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Introduction

The enriched environment (EE) paradigm addresses the 
role of external stimuli in brain development. Donald Hebb, 
comparing rats living as pets to laboratory rats, found a sig-
nificant improvement for cognitive abilities in the homebred 
animals.1 Following these findings, Rosenzweig established 
the definition of EE as “the combination of inanimate and 
social stimulation” which is always multifactorial and multi-
modal.2 Since then, the effects of enrichment on brain devel-
opment have been studied for their lasting cognitive and 
learning effects.

Enriched environment consists of increasing somatosen-
sory, motor, and social stimulation in the environment of 
laboratory animals that result in an improvement of their 
biological functions.3 Therefore, cages used for this paradigm 

are larger than standard ones, allowing a higher number of 
animals inside them (6–8), thus providing more social stimu-
lation. Somatosensory stimulation is achieved by adding 
small objects of different colors, sizes, textures, and shapes. 
In addition, the cages are equipped with wheels, tunnels, 
and exercise ropes.4 Objects’ location as well as food and 
drink are changed from time to time.5

All of these stimuli increase the animal activity induc-
ing changes from the cognitive to the molecular level.6 Each 
of the previously mentioned EE components has different 
effects on the brain, being necessary to separate them to 
understand their own beneficial effect (Figure 1). Increased 
physical exercise alone, encouraged with access to exercise 
wheels, leads to changes throughout the brain.7 The social 
and somatosensory components, in contrast, have been less 
well studied separately.

Enriched environment as a nonpharmacological neuroprotective 
strategy

Andrea Vaquero-Rodríguez1,2 , Naiara Ortuzar1,2, José Vicente Lafuente1,2  
and Harkaitz Bengoetxea1,2

1Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; 
2Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
Corresponding author: Andrea Vaquero-Rodríguez. Email: andrea.vaquero@ehu.eus

Abstract
The structure and functions of the central nervous system are influenced 
by environmental stimuli, which also play an important role in brain diseases. 
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Minireview

Impact Statement

This work proposes a noninvasive method for 
the treatment of different pathologies, including 
neurodegenerative diseases, schizophrenia, and 
ischemia, among others, which have a great impact 
on society. This review offers an alternative to the 
use of the usual drugs, which are often ineffective 
or develop resistance. The use of enriched environ-
ment (EE) or combined treatment with conventional 
drugs has shown promising results in animal mod-
els of various brain diseases. In addition, it gathers 
information on the impact of EE in humans and on 
drugs that are able to mimic the beneficial effects of 
EE for patients with physical limitations that prevent 
them, for example, from exercising. For this reason, 
EE could be a promising tool for the treatment of 
various pathologies, both on its own and in combi-
nation with other treatments.
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Nevertheless, the beneficial effects of rearing in an EE 
have been observed under both normal and pathological 
conditions. These changes can be divided into two groups. 
On one hand, short-term changes, also known as molecular 
effects, are mainly neuroprotective. They are characterized 
by selective changes in gene expression, showing cellular 
and spatiotemporal specificity in several classes of gene 
ontology, growth factor action, and neural transmission.8,9 
In fact, EE promotes neuroprotective responses, mainly by 
increasing neurotrophic factors in different brain areas.10 On 
the other hand, long-term changes, known as cellular effects, 
produce alterations in gene expressions in neurons and glial 
cells.11 Specifically, these changes encompass synaptic plas-
ticity,12,13 increase synaptogenesis14 and adult neurogene-
sis,15,16 in addition to changes in metabolism,17 the immune 
system18 and the hypothalamic–pituitary–adrenal axis.19

Therefore, all these modifications induce synaptic 
structural changes that result in improved learning and 
memory.20,21 Thus, rearing in EE would be beneficial as a 
neuroprotective strategy in different brain pathologies. 
Similarly, in humans, the maintenance of mental health in 
elderly is promoted by an intellectually, physically, and 
socially active lifestyle.22

Brain disorders and enriched environment

Once the beneficial effect of the EE on healthy animals was 
established, the neuroprotective role of EE has been studied 
in various animal models of brain diseases over the last two 
decades.

Regarding neurodegenerative diseases, Alzheimer’s  
disease (AD) is the leading cause of dementia worldwide. It 
is caused by both environmental and genetic factors, with 
neurodegeneration being the ultimate outcome.23 The patho-
physiology of AD includes the formation of both soluble and 
aggregated forms of amyloid-beta (Ab). These forms of Ab 
produce neuronal stress and death.24 Neuronal activity is 
responsible for modulating beta-amyloid production, and 
it occurs due to the amyloidogenic processing of amyloid 

precursor protein (APP). In fact, amyloid plaques and neu-
rofibrillary tangles are the main markers related to AD neu-
ropathology.25 Several studies have shown that EE-induced 
cognitive and physical stimulation can slow down the pro-
gression of AD and other forms of dementia.26,27 Exposure 
to EE during 16 weeks has shown beneficial cognitive effects 
related to recognition, working memory, reference learning, 
and strategy switching in APPswe (having a mixed C57B6/
SJL/SW/B6D2 background) mice model of AD.28 In addi-
tion, it has also been demonstrated that rearing in EE leads 
to a reduction in amyloid deposits and Ab levels compared 
with standard housing control mice in APPswe/PS1DE9 
transgenic mice (double-transgenic for mutant APP and pre-
senilin 1, a key component of c-secretase).29

The second most common neurodegenerative disease 
after AD is Parkinson’s disease (PD) which is character-
ized by tremors and bradykinesia.30 The pathophysiology 
of PD comprise the loss of dopaminergic neurons in the 
substantia nigra pars compacta (SNpc), triggering reduced 
dopamine levels in the basal ganglia and the formation of 
Lewy bodies and Lewy neurites.31 In this case, the neuro-
protective effects of the EE have been studied in different 
animal models that reproduce PD. Studies based on MPTP 
(1-methyl-4-phenyl, 6-tetrahydropyridine neurotoxin) PD 
model have shown that mice exposed to EE are more resist-
ant to MPTP neurotoxicity than control mice.32 Furthermore, 
after 28 days of rearing in an EE, increased tyrosine hydroxy-
lase (TH)-positive cells were observed in this mouse model. 
These results indicate that EE could decrease the loss of 
dopaminergic neuronal cells in the SNpc and striatum.33 
In 6-hydroxydopamine (6-OHDA) PD models, increased 
cell proliferation has been observed in the SN after EE rear-
ing.34 In addition, decreased striatal dopaminergic loss 
and increased expression of cells positive for ionized cal-
cium binding adaptor molecule 1 (Iba-1), nerve antigen 2 
(NG2), and glial fibrillary acidic protein (GFAP) were also 
described. These results were accompanied by improved 
motor behavior.35 Finally, mouse models based on overex-
pression of α-synuclein have also shown improvements 
after breeding on EE. Seo et al.36 described a reduction in 
oxidative stress and apoptosis, in addition to an improve-
ment of olfactory functions after two weeks of EE exposure.

Despite the fact that translationally to humans is not 
as simple as in the case of pharmacological treatments, 
in humans EE is associated with an active lifestyle. Thus, 
healthy way of life and environmental factors have a 
direct impact on the cognitive health of the human brain.37 
Activities such as painting, reading, writing, and aerobic 
physical exercise (running or walking) promote the genera-
tion of cognitive reserves in the human brain.38 In fact, it 
has been observed that cognitive stimulation generates a 
greater cognitive reserve, increasing synaptic connections in 
areas involved in learning and memory, compensating for 
the pathophysiological mechanisms of dementia before its 
clinical manifestation39 and producing a delay in the onset 
of AD of approximately five years.40 In addition to cognitive 
and physical factors, the social component is highly relevant 
to the risk of suffering from AD. It has been observed that 
whereas isolation increases the risk of suffering from AD, 

Figure 1.  Examples of enriched environment (EE) conditions. (A) Home cage 
in which a running wheel has been included to enhance physical exercise. (B) 
Home cage in which different facilitators have been included to induce EE. (C) 
Home cage in which toys promote exploration and stimulating behaviors, and a 
running wheel to promote physical exercise, both components of EE.
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having a long social life is associated with protection from 
cognitive decline.41,42

EE can also act as a neuroprotective strategy on those 
patients who already suffer from dementia. Recently, it has 
been described that the use of enriched gardens, which 
are spaces that stimulate both cognition and motor tasks, 
in addition to giving patients independence in their daily 
activities, is capable of improving the cognitive and motor 
skills of these patients.43

In PD human patients, the active lifestyle produces an 
improvement in motor,44 nonmotor and cognitive symp-
toms.45 In fact, exercise accompanied by regular physical 
activity increases the release of neuroprotective factors,46 
reducing the risk of suffering PD.44,47

The EE has also been used as a nonpharmacological neuro-
protective strategy in psychiatric disorders. Schizophrenia is 
a neurodevelopmental disorder that results in abnormal brain 
development, and it can be caused by both environmental 
factors and genetic predisposition.48 Although cognitive and 
social dysfunctions are observed during childhood, it is in 
adolescence when the ultra-high risk (UHR) period occurs, 
and it is during this period that psychosis appears.49 Several 
studies have suggested that the cognitive deficits observed 
in schizophrenia appear due to impaired development of 
GABAergic systems.50 Gamma-aminobutyric acid (GABA) 
maintains the excitatory/inhibitory balance and, therefore, 
optimizes synapses.51 This integration of GABAergic activity 
occurs in the course of adolescence, during the functional 
remodeling of medial prefrontal cortex (mPFC).51,52 A reduc-
tion in GAD67, which is responsible for the synthesis of 90% 
of GABA,53 has been described in the hippocampus of ani-
mal models of schizophrenia. This reduction was observed 
especially in Parvalbumin (PV)-positive interneurons, the 
main subset of GABAergic cells.54,55 In contrast, an increase in 
GAD67 cells has been found after exposure to EE in MK-801 
rat model mimicking schizophrenia. In addition, increased 
brain derived neurotrophic factor (BDNF) and its receptor 
TrkB56 were detected after EE exposure, and therefore, it can 
be affirmed that EE improves glutamatergic neurotransmis-
sion.57 Other studies have also shown that exposure to stimu-
lating environments after weaning prevents the behavioral 
and cognitive deficits produced by chronic administration of 
MK-801.58,59 In our own studies, the exposure to EE in early 
adulthood for a short period of time (18 days) was found 
to ameliorate cognitive dysfunction and GABAergic mark-
ers deficits in a rat model of schizophrenia.60 In addition, a 
shorter exposure to EE (10 days) already showed an improve-
ment in vascular network, neurogenesis, and dendritic com-
plexity in the hippocampus.61

As previously mentioned, the risk of suffering from schiz-
ophrenia because of genetic susceptibility may be enhanced 
by environmental factors.62 However, it has been observed 
that aerobic physical exercise is capable of improving the 
severity of positive, negative, and general symptoms of 
patients with schizophrenia, improving their quality of 
life.63,64 Specifically, there is an improvement on work-
ing memory, social cognition, and attention.65 In addition, 
after physical exercise also has been reported an increase in 
peripheral BDNF levels in schizophrenic patients compared 

with patients receiving regular medication66 or healthy con-
trols,67 showing cognitive improvements after this increase.68

EE has also been studied as a therapy against stroke. 
Ischemic brain injury is the leading cause for morbidity 
and mortality worldwide. This pathology is mainly caused 
by both reduced metabolic capacity and reduced oxygen 
supply (hypoxia) in the brain. Alteration of mitochondrial 
membrane potential, formation of free radicals and reac-
tive oxygen species (ROS), and activation of inflammatory 
pathways are the main pathological processes involved dur-
ing ischemia.69 Inflammation occurs because of increased 
ROS production, leading to oxidative damage of pro-
teins and DNA, and peroxidation of membrane lipids.70,71 
Likewise, neuronal injury caused by ischemia is aggravated 
by mitochondrial dysfunction, as neurons require a high-
energy demand.72 Consequently, neurological dysfunc-
tion occurs.70,71 Different studies have demonstrated that 
rearing in EE mitigates the deleterious effects of ischemia. 
In fact, it induces neuroprotection through the reduction 
in oxidative stress73 and brain inflammation,74 attenua-
tion of blood–brain barrier dysfunction,75 and enhanced 
induction of angiogenesis76 and neurogenesis.77 Related to 
mitochondrial dysfunction, it has been described that EE 
exposure produces an increase in mitochondrial cytochrome 
C oxidase subunit IV (COX IV) protein levels in the cor-
tex, showing an indirect measure of mitochondrial biogen-
esis.78 Therefore, EE could be beneficial for recovery from 
ischemia through regulation of mitochondrial biogenesis.78 
Regarding cognitive effects, an improvement in learning 
and visuospatial memory was also observed after EE breed-
ing for three weeks in a rat model of four-vessel occlusion 
ischemia. This behavioral improvement is accompanied by 
a reduction in degeneration and a decrease in caspase-3 
expression in the hippocampus, so that EE would be medi-
ating a reduction in apoptosis.79 On the contrary, increased 
expression of vascular endothelial growth factor (VEGF) 
and its receptor, whose main function is angiogenesis,80 has 
also been described after breeding in an EE for 14 days in 
an animal model of ischemia. Increased angiogenesis leads 
to improved neuronal function.81 Furthermore, rearing in 
EE also increases the expression of endothelial nitric oxide 
synthase (eNOS) through CD34-positive endothelial pro-
genitor cells in middle cerebral artery occlusion (MCAO) 
rat model.82 eNOS, together with VEGF, is related to the 
regulation of angiogenesis and vascular function through 
nitric oxide synthesis.83 Therefore, EE breeding has neuro-
protective effects by improving local microcirculation after 
ischemic brain injury.84

In human patients, the practice of physical exercise after 
stroke produces axonal growth and improved activity of 
the pyramidal and extrapyramidal systems in both hemi-
spheres, through functional compensation in unaffected 
areas of the brain involved in limb activity.85 In addition, the 
effect of intense training of the lower extremities promoting 
an improvement and recovery of the corresponding brain 
areas in patients with acute ischemic stroke has also been 
described.86 Finally, physical exercise induces an improve-
ment in motor function, improving both balance and gait in 
the subacute phase of stroke patients.87
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Another cause of brain pathology is traumatic brain injury 
(TBI), which affects 10 million people a year worldwide.88 
TBI can be caused by numerous different events, such as 
motorbike accidents, falls, firearms, and high-impact sports, 
among others. Consequently, neurobehavioral and cogni-
tive dysfunction occurs89 which, in turn, leads to psychiatric 
comorbidities.90 The pathophysiology of TBI consists mainly 
of anxiety, depression, and memory problems,91 produced 
by hypoxia, neuroinflammation, edema, metabolic changes, 
and gliosis.92 EE also has been found to achieve favorable 
effects after TBI.93 Twenty-one days of EE exposure improved 
motor function and spatial learning acquisition, in addition 
to reduce the volume of cortical lesion in a controlled cor-
tical impact (CCI) rat model of TBI.94 Other authors have 
described an improvement in recognition memory and 
short-term special memory after six weeks of breeding in EE 
in a mice model of TBI.95 Similar results compared with con-
tinuous rearing were described in motor behavior and spa-
tial learning after rearing in EE for 6 h per day for 19 days.96 
Therefore, this result is consistent with clinical rehabilitation 
performed in TBI patients.96

Neurorehabilitation is currently the most promis-
ing approach to recover some functions and autonomy in 
patients who have suffered TBI.97 Thus, it was observed that 
after performing aerobic exercise for 12 weeks, TBI patients 
showed improvements in cognitive function, especially in 
processing speed, executive functioning, and general cogni-
tive function.98

Enviromimetics: drugs that mimic or 
enhance the beneficial effects of  
cognitive activity and physical exercise

The use of EE as a rehabilitation therapy in combination 
with treatments has been studied for its clinical approach. 
Physical activity-induced cellular and molecular processes 
can be enhanced by an “exercise mimetic.” The most popular 
molecular target for enviromimetic drugs is BDNF which 
mediates experience-dependent cellular plasticity in both the 
developing and adult nervous system.99 Increased expres-
sion of this neurotrophin has been observed following physi-
cal exercise,100 learning,101 and EE.102 In addition, BDNF is 
responsible for synaptic plasticity.

Related to this idea, researchers have found that drugs 
that up-regulate BDNF also induce positive effects on cellu-
lar plasticity. Thus, the most commonly used antidepressants 
are selective serotonin reuptake inhibitors (SSRIs), and it 
is known that elevate hippocampal BDNF levels.103 In ani-
mal models of neurodegenerative diseases such as AD and 
PD, beneficial effects have been described after an increase 
in BDNF levels.104 In addition, specific histone deacetylase 
(HDAC) inhibitors also improve cellular plasticity, increase 
BDNF expression, and show advantageous effects in ani-
mal models of neurodegenerative diseases.105 Thus, HDACs 
and SSRIs are drugs that act as enviromimetics and enhance 
endogenous brain repair, neuroprotection, boost cell survival 
and differentiation when co-administered with cell thera-
pies. Therefore, by combining these drugs with EE, a syner-
gistic brain-enhancing effect can be achieved for maximum 
therapeutic boost.106

On the contrary, Magnesium-L-threonate (MgT) adminis-
tration is able to improve spatial memory and recognition in 
an APPswe/PS1 mouse model of AD.107 AD is characterized 
by synaptic loss in the hippocampus108 and reduced activity of 
the Ca2+/calmodulin-dependent protein kinase II (CaMKII) 
molecule, which is important in the N-methyl-D-aspartate 
receptor (NMDAR) signaling pathway and is involved in 
memory formation.109 After the synergistic combination of EE 
with MgT, a reduction in synaptic loss of the hippocampus 
was observed, accompanied by increased CaMKII activity. 
Therefore, MgT could increase the effects of breeding in EE 
to prevent and reverse neuronal deficits in mice with AD.110 
Another alternative is the use of memantine, which is a drug 
that blocks NMDA receptors.111 The combined therapy of this 
drug with EE showed an improvement in the spatial memory 
of SAMP8 mice compared with any individual treatment, in 
addition to a reduction in the expression of APP.112

In PD animal models, Cerebrolysin (CBL) has been tested, 
a drug capable of improving motor alterations, maintaining 
dopaminergic levels, and reducing oxidative stress.113 The com-
bined administration of this drug with EE showed improve-
ments at the motor, morphological, and molecular level in 
6-OHDA PD model.114 Specifically, there was a 14% reduction 
in the retraction of the injured striatal hemisphere,114,115 dimin-
ished reduction in cell density in the SN, and increased release 
of neurotrophins related to cell survival.114

Furthermore, resveratrol116 or caffeine and theanine117 
were administered in combination with EE showing 
improvements in mobility and Bederson scale in a rat cer-
ebral ischemia model induced by MCAO. These effects were 
improved when rats were exposed to EE immediately after 
MCAO injury, rather than two days after surgery, enhanc-
ing the EE-induced neuroprotective effect. In addition, 
researchers have found that combined therapy with EE 
and resveratrol increases the number and activity of anti-
oxidants, improving oxidative stress during ischemia.69 This 
combined therapy also leads to a reduction in hydrogen 
peroxide.118

In TBI, drugs targeting the serotonin 1A (5-HT1A) receptor 
are used since they generate motor and cognitive improve-
ment, accompanied by a neuroprotective effect, and decreased 
volume of the lesion.119 It has been described that the combi-
nation of these drugs with EE in a rat model of TBI achieved 
cognitive and motor recovery, attenuated hippocampal injury 
(conferring histological protection), and loss of medial sep-
tal cells.120 In addition, acetylcholinesterase inhibitor drugs 
increase the availability of acetylcholine in postsynaptic 
receptors, mitigating the memory problems suffered by these 
patients.121 On the contrary, combination of galantamine (an 
acetylcholinesterase inhibitor) and EE resulted in an additive 
effect that improved functional motor skills and the acqui-
sition of spatial learning in a rat model of TBI.122 In addi-
tion, these patients present agitation and aggressiveness,123  
for which they are treated with antipsychotics that gener-
ate deleterious effects on cognitive function.124 It has been 
observed that the combination with EE minimizes the nega-
tive effects of the drug in a rat model of TBI.125

Considering all the abovementioned results, future work 
should continue the search for drugs that mimic the effects 
observed after physical exercise or exposure to EE to obtain 
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a greater synergistic effect of the neuroprotective effects 
induced by EE.

Conclusions

Both laboratory animal experiments and clinical studies 
have shown that the environment is crucial in brain plas-
ticity for normal neural development of the brain and, in 
turn, is highly relevant in the repair of neurological disor-
ders. EE not only modifies basic brain anatomy, but also 
modulates electrophysiology, neurotrophic factors, and 
cognitive capacity. At the same time, the multidimensional 
effect of EE on nerve repair in central nervous system (CNS) 
lesions has allowed researchers to search for therapeutic 
approaches that do not rely on drugs. However, these posi-
tive effects of EE can be implemented with other therapies 
such as pharmacological therapies to see possible syner-
gies. Several studies mentioned in this work have shown 
that these beneficial effects are enhanced in the case of dual 
treatment. Although the exact mechanisms by which EE 
shows beneficial effects have not been fully elucidated, 
its neuroprotective effect is becoming increasingly well-
known in both physiological conditions and brain patholo-
gies. Further study of EE-induced mechanisms from a basic 
point of view will allow a better understanding for their 
future use in human application.
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