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Introduction

Ovarian cancer (OC) is the third most common gynecologi-
cal carcinoma in the female reproductive system, with high 
morbidity and high-grade malignancy.1 The cytoreductive 
surgery is a curative treatment for patients with early OC, 
and first-line chemotherapy provides an optimal therapeutic 
strategy for its advanced stage, but OC gradually becomes 
resistant to chemotherapy drugs due to intrinsic or acquired 
mechanisms of chemoresistance, which results in tumor 
recurrence and metastasis.2 Autophagy is a highly conserved 
intracellular self-digestion process that serves to degrade 
and recycle misfolded proteins and damaged organelles for 
the maintenance of homeostasis in cells under conditions 
of extreme stress, such as nutrient deprivation, hypoxia, 

and external stimulations.3 The process of autophagy 
includes initiation, nucleation, elongation, maturation, 
fusion, and degradation, all of which are intricately regu-
lated by autophagy-related genes (ATGs) and signaling 
pathways (Figure 1), as discussed in recent comprehensive 
reviews.4,5 This process is a focus in cancer research owing 
to its involvement in tumorigenesis, metastasis, and chem-
oresistance. During tumor progression or chemotherapy-
induced stress, obsolete organelles and useless proteins are 
recycled through autophagy to foster tumor growth and 
mediate chemoresistance; conversely, removal of oncogenic 
substances via autophagy represses tumorigenesis.6,7 Thus, 
whether autophagy is a protumor or antitumor process is 
still controversial. Understanding the role of autophagy in 
the development of OC is imperative, and the regulation of 
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Impact Statement

Ovarian cancer (OC) is a gynecological carcinoma 
characterized by high morbidity and high-grade 
malignancy, accounting for an unresolved health 
burden. Surgery and chemotherapeutics serve as 
effective treatments for early and advanced OC, 
but fail to halt the development of the chemore-
sistance, which causes tumor recurrence and 
metastasis. A new angle for therapy is needed and 
targeting autophagy is a promising strategy, which 
is worth paying attention to as it is an essential 
mechanism of tumor progression and chemore-
sistance. In addition, autophagy is intricately regu-
lated by noncoding RNAs, which are involved in 
the initiation and development of OC. This work 
provides crucial insights into the role of autophagy 
in the progression, treatment, and prognosis of OC,  
as well as the potential of autophagy-regulating 
ncRNAs as therapeutic targets.
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autophagy represents new potential prognostic biomarkers 
and therapeutic targets in this disease. It should be noted 
that the expression of ATGs and autophagy-related signaling 
pathways is modulated by noncoding RNAs (ncRNAs) at 
various levels, from transcriptional regulation to posttrans-
lational protein modification.8,9 A growing body of evidence 
indicates that ncRNA-mediated autophagy is associated 
with malignant behaviors such as proliferation, metasta-
sis, and chemoresistance in OC.10–12 The clarification of the 
regulatory roles of ncRNAs on autophagy in OC could pro-
vide promising therapeutic strategies for this disease. This 
review summarizes the role of ATGs and autophagy-related 
pathways in OC prognosis and development, as well as the 
dual effects of autophagy in this disease. It also discusses the 
latest research progression on the role of ncRNA-regulated 
autophagy in OC, and the potential of autophagy-regulating 
ncRNAs as therapeutic targets.

Autophagy-related genes in ovarian 
cancer

LC3

Microtubule-associated protein 1 light chain 3 (LC3) is a 
canonical autophagosome marker protein that includes the 
LC3-I and LC3-II subtypes. When autophagy occurs, LC3-I 
is ubiquitinated and bound to phosphatidylethanolamine on 
the autophagic membrane to form LC3-II; therefore, LC3-II 
affects the autophagy level.13 Compared with benign and 
borderline ovarian tumors, the expression of LC3 is lower 

in malignant epithelial ovarian cancers; moreover, LC3 is 
expressed at a lower level in FIGO (International Federation 
of Gynecology and Obstetrics) stages III and IV than that 
in stages I and II, suggesting that the decreased autophagic 
levels may be associated with tumorigenesis and progres-
sion of OC.14,15 Regarding histological types, clear cell 
OC displays higher LC3 expression and is more prone to 
hypoxia-induced inhibition of autophagy compared with 
the high-grade serous OC.16 Further investigation in ovarian 
clear cell carcinomas revealed that patients with high LC3 
expression showed a lower response to the platinum than 
those with low LC3 expression.17 These features might lead 
to unfavorable prognoses in patients with OC and demon-
strate that high expression of LC3 is related to worse progres-
sion-free survival and overall survival.17,18

P62

P62, also known as sequestosome 1, is composed of multiple 
domains, such as the PB1 domain, TB domain, and UBA 
domain. P62 interacts with ubiquitinated protein aggregates 
and mediates their autophagosome localization and degra-
dation in the late stage of autophagy.19 Generally, the level 
of p62 is negatively correlated with the level of autophagy. 
Observational studies showed that the expression of cyto-
plasmic p62 is elevated in the primary OC tissues, as well as 
in the metastatic and recurrent tumor tissues.20 Furthermore, 
the expression level of p62 in OC is positive related to serous 
carcinoma, advanced stage, the presence of residual tumor, 
and a low overall survival rate, which indicates that p62 is 

Figure 1.  The regulation of ncRNAs in the autophagy process. Autophagy-related genes and signaling pathways are involved in each step of autophagy, including 
initiation, nucleation, elongation, maturation, fusion, and degradation. Some key ncRNAs target these components to modulate autophagy and play an oncogenic 
(red) or tumor-suppressive (green) role in ovarian cancer. ⊥ indicates an inhibitory effect and → indicates a promoting effect.
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an unfavorable prognostic factor in this disease.21 Also, p62 
serves as a tumor suppressor in OC. The accumulation of p62 
promotes the activation of caspase 8 through the blockage of 
autophagy flux and coordinates the mitochondrial localiza-
tion of p53 through its UBA domain, inducing apoptosis 
and cisplatin sensitivity in OC cells.22,23 Therefore, further 
clarifying the role of p62 in OC might provide a potential 
therapeutic target for this disease.

Beclin-1

Beclin-1, the mammalian orthologue of yeast ATG6, triggers 
autophagosome formation by assembling the PI3K-Beclin1-
VPS34 complex, and the expression level of Beclin-1 rises 
with autophagosome formation.24 Beclin-1 is indispensa-
ble to initiate the autophagy process, and reduced level of 
autophagy in OC is consistent with decreased expression of 
Beclin-1.25 Several previous studies showed that the expres-
sion of Beclin-1 was higher in ovarian epithelial cancer and 
borderline tumor than that in benign ovarian tumors and 
normal ovarian tissue, and that higher levels of Beclin-1 were 
inversely related to the differentiation, FIGO stage, and his-
tological grade of OC.26–28 In addition, the low expression 
of Beclin-1 in aggressive OC is correlated with ascending 
histological grade, later TNM staging, and advanced clinical 
stage.18,29 These findings are similar with a recent research 
result showing that Beclin-1 is associated with the absence 
of peritoneal spread, lymph nodes, and distant metastases.30 
Patients with high Beclin-1 levels had longer survival than 
those with low Beclin-1 levels.26 These results suggest that 
aberrant Beclin-1 expression is closely linked to the tumori-
genesis, progression, and prognosis of OC.

Moreover, the expression levels of Beclin-1 affect the 
chemotherapeutic efficacy in OC. In patients with ovarian 
clear cell carcinomas who received the cytoreductive surgery 
combined with a platinum-based chemotherapy, the loss 
of Beclin-1 was related to a short survival.31 In parallel, OC 
with upregulated Beclin-1 expression was more responsive 
to chemotherapy and had a lower recurrence rate after suc-
cessful surgical therapy.30 Thus, the measurement of Beclin-1 
expression may be beneficial for predicting the response to 
chemotherapy in OC.32

Other ATGs

Autophagy is known as a highly programming dynamic 
process owing to the involvement various ATGs. ATG5, act-
ing as a central regulator in autophagosome elongation, is 
overexpressed in OC cells and tissues.33 The ATG5-ATG12 
complex is responsible for the conversion of LC3-I to LC3-II. 
In OC cells exposed to paclitaxel, the expression level of this 
complex was increased, accompanied by the upregulation of 
Beclin‑1 and LC3, suggesting that an increased autophagic 
flux mediates the chemoresistance.34 Consistently, an 
enhanced expression of ATG14 has been also detected in cis-
platin-resistant OC cells.10 Accordingly, it might be assumed 
that the upregulation of autophagy is crucial for the drug 
resistance of OC. In addition, elevated ATG9A expression is 
observed in advanced clinical stages of OC and is negatively 
associated with the overall survival and progression-free 
survival of patients.35

In conclusion, ATG expression may be used as an inde-
pendent prognostic factor for OC. However, there are still 
challenges in identifying the best ATG candidates for the 
early diagnosis and screening of OC. With the popularity of 
public sequencing databases, such as The Cancer Genome 
Atlas database, comprehensive analysis can be performed 
to identify the ATG signatures as diagnostic biomarkers, 
prognostic indicators, and personalized therapy targets for 
patients with OC.36–38 Another strategy is to apply next-
generation sequencing to select the pivotal ATGs in these 
patients with different disease conditions and stages. Further 
identification of autophagy-related markers could provide a 
novel angle for OC prognosis and treatment.

Autophagy-related signaling pathways 
in ovarian cancer

PI3K/AKT pathway

One main biochemical function of the class I phosphatidylin-
ositol 3-kinase (PI3K) is to catalyze the phosphorylation of 
phosphatidylinositol-4,5-bisphosphate into phosphatidylin-
ositol-3,4,5-trisphosphate, which serves as a vital second 
messenger to interact with AKT and its activator phosph-
oinositide-dependent protein kinase 1, leading to complete 
AKT activation.39 The activation of the PI3K/AKT pathway 
directly phosphorylates and stimulates its downstream 
mammalian target of rapamycin (mTOR) complex 1 and 
inactivates tuberous sclerosis complex 2 (TSC2) to disrupt 
the formation of the TSC1/TSC2 heterodimer, resulting in 
mTORC1 activation and subsequent autophagy suppres-
sion.40 The regulation of autophagy by the PI3K/AKT path-
way is associated with malignant transformation and drug 
resistance in OC. For instance, the overexpression of onco-
genes, such as hypoxia-inducible factors-1α and FAM83D, 
suppresses autophagy by activating the PI3K/AKT/mTOR 
signaling pathway, contributing to OC cell invasion and 
proliferation.41,42 Of importance, PKI-402, an inhibitor tar-
geting the PI3K/mTOR, was found to disrupt the balance 
of BCL-2 family proteins by degrading the MCL-1 protein 
through inducting autophagy, blocking OC cell prolifera-
tion.43 Furthermore, several anticancer agents, such as LTX-
315 and tanshinone I, mediate OC cell apoptosis and the 
cisplatin chemosensitivity by inducing autophagy through 
the inactivation of the PI3K/AKT/mTOR pathway.25,44

MAPK pathway

Mitogen activated kinase-like protein (MAPK) exerts essen-
tial functions in various cellular processes, such as prolifera-
tion and autophagy. Several common subtypes of MAPK, 
including c-Jun N-terminal kinase (JNK) and extracellular 
signal-regulated kinase (ERK), are involved in the regulation 
of autophagy through interaction with the PI3K/AKT path-
way.45 Under metabolic stresses, such as nutrient deprivation 
and energy depletion, JNK phosphorylates and activates 
BCL-2, resulting in the dissociation of Beclin-1 from BCL-2 
and subsequent induction of autophagy.46 Phosphorylated 
ERK1/2 inhibits mTORC1 activity by activating the TSC1/
TSC2 complex and phosphorylating Raptor, one of the protein 
components of mTORC1, thereby inducing autophagy.47,48 
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During tumorigenesis, the oncogenes FBXO22 and PKP3 
are overexpressed in OC cells and promote tumor inva-
sion and metastasis by inhibiting autophagy via the MAPK 
pathway.49,50 The MAPK/ERK pathway is also associated 
with cisplatin resistance in OC and can be further modu-
lated by STAT3 and p53 signaling.51 Treatment with MAPK 
inhibitors suppresses cell growth and migration by inducing 
autophagic death in OC cells.52

AMPK pathway

As a key pathway to balance metabolism in eukaryotic cells, 
the AMP-activated protein kinase (AMPK) pathway partici-
pates in a variety of catabolic processes, such as apoptosis 
and autophagy. Under stressed conditions, liver kinase B1, 
a tumor suppressor kinase, activates AMPK, which facili-
tates the production of the TSC1/TSC2 complex to inacti-
vate mTORC1 and mediate autophagy.53 In addition, AMPK 
suppresses mTORC1 by phosphorylating Raptor and subse-
quently activates the unc-51-like kinase (ULK1) by separat-
ing mTORC1 from ULK1, thus stimulating autophagy.54,55 
Indeed, AMPK-regulated autophagy increases OC cell 
viability and promotes tumor metastasis.56 Under energy 
deficiency conditions, AMPK is phosphorylated to activate 
ULK1 at Ser-555 and initiates autophagy, which enhances 
cisplatin resistance in OC cells.57 Intriguingly, AMPK-
induced autophagy plays paradoxical roles in anticancer 
drug-treated OC. Fan and colleagues revealed that the 
AMPK/AKT/mTOR pathway was associated with daphne-
tin-induced cytoprotective autophagy, and targeting AMPK 
blocked autophagy and thus aggravated cell apoptosis.58 In 
contrast, ellagic acid and compound 3K (a pyruvate kinase 
M2 inhibitor) suppress OC growth, migration, and invasion 
by stimulating autophagic cell death through the activation 
of AMPK.59,60

P53 pathway

P53, a tumor suppressor, has been implicated in multiple cel-
lular biological processes, such as cell cycle arrest and senes-
cence.61 Starvation-stimulated p53 expression is required for 
AMPK-induced autophagy.62 In addition, p53 targets its 
downstream molecules Sestrin1 and Sestrin2, which further 
activates AMPK, thus leading to the inactivation of mTORC1 
and the induction of autophagy.63 In OC cells, p53 mediates 
multidrug resistance by enhancing cytoprotective autophagy 
to favor cell survival during chemotherapy-induced stress.64 
However, p53-regulated autophagy is also involved in apop-
tosis induction. For example, death-associated protein kinase 
1 has been found to increase the expression level of p63, a 
member of p53 protein family, which promotes apoptosis in 
an autophagy-dependent manner in paclitaxel-resistant OC 
cells.65 In addition, p53 mutants control cellular apoptosis 
and autophagy and further suppress chemoresistance by 
targeting the ERK and AKT signaling.66

Collectively, autophagy activation depends on a variety 
of signaling pathways that directly target diverse ATGs. 
Among them, the PI3K and mTOR signaling pathways have 
been confirmed as the main signaling pathways to regu-
late autophagy; moreover, other autophagy-related path-
ways, including MAPK, AMPK and P53, indirectly regulate 

autophagy by interacting with the PI3K/AKT/mTOR path-
way. Future studies exploring the regulatory mechanisms of 
autophagy-related pathways are key to targeting autophagy 
as a potential therapeutic strategy for OC.

The dual role of autophagy in OC

Tumor promoter

In established tumors, autophagy is strongly triggered to 
protect tumors against nutrient deprivation and low-oxygen, 
ultimately sustaining cell survival.67 Under these conditions, 
the protective autophagy is available to help OC cells adapt 
to extreme stress, thus playing an oncogenic role.68 Thus, tar-
geting ULK1, a key serine-threonine kinase in stress-induced 
autophagy, blocks autophagic flux and decreases cell viabil-
ity in high-grade serous OC.69 As a novel oncogene, Rab11a 
is verified to upregulate in OC tissues and cell proliferation, 
migration, and invasion; however, knockdown of Rab11a in 
OC cell lines inhibits autophagy and tumor growth, and fur-
ther suppression of autophagy by 3-MA abolishes the effects 
of Rab11a on OC progression, which suggests that Rab11a 
facilitates the malignant progression of OC by inducing 
protective autophagy.70 These findings indicate that nega-
tive targeting protective autophagy may provide a potential 
therapeutic strategy for OC.

In addition, some anticancer agents induce both apoptosis 
and protective autophagy, which compromises their efficacy 
in OC treatment. For instance, propranolol and JQ1 promote 
cell apoptosis and activate the cytoprotective autophagy in 
OC cells mediated by the JNK and AKT/mTOR pathways, 
and the combination of autophagy inhibitors suppresses 
cancer cell proliferation.71,72 Intriguingly, PHY34, a synthetic 
molecule from the Phyllanthus genus, induces OC cell apop-
tosis by inhibiting late-stage autophagy through the sup-
pression of ATP6V0A2, implying that inhibition of protective 
autophagy promotes PHY34-induced apoptosis in OC.73 In 
this context, further clarifying the role of anticancer drug-
induced autophagy is essential for OC treatment.

Of importance, some chemotherapeutics mediate protec-
tive autophagy in OC, thereby preventing cancer cells from 
undergoing drug-induced apoptosis. Several studies demon-
strated that cancer-related proteins, such as VEGFA, TRP14, 
and PBK, were upregulated in OC and further induced 
autophagy and cisplatin resistance; moreover, the admin-
istration of inhibitors targeting these molecules enhanced 
the cytotoxicity of cisplatin against OC cells.74–76 Therefore, 
promising tactics can be conducted to manage the protec-
tive autophagy-mediated chemoresistance in OC treatments. 
On one hand, the combination of inhibiting positive regu-
lators of autophagy and administrating anticancer drugs 
improves the chemotherapeutic efficacy by decreasing pro-
tective autophagy.77 On the other hand, as a supplement to 
chemotherapy, agents such as bafilomycin A1, NEO212, and 
icariin have been shown to function as autophagy inhibi-
tors to block autophagic flux and avoid chemoresistance, 
which promotes cell apoptosis.78–80 Besides, the ARL4C 
and PSMD4, chemoresistance-related proteins, is upregu-
lated in the carboplatin-resistant OC tissues and cell lines; 
meanwhile, silencing their expression inhibits protective 
autophagy, thus further attenuates the resistance of OC to 
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carboplatin via inactivation of the Notch and NF-κB signal-
ing pathway, respectively.81,82 Also in cisplatin-resistant OC 
cells, levels of the mitophagy receptor BNIP3 is elevated; 
otherwise, genetic BNIP3 suppression or pharmacological 
inhibition of autophagy sensitizes OC cells to cisplatin.83 
These results indicate that protective autophagy contributes 
to chemoresistance in OC. Thus, further investigations of 
autophagy in OC treatments will be an attractive topic to 
combat the drug resistance in the future.

In conclusion, protective autophagy, which is induced 
by autophagy-related proteins or genes, anticancer com-
pounds, and chemotherapeutic agents, can promote OC 
progression and drug resistance. Thus, clarification of the 
role of autophagy is crucial for OC treatment. For instance, 
cytoprotective autophagy-inducing drugs combined with 
autophagy inhibitors improve their anticancer effects.

Tumor suppressor

During the early phase of tumorigenesis, autophagy is 
considered to prevent tumor initiation by degrading dys-
functional proteins, organelles, and external toxins, thus 
inhibiting tissue damage and maintaining host defenses.67 
In OC, aberrant autophagic activity contributes to the exces-
sive degradation of intracellular components that are essen-
tial for maintaining tumor cell survival, ultimately leading 
to tumor suppression.68 Of interest, a recent study has 
revealed that pyruvate kinase M2, a rate-limiting enzyme 
in the glycolytic pathway, is upregulated in OC tissues, and 
that the application of its inhibitor compound 3K blocks the 
glycolytic pathway and ultimately induces autophagic cell 
death,60 suggesting that autophagy affects cancer metabo-
lism to suppress cancer growth. Besides, PSMD14, a deu-
biquitinase that is highly expressed in OC, represses tumor 
growth, and lung and abdominal metastasis by abrogating 
autophagy through the regulation of LRPPRC/Beclin1-
Bcl-2/p62 axis.84 Similarly, UBE2T, an oncogene in OC, is 
upregulated to inhibit autophagy by activating the AKT/
mTOR signaling pathway, which subsequently boosts epi-
thelial-mesenchymal transition.85 These findings reveal that 
blocking autophagic cell death accelerates malignant pro-
gression in OC. Furthermore, it is reported that OC patients 
with higher Mfn2 expression show favorable survival than 
those with lower Mfn2 levels; further mechanistic evaluation 
unveils that Mfn2 promotes autophagy via activating the 
AMPK-mediated repression of mTOR and ERK signaling 
pathways.86 Thus, activating autophagic cell death exerts 
tumor-suppressive roles in OC.

Some natural substances have been found to induce 
autophagy to inhibit OC progression. For example, dam-
nacanthal stimulates autophagy to reduce cell viability and 
the growth of OC tumors in vitro and in vivo through the 
ERK/mTOR signaling cascade.87 Resveratrol restricts OC 
metastasis and chemoresistance by activating autophagy 
through suppression of the Hh pathway.88 This compound is 
also demonstrated to induce Beclin-1-dependent autophagy 
via downregulating miR-1305, subsequently promotes OC 
cell dormancy and thus postpones tumor progression.89 
The major autophagy-related PI3K/AKT/mTOR signaling 
pathway is inhibited by tanshinone I to induce autophagy, 
limiting tumor growth.44 Consistently, adenosine derivatives 

from Cordyceps induce OC cell death through stimulation 
of ENT1-AMPK-mTOR-mediated autophagic cell death.90 
Also, the AKT/mTOR signaling pathway is inhibited after 
treatment with stichoposide in OC cells, and autophagy is 
subsequently promoted, which results in OC cell apoptosis.91 
Therefore, autophagy induction by regulating autophagy-
related signaling pathways is the mainstream by which 
natural compounds exert anticancer roles in OC. In addi-
tion, polysaccharides induce reactive oxygen species (ROS) 
overproduction and cell apoptosis, along with increased 
autophagic death in human OC A2780 cells, suggesting pol-
ysaccharides-mediated autophagy synergies with apoptosis 
suppress tumor development.92

Chemotherapy-induced autophagy is verified to play an 
anticancer role in OC treatment. Mechanistic investigations 
revealed that drug-induced autophagy interrupted the mito-
chondrial membrane potential and triggered autophagic cell 
death, reversing the chemoresistance of OC.65,93 In addition, 
ROS-mediated oxidative damage to cancer cells is a main 
action of chemotherapeutics. Several studies have shown 
that ROS also activate autophagy to promote cancer cell 
death. For example, triptolide induces ROS production to 
mediate Beclin-1 mediated autophagy by inhibiting the 
JAK2/STAT3 signaling cascade, which accelerates OC cell 
death.94 Other anticancer agents, such as apatinib and JS-K, 
promote ROS-dependent apoptosis and autophagy and exert 
antitumor effects.95,96 These findings indicate that activation 
of autophagic cell death increases the anticancer efficacy and 
decreases resistance to chemotherapies in OC.

To be concluded, autophagic cell death is beneficial to 
tumor suppression, anticancer treatment, and chemother-
apeutic sensitivity. Therefore, it is essential to understand 
whether anticancer drug-induced autophagy promotes cell 
survival or facilitates cell death. In this context, autophagic 
cell death-mediating agents combined with autophagy acti-
vators are the effective therapeutic strategies for OC.

Briefly, autophagy exerts a paradoxical effect in OC. In 
early stages, autophagy inhibits the progression of tumors, 
whereas in later stages, it resists environmental stress such 
as hypoxia, nutritional deficiency and chemotherapy, and 
thus promotes tumor development and chemoresistance; 
however, prolonged autophagy degrades excess organelles, 
thus leading to autophagic cell death. Therefore, the regu-
lation of autophagy might be a promising strategy for the 
treatment of OC.

Regulation of autophagy by ncRNAs in OC

Regulatory mechanisms of ncRNAs

NcRNAs mainly include microRNA (miRNA), long noncod-
ing RNA (lncRNA), and circular RNA (circRNA). Abnormal 
ncRNA expression frequently emerges in various cancers 
where ncRNAs serve as both oncogenes and tumor suppres-
sors.97 MiRNAs are a kind of single-stranded molecules with 
a length of 19–25 nucleotides, and they can suppress mRNA 
translation or trigger their degradation by pairing with the 
complementary sequences at the 3′-UTR of mRNAs of target 
genes, thus controlling the expression of genes.9 MiRNAs 
have dual functions in tumorigenesis: serving as tumor sup-
pressors by blocking the translation of mRNA of target genes 
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that induce malignant transformation; conversely, playing 
oncogenic role via initiating the degradation of mRNA of 
tumor suppressor genes.97 LncRNAs are a class of tran-
scripts of over 200 nucleotides and regulate gene expres-
sion through three well-characterized action mechanisms, 
including interacting with DNA or chromatin-modifying 
enzymes to influence genetic transcription, sponging miR-
NAs or binding to mRNAs to affect translation, and acting 
as scaffolds of proteins to block their functions.98 CircRNAs 
are a kind of single-stranded covalent RNA molecules that 
form a closed loop through the link between the 5′ and 3′ ter-
minal nucleotide sequences, and they affect gene and protein 
expression by serving as sponges to prevent miRNAs from 
exerting biological functions and functioning as molecular 
scaffolds to suppress the activity of proteins.99 The regula-
tory mechanisms of ncRNAs is illustrated in Figure 2.

It will be crucial to characterize the role of ncRNAs in the 
modulation of autophagy. NcRNAs can affect autophagy by 
regulating the expression of ATGs and autophagy-related 
signaling pathways.100 Thus, ncRNAs may act as diagnos-
tic and prognostic markers in OC. Currently, an increasing 
number of anticancer agents applied to the treatment of OC 
have been demonstrated to modulate autophagy by means 
of ncRNAs (Table 1). Further identifying the role of ncRNA-
regulating autophagy in the treatment of OC might provide 
promising therapeutic targets for this disease.

Role of miRNA-regulating autophagy

MiRNAs have been demonstrated to induce cytoprotective 
autophagy to promote OC progression. For instance, the 

miR-1251-5p is highly expressed in human OC cells and 
tissues, and triggers the cell proliferation and autophagy 
by suppressing the expression of TBCC, a tumor suppres-
sor gene.101 Thus, suppression of cytoprotective autophagy 
contributes to OC cell death. Li et al.102 found that the over-
expression of miR-22 inhibited cell viability and autophagy 
and further facilitated apoptosis in OC by inactivating the 
Notch signaling pathway. Moreover, targeting chemother-
apy-induced autophagy inhibits cisplatin resistance in OC. 
For example, miR-152, a tumor suppressor, is downregulated 
in the cisplatin-resistant OC cells, and the upregulation of 
miR-152 enhances cisplatin-induced apoptosis and reduces 
autophagy by decreasing the expression of ATG14.103 The 
ATG14 is also targeted by the miR-29c-3p/FOXP1 axis, 
which alleviates autophagy and cisplatin resistance, ulti-
mately inhibiting ovarian tumor growth.10 In addition, miR-
20a-5p inhibits the autophagy and cisplatin resistance in OC 
via DNMT3B-mediated DNA methylation of RBP1.104 The 
TGF-β/Smad4 signaling pathway is suppressed by miR-30a 
in OC cells, and autophagy is subsequently blocked, which 
further reduces cisplatin resistance.105 Similarly, miR-133a is 
identified to express at low levels in cisplatin-resistant OC 
cell lines, and the overexpression of miR-133a impairs pro-
tective autophagy by reducing the expression of YES1, thus 
sensitizing OC cells to cisplatin.106 These findings indicate 
that miRNAs can repress the resistance of OC to cisplatin 
by inhibiting protective autophagy through the targeting of 
ATGs and autophagy-related signaling pathways.

However, autophagic cell death can be modulated by miR-
NAs to affect ovarian tumor progression. For example, miR-
130a, acting as an oncogene, is overexpressed in high-grade 

Figure 2.  Regulatory mechanisms of ncRNAs. MiRNAs target mRNAs and further induce its degradation, thus blocking the mRNA-mediated gene translation; 
lncRNAs interact with miRNAs, mRNAs and proteins, and affect their functions; circRNAs bind to miRNAs and proteins to block their functions.
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serous OC and drives cell proliferation and metastasis, while 
attenuating starvation-induced autophagy.107 Besides, miR-
1301, which is highly expressed in cisplatin-resistant OC cells, 
enhances migration and invasion and represses autophagy 
by reducing the expression of ATG5 and Beclin-1.108 Thus, 
suppression of autophagic cell death by miRNAs benefits 
OC growth and compromises chemotherapeutic efficacy. In 
addition, upregulation of miR-34, which has a low expression 
in OC cells, impedes cell proliferation and invasion through 
the activation of apoptosis and autophagy by suppressing the 
expression of Notch 1.109 This finding suggests that induction 
of autophagic cell death by miRNAs plays a tumor-suppres-
sive role in OC. Therefore, the regulation of autophagy by 
miRNAs affects OC progression and chemoresistance.

It can be concluded that oncogenic miRNAs are upreg-
ulated in OC tissues and promote malignant progression 
and chemoresistance, whereas tumor-suppressive miRNAs 
are downregulated in OC tissues and exert the opposite 
effects (Table 1). All of miRNAs play their roles by modu-
lating autophagy, including cytoprotective autophagy and 
autophagic cell death. Thus, it is crucial to verify the regu-
latory effect of miRNAs on autophagy. It should be note 
that autophagy interacts with various biological processes 
related to cancer progression, such as apoptosis, oxidative 
stress, DNA damage and repair.110,111 The intrinsic interplay 
between miRNAs-regulating autophagy and other cellular 
processes in OC needs to be explored.

Role of lncRNA-regulating autophagy

LncRNAs also participate in OC progression by regulat-
ing autophagy. It was reported that the ubiquitin E3 ligase 
MARCH7 bound to miR-200a through interaction with the 
lncRNA MALAT1 and increased the expression of ATG7, 
which promoted TGF-β-induced autophagy, invasion, and 
metastasis of OC cells.112 Analogously, higher expression 

of lncRNA CTSLP8 is observed in metastatic tumor tissues 
than in primary OC, and it mediates epithelial-mesenchymal 
transition and autophagy by functioning as an miR-199a-5p 
decoy.11 These results indicate that autophagy induced 
by oncogenic lncRNAs is associated with the malignant 
phenotypes of OC. Besides, negative targeting protective 
autophagy by lnRNAs enhances the chemosensitivity of OC. 
New evidence shows that the lncRNA HOTAIR is highly 
expressed in OC, and its depletion strengthens the sensi-
tivity of OC to cisplatin by suppressing cisplatin-induced 
autophagy.113 Consistent with this result, lncRNA XIST is 
upregulated in carboplatin-resistant OC cells and down-
regulates the expression of miR-506-3p, which enhances 
autophagy and resistance of cancer cells to carboplatin via 
the FOXP1/AKT/mTOR axis.114 These findings imply that 
lncRNAs activate cytoprotective autophagy to facilitate OC 
development and drug resistance. Intriguingly, the lncRNA 
HULC, an oncogene in OC, induces cell proliferation, 
migration, and invasion while reducing cell apoptosis and 
autophagy by decreasing ATG7 and LC3-II expression.115 It 
seems to suggest that lncRNAs also inhibit autophagic cell 
death to promote OC malignant transformation.

Otherwise, several lncRNAs with low expressed levels 
function as tumor suppressors in OC. The lncRNA RP11-
135L22.1, an indicator of a poor prognosis in OC patients, 
combines with cisplatin to increase cell apoptosis by 
downregulating the autophagy.116 However, the molecu-
lar mechanisms through which the lncRNA RP11-135L22.1 
inhibits autophagy have not been distinctly elucidated. 
Furthermore, the upregulation of the lncRNA Meg3, which 
is downregulated in epithelial ovarian carcinoma, sup-
presses cell proliferation and promotes both apoptosis and 
autophagy by elevating the expression levels of ATG3 and 
LC3-II.117 These results suggest that lncRNAs can inhibit OC 
progression by blocking protective autophagy or activating 
autophagic cell death.

Table 1.  The role of autophagy-regulating ncRNAs in OC.

NcRNA Expression Targets Autophagy Outcome Ref.

miR-1251-5p Upregulated TBCC/α/β-tubulin, LC3-II, p62 Activated Increase cell proliferation Shao et al.101

miR-22 Downregulated Notch1, Beclin-1, LC3-II Inhibited Inhibit cell viability and promote apoptosis Li et al.102

miR-152 Downregulated ATG14 Activated Sensitize OC cells to cisplatin He et al.103

miR-29c-3p Downregulated FOXP1, ATG14 Inhibited Inhibit cisplatin resistance Hu et al.10

miR-1301 Upregulated Beclin-1, ATG5 Inhibited Promote cell migration and invasion Yu, Gao108

miR-20a-5p Downregulated RBP1 Inhibited Inhibit cisplatin resistance Li et al.104

miR-30a Downregulated TGF-β/Smad4, Beclin-1, LC3-II Inhibited Inhibit cisplatin resistance Cai et al.105

miR-130a Upregulated TSC1, ATG5, ATG7 Inhibited Facilitate cell proliferation and metastasis Wang et al.107

miR-34 Downregulated Notch 1, LC3-II, p62 Activated Promote apoptosis Jia et al.109

miR-133a Downregulated YES1, LC3-II Inhibited Reduce cisplatin resistance Zhou et al.106

LncRNA CTSLP8 Upregulated miR-199a-5p, LC3-II, p62 Activated Promote EMT Wang et al.11

LncRNA HOTAIR Upregulated LC3-II, ATG7 Activated Promote cisplatin resistance Yu et al.113

LncRNA RP11-135L22.1 Downregulated LC3-II, ATG7 Inhibited Inhibit cell proliferation Zou et al.116

LncRNA HULC Upregulated LC3-II, ATG7 Inhibited Promote proliferation, migration, invasion Chen et al.115

LncRNA Meg3 Downregulated ATG3 Activated Inhibit tumorigenesis and progression Xiu et al.117

LncRNA XIST Upregulated miR-506-3p, FOXP1 Activated Promote carboplatin resistance Xia et al.114

CircRNA-MUC16 Upregulated miR-199a, ATG13 Activated Promote invasion and metastasis Gan et al.120

CircRNA-RAB11FIP1 Upregulated miR-129, ATG7, ATG14 Activated Promote proliferation and invasion Zhang et al.12

CircRNA-F144B Upregulated miR-342-3p, FBXL11, Beclin-1 Inhibited Promote tumor progression Song et al.121

ncRNAs: noncoding RNAs; OC: ovarian cancer; LC3: light chain 3; ATG: autophagy-related genes; TSC: tuberous sclerosis complex.
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In conclusion, by regulating autophagy, oncogenic lncR-
NAs are highly expressed to facilitate OC growth, and 
tumor-suppressive lncRNAs are downregulated to alleviate 
OC cell malignant transformation (Table 1). Overexpression 
of some tumor suppressor lncRNAs to repress cytoprotec-
tive autophagy has become a promising therapeutic strat-
egy in cancer through various molecular pathways.118 Thus, 
upregulation of tumor-suppressive lncRNAs may be ben-
eficial for OC treatment by inhibiting protective autophagy 
or facilitating autophagic cell death. Besides, autophagy 
mediates cell death by interaction with non-apoptotic cell 
death pathways.119 It can be hypothesized that when tumor-
suppressive lncRNAs activate nonapoptotic signals to evoke 
OC cell death, autophagy regulation may act as an adaptive 
response to participate in lncRNAs-mediated tumor sup-
pression. Therefore, further identifying the role of lncRNA-
regulating autophagy is important for OC treatment.

Role of circRNA-regulating autophagy

CircRNAs have also been implicated in the progression 
of OC by regulating autophagy. Gan and coworkers con-
ducted a study on the clinical significance of circ-MUC16 in 
epithelial OC. They found that the increased expression of 
circ-MUC16 was associated with a progression in the TNM 
stage and histologic grade of OC. Moreover, circ-MUC16 
aggravated cancer cell invasion and metastasis by induc-
ing autophagy. Further mechanistic investigation demon-
strated that circ-MUC16 sponged miR-199a-5p and restored 
autophagy, and it interacted with ATG13 and promoted 
its expression.120 Likewise, Zhang et al.12 investigated the 
effects of miR-129 on circRNA-RAB11FIP1-induced malig-
nant transformation in OC. In their study, remarkably high 
RAB11FIP1 expression was observed in ovarian tumor tis-
sue in comparison with normal ovarian tissues. The over-
expression of RAB11FIP1 improved autophagy by sponging 
miR-3657 to relieve its depression of the expression of ATG7 
and ATG14, thus driving cancer cell proliferation and inva-
sion. These results imply that overexpressed circRNAs in OC 
facilitate tumor progression by inducing autophagy through 
targeting miRNAs. However, the elevated expression of cir-
cRNA-RNF144B is associated with low autophagy levels 
and unfavorable prognosis in OC patients. Mechanistically, 
RNF144B sponges miR-342-3p to inhibit the degradation 
of lysine demethylase 2 A, which activates the ubiquitina-
tion and degradation of Beclin-1, thus blocking autophagy.121 
This result indicates circRNAs exert the oncogenic role by 
inhibiting autophagic cell death.

Collectively, oncogenic circRNAs are highly expressed 
in OC tissues and accelerate tumor progression, along  
with various levels of autophagy (Table 1). Silencing these 
ncRNAs may alleviate the proliferation and invasion of 
OC cells by reducing protective autophagy and inducing 
autophagic cell death.

In summary, ncRNAs affect OC progression and chemore-
sistance by modulating autophagy through the targeting of 
ATGs and autophagy-related signaling pathways (Figure 1).  
Oncogenic ncRNAs promote cancer development and chem-
oresistance by activating protective autophagy, while tumor-
suppressive ncRNAs inhibit cancer progression by inducing 
autophagic cell death. Thus, further identification of the role 

of ncRNA-regulating autophagy in OC could lead to thera-
peutic strategies for this disease.

Conclusions and future direction

This review summarizes the role of autophagy in the pro-
gression, treatment, and prognosis of OC, as well as the regu-
latory role of ncRNAs in autophagy, both of which imply 
therapeutic potential for this disease. Autophagy-related 
proteins can be employed as prognostic indicators for OC, 
but it is challenging to identify the best ATG candidates for 
the early diagnosis and screening. In addition, autophagy 
induction is regulated by various signaling pathways, 
among which the PI3K/AKT/mTOR pathway is the major 
pathway that can be further modulated by other signaling 
pathways, such as MAPK, AMPK, and P53. Thus, further 
elucidation of the autophagy-related pathways is expected 
to become a new strategy for molecular targeted therapy for 
OC. Whether autophagy functions in a pro-survival or pro-
death manner may depend on the stages of OC and upstream 
regulators including ncRNAs. Autophagy is activated to 
inhibit tumorigenesis through the degradation of oncogenic 
substances at the initial stage of OC, but favors tumor pro-
gression in later stages. However, excessive autophagy acti-
vation greatly undermines tumors constitution and triggers 
autophagic cell death. In this context, emerging ncRNAs 
have been demonstrated to influence malignant pheno-
types and chemoresistance in OC by modulating autophagy 
through targeting autophagy-related proteins and signaling 
pathways. A comprehensive understanding of the regulatory 
mechanism of ncRNAs on autophagy in the development 
and treatment of OC would help in developing effective 
therapeutic targets to suppress and even reverse drug resist-
ance through combined treatment. For example, the admin-
istration of chemotherapeutic drugs in combination with 
the suppression of protective autophagy-inducing ncRNAs 
or the upregulation of autophagic death-inducing ncRNAs 
could inhibit chemoresistance.
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