCTA with 6 mm × 6 mm FOV.22 
The approach by Abtahi et al. further explored the differences 
in fusion strategies, namely, early and late fusion. In the early 
fusion approach, the raw input data are combined into a 
single representative before the feature extraction process.30 
Whereas, in the late fusion, feature extraction was performed 
on each modality separately before combining the informa-
tion together. They demonstrated that the late fusion of OCT 
and OCTA had the best performance in AV classification and 
further demonstrated the ability for capillary-level AV clas-
sification in 3 mm × 3 mm FOV.

Some studies have recently demonstrated unimodal AV 
classification using OCTA images. Gao et al. demonstrated 
the use of OCTA only on wide-field OCTA scans for the clas-
sification of arteries, veins, and the AV intersection. The study 
yielded competitive performance. However, in AV segmen-
tation using CNNs, the algorithms primarily utilized pixel-
wise segmentation and thus were prone to misclassification 
and discontinuity in vessel structure. An interesting approach 
by Xu et al. adapted a multistep, multilayer approach for AV 

Figure 10.  (A) Network architecture of AV-casNet and (B) qualitative analysis of capillary-free zone for AV classification and representative examples of inputs and 
output of AV-casNet. Representative (C1) OCTA ONH, (C2) ground truth, (C3) initial output of CNN block, (C4) vessel repairment with the GNN block, where the 
yellow pixels represent repaired blood vessels from the GNN block, and (C5) the final vessel segmentation.
Source: Modified from Xu et al.25
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classification, namely, the CNN and GNN blocks of their 
method. The CNN block utilized an early fusion of four 
OCTA enface projections at different depths. The output of 
the CNN block was the input into the GNN block to correct 
regions of vessel discontinuity. Recent studies by Kim et al.20 
and Adejumo et al.21 have corroborated that there are unique 
flow patterns to distinguish arteries and veins in OCTA, and 
further morphological differences, that is, the appearance of 
capillary-free zones in arteries. Therefore, reasons that for uni-
modal AV classification in OCTA, the DL model can use these 
features for accurate classification.

Interpretability of DL models

While DL offers benefit to decrease burden in manual fea-
ture development and ease of usability, DL models have low 
interpretability. Since the user does not know what types of 
features are being learned and used to make the prediction. 
For AV classification using unimodal methods, it would be 
beneficial to understand the features that the CNN uses for 
its prediction. In particular, since it was believed that OCTA 
does not contain the necessary color information for AV 
classification, as compared to fundus photography or OCT. 
Different methods have been explored to increase the DL 
interpretability, such as occlusion test.31 In occlusion tests, 

the areas of the input image are iteratively removed and 
then processed by the CNN, resulting in a heatmap showing 
areas that result in misprediction. An example of occlusion-
based heatmaps in CNN-based classification of OCT images 
is shown in Figure 13.

In the context of AV classification, to better understand 
the features, Xu et al.25 explored the inclusion and exclusion 
of capillary-free zone for AV classification. They observed 
that if they removed the capillary-free zones surrounding 
arteries, that is, artificial addition of capillaries, the CNN 
would predict the vessel as veins, and likewise, if the cap-
illary-free zone surrounding the veins were added, that is, 
artificial removal of capillaries, the CNN would predict the 
vessel as arteries. The results of this experiment are illus-
trated in Figure 10(B). These methods helped to interpret 
the DL model. However, they can be computationally inten-
sive since heavy image modification is required. Another 
method commonly used to interpret CNNs is CAMs,32,33 
which accentuate areas of the input image that contributes 
most to the prediction using the weights of the CNN to high-
light important pixels that are associated with the classifica-
tion. Abtahi et al. utilized CAMs to identify features in OCTA 
images that were responsible for AV segmentation. The heat 
map analysis revealed that the pixels that were most strongly 
associated with the classification are located both within the 

Figure 11.  (A) Network architecture of AVA-Net, (B) block components of AVA-Net, and representative images of (C1) input OCTA image, (C2) initial AV map, (C3) 
kNN classification overlayed on AV map, (C4) AVA map, (C5) AVA map overlayed on OCTA, and (C6) AVA OCTA map with removal of foveal avascular zone and layer 
indicator.
Source: Modified from Abtahi et al.29
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vessel and adjacent. They therefore speculated that capillary-
free zones and OCTA blood flow pattern in OCTA may be 
features for AV segmentation. These observations suggest 
that OCTA only may contain the necessary information for 
DL AV classification. The implementation of these algo-
rithms to increase the interpretability of DL models can help 
foster better confidence for clinical deployment.

Current limitations and challenges

Although DL has shown great promise for AV classification 
in OCTA, there are still some limitations and challenges that 

need to be addressed. One major limitation is that most stud-
ies have used data sets from a single OCTA device, which 
may introduce biases due to differences in OCTA construc-
tion methods. In addition, DL-based AV classification has 
been demonstrated on a limited number of disease condi-
tions, mainly for DR22–24,29 and BRVO.24 This highlights the 
need for further research to investigate the generalizability 
of DL models to different eye conditions and OCTA devices.

Challenges in AV classification using DL include ground 
truth generation and misclassification in the final predic-
tion. Since all the DL implementations discussed rely on 
supervised learning, the performance of the model is heavily 

Figure 12.  Representative images of AVA-Net segmentation for healthy controls, mild, moderate, and severe DR eyes. Row 1: OCTA images, row 2: ground truth AVA 
maps, row 3: predicted AVA maps from AVA-Net, and row 4: overlayed predicted AVA maps onto OCTA. Yellow rectangles indicate some areas that are segmented 
incorrectly.
Source: Modified from Abtahi et al.29
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Figure 13.  Examples of heatmaps from occlusion testing on OCT B-scans for patients with AMD. (A–C) The input images and (D–F) the occlusion maps from the DL 
algorithm. The intensity of the color indicates decreased probability of being labeled AMD when occluded.
Source: Modified from Lee et al.39

Figure 14.  Examples of correct and incorrect classification for different deep learning AV classification models. (A) Representative predictions from CAVnet. The 
yellow arrows denote areas of segmentation error in the predicted AV maps. Mis-segmentation from CAVnet may be due to the overfitting of artery–vein alternation or 
when the capillary-free zone is not discernible. The red and green pixels in (A2) and (A4) signify arteries and veins, respectively (Source: Modified from Gao 
et al.24). (B) Representative misclassification in AV-casNet. The orange arrow indicates area of discontinuity that the GAT repairment was able to correct, and the 
green arrow indicates a misprediction. The red and blue pixels in (B2) and (B4) signify arteries and veins, respectively (Source: Modified from Xu et al.25). (C) 
Representative predictions from MF-AV-Net using OCTA-only inputs. Where the yellow boxes area of mispredictions. The red and cyan pixels in (C2) and (C4) signify 
arteries and veins, respectively (Source: Modified from Abtahi et al.23).
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dependent on the quality of the ground truth used to opti-
mize it. Most ground truth methods depend on fundus 
photography, which provides color information to identify 
arteries and veins. However, due to the limited resolution of 
fundus photographs, the vascular detail of the ground truths 
may be significantly less than that present in OCTA images. 
In addition, vessel segmentation is needed for ground truth 
preparation, which typically involves subjective threshold-
ing,34 resulting in variable vessel size and detail. The use 
of biomarkers such as the capillary-free zone to manually 
delineate the arteries and veins may be altered in the disease 
state, decreasing its reliability.35 Therefore, future research 
should explore reliable quantitative methods for manual AV 
classification, such as using vessel tracking in fundus-guided 
or OCT-guided AV classification.8,36

Most recent studies utilized DL models that perform 
pixel-wise classification of AV, which can result in mis-
classification of various pixels within a correctly classified  
vessel.22,24 Recent studies have employed additional steps 
to correct vessel discontinuity, such as employing a GNN to 
repair discontinuous vessels.37,38 However, these methods do 
not fully address the pixel-wise misclassification (Figure 14). 
Future research should explore error correction techniques 
to DL-predicted AV maps, such as training a secondary DL 
model to specialize in correcting misclassified pixels.

Future direction

Future research in DL-based AV classification should focus 
on addressing the limitations and challenges discussed 
above. For example, researchers should validate DL AV clas-
sification with a variety of different eye conditions acquired 
from different OCTA devices to demonstrate robustness for 
clinical implementation. In addition, the use of AV areas 
can circumvent the need for variable thresholding methods 
to generate AV maps. Moreover, exploring error correction 
techniques to DL-predicted AV maps can improve the accu-
racy of the classification. Overall, there are many different 
directions for future research in DL-based AV classification.

Conclusions

OCTA provides a non-invasive label-free solution for high-
resolution imaging of the retinal vasculature. Various dis-
eases affect the arteries and veins differently. Therefore, 
differential AV feature analysis in OCTA has been devel-
oped for visualizing vascular alterations of various eye 
conditions. The key step for differential AV analysis is AV 
classification. DL is perfectly suited to perform automated 
AV classification in OCTA. AI-based technologies can alle-
viate the burden for experienced physicians and foster 
mass screening programs.
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