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Introduction

Acetaminophen (APAP) is a widely used antipyretic and 
analgesic drug in clinics, which is relatively safe at therapeu-
tic doses. APAP is currently contained in many prescription 
and over-the-counter medicines. Due to the misunderstand-
ing of dosing instructions, inadvertent combination of more 
than one APAP-containing preparation, or continuous med-
ication, patients may overdose. However, when APAP is 
taken in excess, it may lead to fatal acute liver injury.1 APAP 
is one of the most common drugs causing acute liver injury 
and has become a leading cause of acute liver failure in 
developed countries, such as Europe and the United States.2 
N-acetylcysteine (NAC), a known antioxidant, is clinically 
used as the main antidote for APAP poisoning, but is only 
effective in the early stage of APAP intoxication.3 NAC is 
a precursor of glutathione (GSH), which can improve oxi-
dative stress by promoting the synthesis of GSH, and thus 

alleviate acute liver injury. NAC is likely to cause a variety 
of adverse reactions during NAC administration, including 
skin rash, allergic reaction, bronchospasm, hypotension, and 
even death.4 In addition, NAC must be administered at high 
doses due to its low bioavailability, but high-dose NAC may 
increase the risk of adverse reactions.5 More importantly, 
if the early and/or the most treatable stage is missed, liver 
transplantation is the only option to improve the survival 
of patients with acetaminophen-induced hepatotoxicity 
(AIH).6,7

AIH has received increasing public attention, and great 
efforts have been made to recognize the pathogenesis of 
APAP-induced liver toxicity. At its therapeutic doses, only 
a small amount of APAP is metabolized by the hepato-
cyte cytochrome P450 enzyme system into N-acetyl-p-
benzoquinone imine (NAPQI), a major toxic metabolite.8 
NAPQI is efficiently scavenged by hepatic GSH stores; thus, 
no liver damage occurs. However, during APAP overdose, 
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Minireview 

Impact Statement

With the widespread clinical use of acetaminophen 
(APAP), APAP-induced hepatotoxicity (AIH) has grad-
ually become an important public health concern. The 
pathogenesis of AIH is quite complicated, and involves 
a variety of cellular processes. N-acetylcysteine is cur-
rently used as the main antidote for APAP poisoning, 
but its therapeutic effect is limited. Therefore, there 
is an urgent need to comprehensively clarify the 
molecular mechanisms underlying AIH and to explore 
novel therapeutic strategies. This work summarizes 
the important cellular events involved in AIH and dis-
cusses potential therapeutic targets against AIH to 
provide new ideas for AIH intervention.
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the generation of NAPQI increases significantly, leading 
to rapid depletion of GSH in the liver. Excessive NAPQI 
binds to the cysteine residues of various essential proteins 
in cells, thus undermining their normal biological function.9 
Protein binding of NAPQI occurs predominantly in centri-
lobular hepatocytes, which eventually undergo oxidative 
stress, mitochondrial dysfunction, and necrotic cell death.10 
Remarkably, mitochondrial oxidative stress and dysfunction 
have been identified as the main cellular events in APAP-
induced hepatic injury by a large number of studies.11–13 
Apart from mitochondrial oxidative stress and dysfunction, 
other cellular processes are also implicated in the patho-
genesis of AIH. These processes include liver metabolism, 
sterile inflammation, endoplasmic reticulum stress (ERS), 
autophagy, and microcirculatory dysfunction. Some biomol-
ecules involved in these processes have been determined 
to play key regulatory roles in AIH and provide promising 
targets for intervening APAP-induced liver injury. Given 
the prevalence of APAP use, as well current treatment limi-
tations, the elucidation of the molecular mechanisms and 
the search for new therapeutic targets have become crucial 
issues in AIH research. In this review, we summarize the 
various cellular events involved in AIH and discuss possible 
therapeutic measures targeting these cellular events.

Molecular mechanisms of AIH

Liver metabolism of APAP

APAP metabolism mostly occurs in liver microsomes. Most 
APAP (85–90%) is catalyzed by UDP-glucuronosyltransferase 
(UGT) or sulfonyltransferase (SULT) enzymes to produce 
non-toxic glucuronosylated or sulfated metabolites, respec-
tively.14 Glucuronic acid conjugates are rapidly eliminated 
from hepatocytes and mostly (>75%) excreted into bile.15 
The remaining APAP-glucuronides (<25%) are secreted into 
the plasma through basolateral transporter multidrug resist-
ance–associated protein 3 (MRP3).16 Most APAP-sulfates are 
excreted into bile by multidrug resistance–associated protein 
2 (MRP2), and a few are excreted into bile by human breast 
cancer resistance protein 1 (BCRP1).17 Only approximately 
2% of APAP is excreted into the urine.18 The remaining APAP 
(5–9%) is oxidized by the cytochrome P450 enzymes, mainly 
cytochrome P450 2E1 (CYP2E1), into NAPQI, which leads 
to AIH.18 At the therapeutic doses of APAP, NAPQI loses 
its toxicity by binding with GSH in the liver. In addition, 
NAPQI can directly modify the cysteine sulfhydryl group 
of the cytosolic kelch-like ECH associated protein 1 (Keap1), 
allowing the separation of nuclear factor erythroid 2-related 
factor 2 (Nrf2) from Keap1 by deubiquitination. This acti-
vates the Keap1-Nrf2 pathway and upregulates antioxidant 
enzymes to promote metabolic inactivation of APAP.19 Once 
APAP is overdosed, a large amount of NAPQI accumulates, 
thereby resulting in a rapid depletion of GSH in the liver. As a 
result, the physiological regulation of Keap1-Nrf2 is lost, and 
free NAPQI reacts with protein sulfhydryl groups to form 
APAP adducts (Figure 1). The mitochondria are the main 
site of the formation of protein adducts, which may block 
the synthesis of mitochondrial DNA by impairing related 
enzymes.20 It is worth noting that gene polymorphisms of 
liver metabolic enzymes, such as UGT, SULT, and CYP2E1, 

and some co-existing diseases, such as viral hepatitis, acute 
and chronic malnutrition, and nonalcoholic fatty liver dis-
ease, may increase the susceptibility to APAP-induced liver 
injury, even at a therapeutic dose.21,22 This phenomenon 
probably correlates with the increase in NAPQI caused by 
these factors.

Mitochondrial oxidative stress and dysfunction

During AIH, mitochondrial proteins such as housekeep-
ing proteins, GSH peroxidase, and adenosine triphosphate 
(ATP) synthase are the binding targets of NAPQI. In addi-
tion, NAPQI can also interfere with complexes I and II in 
the mitochondrial electron transport chain (ETC), resulting 
in electron leakage to form superoxide radicals.23 A variety 
of antioxidant enzymes – such as superoxide dismutase 2 
(SOD2), catalase (CAT), and GSH peroxidase (GPX) – usu-
ally scavenge superoxides from mitochondria. A previous 
study showed that APAP-induced liver injury was sig-
nificantly aggravated in SOD2-deficient mice.24 Except for 
being decomposed into H2O2 and O2, excess superoxides 
can also react with nitric oxides (NOs) to synthesize highly 
reactive peroxynitrites in the mitochondria.25 Normally, 
GSH is able to effectively remove these peroxynitrites. 
When exposed to a large amount of NAPQI, GSH would 
be exhausted to trigger the tyrosine nitration of mitochon-
drial proteins. These nitrated mitochondrial proteins give 
rise to mitochondrial DNA damage and the opening of the 
mitochondrial permeability transition pore (MPTP), even-
tually inducing cell necrosis (Figure 2).26 Mitochondrion is 
the most important organelle of energy metabolism in cells, 
which synthesize most of their ATP pool through oxidative 
phosphorylation. ATP is essential for maintaining normal 
cellular activity. Several metabolomics studies have con-
firmed that APAP-induced mitochondrial oxidative stress 
disrupted the metabolic processes of citric acid cycle and 
fatty acid β-oxidation, thus blocking ATP synthesis and 
accelerating hepatocyte death.27–29 Currently, three major 
signaling proteins – including c-Jun N-terminal kinase 
(JNK), Nrf2, and p53 – have been found to be involved in 
mitochondrial oxidative stress. Notably, all of these pro-
teins can serve as targets for alleviating APAP-induced 
mitochondrial oxidative stress.

JNK

An early result of APAP-induced mitochondrial oxidative 
stress is the activation of JNK in the cytoplasm. The massive 
NAPQI levels deplete GSH in hepatocytes, resulting in the 
release of superoxides from the mitochondria into the cyto-
sol. These superoxides can oxidize thioredoxins and detach 
the apoptosis signal-regulating kinase 1 (ASK-1) from them, 
thus triggering the self-activation of ASK-1.30,31 In addition, 
mitochondrial oxidative stress may also trigger the phos-
phorylation of glycogen synthase kinase-3β (GSK-3β), which 
activates the mixed lineage kinase 3 (MLK3) protein.25,32 
Activated ASK1 and MLK3 then stimulate mitogen-activated 
protein kinase kinase kinase 4/7 (MKK4/7) and activate JNK 
to initiate a cascade effect.33,34 JNK translocates to mitochon-
dria, binds to SH3 homology–associated Bruton’s tyrosine 
kinase (BTK) binding protein (Sab) on the mitochondrial 
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membrane, and subsequently inactivates a proto-oncogene 
tyrosine-protein kinase (Src) in mitochondria, eventually 
leading to the dysfunction of the ETC and the increased 
release of reactive oxygen species (ROS).35 ROS activates the 
upstream mitogen-activated protein kinase (MAPK), which 
phosphorylates JNK. Sustained activation of JNK can further 
promote the generation of mitochondrial ROS, thus form-
ing a self-sustaining activation loop. Furthermore, activated 
JNK translocates the mitochondria, and recruits cytoplasmic 
Bax, which triggers the opening of MPTP, thereby leading to 
the loss of membrane potential and the depletion of ATP.36 
The induction of MPTP will eventually cause the release of 
multiple important mitochondrial proteins into the cyto-
plasm, such as apoptosis-inducing factor (AIF), endonucle-
ase G (Endo G), and cytochrome c (Cyt C). These proteins are 

transferred to the nucleus, where they induce DNA fragmen-
tation and cell death (Figure 2).37

Nrf2

Nrf2 is an intracellular transcription factor that protects cells 
from oxidative stress by regulating the expression of protec-
tive genes. Under physiological conditions, Nrf2 binds to an 
inhibitor, keap1, and remains inactive in the cytoplasm. When 
oxidative stimulation occurs, Nrf2 releases from keap1, and 
activates itself. Activated Nrf2 binds to antioxidant response 
elements (AREs) and translates to the nucleus, ultimately 
initiating the expression of downstream target genes, such 
as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidore-
ductase 1 (NQO1), and glutamate–cysteine ligase catalytic 

Figure 1. The metabolic ways of acetaminophen.
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(GCLC) subunit.38 These detoxification-related proteins pro-
mote metabolic inactivation of APAP, thus protecting the 
liver from damage induced by NAPQI (Figure 2).39 Current 
studies have confirmed that Nrf2-deficient mice have a high 
sensitivity to AIH, while Nrf2-activated mice have a high 
resistance to AIH.40,41 The Nrf2-keap1 pathway may be regu-
lated through a variety of mechanisms. In addition to being 
directly activated by NAPQI, protein tyrosine phosphatase 
1 B (PTP1B),42 fibroblast growth factor 21 (FGF21),43 and the 
M1 muscarinic receptor (M1R)44 have also been found to 
modulate the Nrf2 signaling pathway.

P53

p53 participates in the regulation of many important bio-
logical processes, such as the cell cycle, cell apoptosis, and 

DNA damage repair. p53 is activated by a variety of stimuli 
including oxidative stress and DNA damage. Notably, p53 
plays a dual role in oxidative stress: in mild and moderate 
oxidative stress, it promotes the repair of genetic damage 
and cell survival by mediating cell cycle arrest and DNA 
repair; in severe oxidative stress, it triggers cell aging and 
apoptosis.25 Huo et al.45 observed that p53 was activated 
in AIH mice. Furthermore, when p53 was inhibited, JNK 
phosphorylation was enhanced to induce more severe 
liver injury in the APAP model. In addition, p53-deficient 
mice were found to be more vulnerable to APAP-induced 
liver toxicity, indicating that p53 was a protective factor 
against AIH.46 However, p53 signaling pathway was con-
firmed to play different roles in the development of APAP-
induced liver injury and subsequent compensated liver 
regeneration.47

Figure 2. The major cell events of acetaminophen-induced hepatotoxicity.
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Sterile inflammation

APAP-induced liver toxicity may trigger extensive sterile 
inflammation in the liver tissue.48 A large area of cell necro-
sis appears following APAP overdose. Damaged hepato-
cytes may release massive amounts of cell contents, such as 
nuclear DNA fragments, mitochondrial DNA, high mobility 
group box-1 (HMGB1), and ATP.49 These cell contents, also 
known as damage-associated molecular patterns (DAMPs), 
may bind to and activate Toll-like receptors in macrophages, 
promote the formation of inflammasome complexes, and 
induce the release of pro-inflammatory cytokines. These 
pro-inflammatory mediators subsequently recruit neutro-
phils and monocytes to the damaged area of the liver to trig-
ger sterile inflammation. After APAP overdose, cytokines, 
such as tumor necrosis factor-alpha (TNF-α), interleukin-
1β (IL-1β), and interleukin-6 (IL-6), and chemokines, such 
as monocyte chemoattractant protein-1 (MCP-1) and mac-
rophage inflammatory protein 2 (MIP-2), were detected in 
the plasma of animals and patients.50,51 The Toll-like receptor 
family is commonly expressed in liver macrophages and 
other immune cells. Toll-like receptor 4 (TLR4) and Toll-like 
receptor 9 (TLR9) have been confirmed to closely correlate 
with the development of AIH.52,53 Furthermore, the activa-
tion of inflammasomes mainly manifests as an elevation of 
serum IL-1β and interleukin-18 (IL-18) and the recruitment 
of inflammatory cells.54 A prior study reported that the dele-
tion of TLR9 or Nalp3 markedly weakens APAP-induced 
hepatic injury, thereby increasing the survival rate of mice. 
The underlying mechanisms could involve the reduction 
of serum IL-1β and neutrophils by activating the Nalp3 
inflammasome.55 A sustained and amplified inflammatory 
response accelerates the release of abundant pro-inflamma-
tory cytokines. These cytokines promote the expression of 
inducible nitric oxide synthase (iNOS) to increase the for-
mation of peroxynitrites, greatly aggravating liver injury. 
Conversely, inflammation can erase necrotic cell debris and 
promote liver repair and regeneration. For example, IL-6 
from the inflammatory reaction promotes the regeneration of 
damaged liver tissue, and this effect is achieved by increasing 
the expression of protective heat shock proteins with strong 
hepatoprotective activity.56 It was confirmed that the aggre-
gation of neutrophils and macrophages in the injured area 
was necessary to promote liver regeneration.57 Inflammation 
may play an opposing role at different stages of the path-
ological process of AIH: it functions as a promoter in the 
injury stage, whereas it is a helper in the regeneration stage.25 
Thus, blocking inflammation may have a protective effect at 
the beginning, but is actually harmful to the final outcome. 
Overall, there is controversy regarding sterile inflammation 
as a potential therapeutic target for AIH. However, inducing 
or inhibiting inflammation after clarifying its role at different 
stages will remain a favorable treatment strategy.

ERS

The liver is the major organ involved in drug metabolism, 
and there are abundant endoplasmic reticula in liver cells. 
The endoplasmic reticulum is the main site for the synthe-
sis, processing, and transport of various proteins in cells. 

An increase in misfolded or unfolded proteins in the endo-
plasmic reticulum can induce ERS. When ERS occurs, the 
cells are able to maintain intracellular homeostasis through 
the unfolded protein response.58 Long-term or extreme ERS 
also leads to endoplasmic reticulum dysfunction and fur-
ther induces cell apoptosis.59 C/EBP homologous protein 
(CHOP) plays an important role in ERS-induced apoptosis, 
which is mainly regulated by three sensors in the inner mem-
brane of the endoplasmic reticulum, namely, protein kinase 
RNA-like endoplasmic reticulum kinase (PERK), activating 
transcription factor 6 (ATF6), and inositol needs protein 1 
(IRE1).60 A previous study found that hepatic endoplasmic 
reticulum underwent severe oxidative stress in early APAP-
induced liver damage.61 Similarly, Uzi et al.62 reported that 
ERS was observed in mice 12 h after APAP treatment, and 
APAP evidently induced liver injury by activating CHOP. 
In the development of AIH, ERS was triggered by the cova-
lent binding of NAPQI to endoplasmic reticulum proteins.63 
The accumulated NAPQI depletes GSH in the endoplas-
mic reticulum to induce an oxidation–reduction imbalance, 
which initiates the phosphorylation of eukaryotic initiation 
factor 2α (eIF2α) to activate ATF6 and CHOP, eventually 
resulting in hepatocyte apoptosis (Figure 2).64 The above 
evidence clearly shows that ERS is tightly associated with 
the development of AIH.

Autophagy

Autophagy is strictly regulated by the cell itself, which 
renews the cell by removing unnecessary cytoplasmic con-
tents, including macromolecules, misfolded proteins, and 
damaged organelles. Multiple intracellular stimuli, such as 
ROS and ERS, can induce autophagy.65 As a basic mecha-
nism for maintaining cell homeostasis, autophagy is able 
to eliminate APAP adducts and damaged mitochondria, 
thus preventing APAP-induced necrosis.66,67 PTEN-induced 
kinase 1 (PINK1) can act as a molecular sensor to detect the 
functional state of mitochondria. When mitochondria are 
damaged, PINK1 first accumulates on the mitochondrial 
outer membrane and then recruits Parkin, which is consid-
ered to be required for initiating mitochondrial autophagy 
in vitro models, to initiate the mitochondrial autophagy. 
The double deletion of PINK1 and Parkin severely impairs 
mitochondrial autophagy and aggravates the liver damage 
caused by APAP overdose in mice.68 Igusa et al.69 further 
found that mouse liver cells with liver autophagy deficiency 
induced by the selective knockout of the ATG7 gene were 
more vulnerable to AIH. In their research, APAP-induced 
ROS production, mitochondrial membrane depolarization, 
and JNK activation in hepatocytes were significantly accel-
erated by autophagy defect. In addition, a recent study also 
revealed that the liver-specific Ulk1 and Ulk2 double knock-
out mice, where Ulk1 and Ulk2 were key components of the 
unc-51-like autophagy activating kinase 1 (ULK1) complex 
that functions upstream of the autophagy pathway, were 
more resistant to APAP-induced liver injury.70 Notably, 
Ulk1/2 knockdown did not affect the autophagy activity of 
hepatocytes but rather inhibited JNK activation by blocking 
the phosphorylation of MKK4/7.70 Collectively, autophagy 
activation is likely to play a protective role in AIH.
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Microcirculation dysfunction

Studies have shown that NAPQI-induced microvascular con-
gestion in the centrilobular region precedes direct hepatocyte 
injury.71,72 This microcirculatory damage results from the col-
lapse of sinus wall and the flow of blood components into the 
space of Disse.73,74 Liver sinusoidal endothelial cells (LSECs) 
are the early targets of APAP-induced hepatic injury.72 LSEC 
swelling was the earliest morphological alteration that 
occurred 30 min after the APAP attack. This change leaded to 
the collapse of the sinus wall, which caused red blood cells to 
infiltrate the Disse space. This reduced sinusoidal perfusion, 
thus exacerbating the development of APAP-induced liver 
injury.73 It has also been reported that the increased matrix 
metalloproteinase (MMP) levels that occurred during APAP 
intoxication was closely associated with hepatic microcircu-
latory dysfunction, including impaired sinusoidal perfusion, 
and infiltration of erythrocytes in the Disse space.75 Notably, 
a previous study found that damaged LSECs could result 
in liver congestion, and APAP might be directly toxic to the 
LSECs isolated from mice through the depletion of GSH.76 In 
particular, a clinical study also identified an abnormal func-
tion of LSECs in patients with AIH using serum hyaluronic 
acid, which strongly supported the viewpoint that APAP-
induced hepatic microcirculation disorder was involved in 
the formation of AIH.77 Furthermore, Ganey et al.78 found 
that LSECs were, indeed, damaged earlier than hepatocytes 
after APAP overdose. Interestingly, these impaired LSECs 
activated coagulation cascades to reduce the number of 
platelets. This subsequently disturbed the coagulation sys-
tem by activating the protease-activated receptor 1 (PAR-1) 
signaling pathway, which ultimately promoted the develop-
ment of AIH.

Therapeutic targets and strategies for AIH

Targeting APAP liver metabolism

Metabolic studies on APAP found that NAPQI was reduced 
by increasing the activity of phase II metabolic enzymes, 
which was beneficial for alleviating APAP-induced liver 
toxicity. The activation of liver X receptors (LXRs) also 
greatly improved AIH mainly by enhancing the catalytic 
capacity of phase II metabolic enzymes.79 In addition to 
enhancing these enzymes, AIH can also be markedly miti-
gated by regulating the expression or activity of cytochrome 
P450 enzymes. Notably, Phyllanthus urinaria extract can treat 
AIH by inhibiting the expression of CYP2E1 in mice.80 Tea 
polyphenols have also been shown to protect mice from 
AIH by inhibiting the activities of cytochrome P450 1A2 
(CYP1A2) and CYP2E1.81 In addition, the pregnane X recep-
tor (PXR), an important nuclear receptor in the metabo-
lism field, can modulate the expression of cytochrome 
P450 enzymes.82 PXR knockout mice were found to be less  
sensitive to AIH, which implied that PXR mainly played  
an active role in regulating the cytochrome P450 enzyme 
system.83 Interestingly, AIH was also obviously reduced in 
mice with 5-lipoxygenase (5-LO) deletion, which was related 
to the inhibition of cytochrome P450 3A11 (CYP3A11).84  
On the whole, these aforementioned treatments do have 
certain anti-AIH effectiveness. Patients with AIH often have 

liver injury and are beyond the time frame for early medical 
intervention. Therefore, compared to preventive interven-
tions in the metabolic stage, targeted therapy is more clini-
cally significant.

Targeting mitochondrial oxidative stress and 
dysfunction

Currently, clinical treatment of AIH mainly focuses on 
mitochondrial oxidative stress. NAC is the major clini-
cal treatment for AIH, which may reduce oxidative stress 
by supplementing GSH to alleviate acute liver injury. 
However, owing to the narrow therapeutic window, NAC 
needs to be used within 8 h after APAP poisoning to achieve 
good therapeutic efficacy. It is worth noting that some 
adverse reactions, such as nausea, vomiting, and allergy, 
may occur during NAC treatment.85 It was reported that 
the antioxidant Mito-Tempo targeting mitochondrial could 
effectively prevent AIH after 3 h of APAP treatment. This 
suggests that Mito-Tempo is a potential treatment option 
for patients with advanced APAP poisoning.86 Methylene 
blue is another existing drug that has been proven to con-
tain hepatoprotective effects in an AIH model. Methylene 
blue may serve as an electron carrier to effectively restore 
ETC function and maintain mitochondrial bioenergetic 
homeostasis, thus protecting mice from AIH.87 Moreover, 
clofibrate and docosahexaenoic acid showed remarkable 
efficacy in protecting against AIH, which was closely cor-
related with the upregulated expression of peroxisome 
proliferate–activated receptor α (PPARα).88,89 Patterson 
et al.88 found that the activated PPARα could induce the 
expression of its target gene uncoupling protein 2 (UCP2) 
and increase the activity of fatty acid β-oxidation-related 
enzymes and peroxidase in mitochondria. This altogether 
improved fatty acid catabolism and antioxidant processes 
to resist APAP-induced liver injury.

SP600125, a classical ATP-competitive inhibitor of JNK, 
has been reported to have protective effects against AIH in 
vivo and in vitro. In particular, the delayed administration of 
this inhibitor for 5 h was more effective than NAC in AIH 
patients.90 Interestingly, the antirheumatic drug leflunomide 
also clearly protected mice from AIH by suppressing the 
JNK-mediated activation of mitochondrial permeabiliza-
tion.91 Considering the possible protective effects of JNK 
on liver regeneration, the strategy of directly or indirectly 
inhibiting JNK may also reduce the potential benefits of JNK 
and restrict the therapeutic application of JNK inhibitors.92 
Recently, antcin H isolated from Antrodia camphorata has 
also been shown to prevent AIH by suppressing the interac-
tion between phosphorylated JNK and Sab.93 Since antcin H 
interferes with the self-maintaining activation loop of JNK 
rather than directly inhibiting JNK, the molecule could allow 
a greater beneficial effect.94 Therefore, antcin H may have 
promising clinical applications in the future. More impor-
tantly, metformin, a commonly used antidiabetic drug, has 
also been shown to treat AIH by upregulating growth arrest 
and DNA-damage inducible 45 (Gadd45) expression and 
inhibiting JNK phosphorylation.95 Due of its multiple phar-
macological effects, metformin is likely to be one of the most 
promising agents for treating AIH.
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Considering the important regulatory role of Nrf2 sign-
aling in liver oxidative stress, a large number of bioactive 
components have been found to prevent AIH by modu-
lating Nrf2 (Table 1). For example, schisandrol B isolated 
from Schisandra sphenanthera exhibited a remarkable protec-
tive effect against AIH, partly through the activation of the 
Nrf2/ARE pathway.96 In addition, tanshinone IIA, the main 
active component of Salvia miltiorrhiza, could also protect 
the liver from APAP-induced hepatic injury by activating 
the Nrf2 pathway.97 Moreover, it was found that caffeic acid 
could effectively prevent APAP-induced liver toxicity by 
activating the Keap1-Nrf2 antioxidative defense system. 
More specifically, caffeic acid decreased Keap1 expression, 
activated Nrf2 by inhibiting the binding of Keap1 to Nrf2, 
and thus upregulated the expression of HO-1 and NQO1.98 
Furthermore, esculentoside A, with satisfactory antioxidant 
activities, could enhance the Nrf2-mediated survival mecha-
nisms through the AMP-activated protein kinase (AMPK)/
Akt/glycogen synthase kinase-3 beta (GSK3β) pathway, 
thus effectively alleviating APAP-induced liver damage.99 
Importantly, these natural compounds possess a remarkable 
antioxidant activity, and this effect is realized by activat-
ing the Keap1-Nrf2 pathway. Oxidative stress is the major 
pathogenic factor of AIH, and the Keap1-Nrf2 pathway is the 
main defense mechanism against oxidative stress. Therefore, 
activating the Keap1-Nrf2 pathway may be an effective ther-
apeutic strategy for APAP-induced liver injury. Although 
these natural compounds can improve AIH, these findings 
are all based on animal models. Therefore, further studies 
are required to determine their clinical efficacy. In addition, 
because any influence on the accumulation of NAPQI may 
interfere with the subsequent progression of liver injury, it 
is necessary to elucidate the effects of these natural products 
on the metabolic activation of APAP.

One study has reported that resveratrol significantly 
reduced APAP-induced JNK activation and mitochondrial 
oxidative damage. Besides that, resveratrol treatment also 
induced SIRT1 and negatively regulated p53 signaling to 
increase cell proliferation–related proteins, which promoted 
hepatocyte proliferation.100 In a mouse model of AIH, Huo 
et al.45 explored the relationship between p53 and JNK, a key 
mediator of APAP-induced mitochondrial oxidative stress. 
They found that activated p53 suppressed JNK activation 
(Figure 2), thereby protecting the liver. It was also reported 
that the doxorubicin-mediated activation of p53 attenuated 
AIH by enhancing APAP transport and metabolism and 
inhibiting oxidative damage.46 These findings suggest that 
activated p53 is helpful in preventing APAP-induced liver 
injury. However, in the process of liver repair in the late stage 
of liver injury, the activation of p53 delays liver regenera-
tion.47 Since p53 is stage-specific in the pathogenesis of liver 
injury, p53 may not be an ideal target for treating AIH.

Targeting sterile inflammation

Whether sterile inflammation promotes the progression of 
liver injury or serves as a means of cellular defense against 
toxicity remains controversial.118 Despite this, aseptic inflam-
mation may still be used as an intervention target to protect 
against APAP-induced liver injury. Benzyl alcohol has been 

proven to reduce the release of IL-1 and IL-18 in a TLR4-
dependent manner, thus preventing AIH.101 However, its 
clinical application is limited by mitochondrial toxicity.119 
Atractylenolide I also displayed an obvious protective effect 
against AIH. This active compound is likely to inhibit the 
activation of nuclear factor-κB (NF-κB) through the TLR4/
MAPKs/NF-κB pathways, thus downregulating the expres-
sion of pro-inflammatory cytokines, including IL-1β, IL-6, 
and TNF-α.103 Furthermore, blocking neutrophil recruitment 
is also a feasible treatment approach. Resolvin was found to 
attenuate AIH by restraining the entry of neutrophils into 
liver tissues.102 In contrast, inflammation also helps erase 
dead cells and stimulate later liver repair and regeneration. 
Therefore, research on the role of inflammatory response in 
the liver later regeneration is also essential. IL-6 has been 
shown to promote liver regeneration by activating signal 
transducer and activator of transcription-3 (STAT3).120 In 
addition, Masubuchi et  al.56 reported that IL-6-deficient 
mice were more susceptible to APAP-induced liver injury, 
which was related to the insufficient expression of hepatic 
heat shock proteins 25, 32, 40, and 70 after APAP treat-
ment. These findings suggest that IL-6 may protect against 
APAP-induced liver injury through multiple biological 
mechanisms. Lactoferrin is a multifunctional protein that 
modulates the function of immune cells and exerts hepato-
protective effects by regulating inflammatory responses.104 
Overall, as the exact role of inflammation in AIH remains 
unclear, its use as a therapeutic target is controversial.

Targeting ERS

CHOP was confirmed to be a critical regulator of APAP-
induced ERS.62 It was reported that simvastatin could pro-
tect mice from AIH by inhibiting the expression of CHOP.105 
Ozagrel hydrochloride also significantly reduced hepatocyte 
death by downregulating CHOP expression.106 In addition, 
4-phenyl-butyric acid, a chemical chaperone that aids in the 
correct folding of proteins, could prevent APAP-induced 
liver injury in mice. The underlying mechanisms most 
likely involve the reduction of ERS-induced apoptosis by 
suppressing CHOP expression.107 Therefore, suppressing 
CHOP may be a potential treatment strategy for patients 
with AIH. Kahweol, derived from coffee, alleviated APAP-
induced hepatocyte death, and its cell protection was related 
to the inhibition of ERS.108 Moreover, the SPHK1 inhibitor 
PF543 also effectively relieved ERS by reducing the phos-
phorylation of eIF2α and activating ATF6, thus remarkably 
improving AIH.109 Interestingly, guanabenz, a well-known 
antihypertensive drug, also showed liver protection in AIH 
mice, which resulted from the reduction of ERS by inhibiting 
the proteolysis of ATF6.110

Targeting autophagy

Adiponectin has been proven to prevent AIH by activat-
ing AMPK- and ULK1-mediated autophagy.111 Rapamycin 
also effectively weakened the AIH by inducing autophagy.67 
In addition, cardamonin-induced autophagy by activating 
the NFE2L2 signaling pathway, thus resulting in the protec-
tion against AIH.112 Interestingly, a recent study also found 
that fisetin extracted from fruits or vegetables promoted 
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Table 1. The major bioactive substances targeting different cell events against APAP-induced hepatotoxicity.

Cell event Bioactive substance Animal model/APAP dose Major therapeutic mechanisms Reference

APAP liver 
metabolism

TO1317 Mice, 200 mg/kg, p.o. Inducing phase II conjugating enzymes and suppressing 
phase I P450 enzymes by activating LXR.

79

Phyllanthus urinaria extract C57Bl6 mice, 550 mg/kg, i.p. Inhibiting CYP2E1 expression. 80

Tea polyphenols Kunming mice, 500 mg/kg, p.o. Reducing CYP2E1 and CYP1A2 expression. 81

Pregnenolone 16α-carbonitrile Mice, 350 mg/kg, i.p. Inducing CYP3A11 expression by activating PXR. 82

Zileuton C57BL/6J mice, 200 mg/kg, p.o. Suppressing CYP3A11 by inhibiting 5-LO. 84

Mitochondrial 
oxidative stress 
and dysfunction

Mito-Tempo C57BL/6J mice, 300 mg/kg, i.p. Specifically attenuating mitochondrial oxidant stress and 
preventing mitochondrial dysfunction.

86

Methylene blue C57BL/6J mice, 450 mg/kg, i.p. Restoring ETC function and maintaining mitochondrial 
bioenergetic homeostasis by serving as an electron 
carrier of damaged complex II.

87

Fenofibrate C57BL/6J mice, 400 mg/kg, i.p. Activating PPARα. 88

Docosahexaenoic acid CD-1 mice, 800 mg/kg, p.o. Activating PPARα. 89

SP600125 C57BL/6 mice, 350 mg/kg, i.p. Directly inhibiting JNK. 90

Leflunomide C57BL/6 mice, 750 mg/kg, i.p. Suppressing the JNK-mediated activation of mitochondrial 
permeabilization.

91

Antcin H C57BL/6NHsd mice, 300 mg/
kg, i.p.

Suppressing the interaction between phosphorylated 
JNK and Sab.

93

Metformin C57BL/6 J mice, 400 mg/kg, i.p. Inhibiting JNK phosphorylation by upregulating Gadd45 
expression.

95

Schisandrol B C57BL/6 mice, 400 mg/kg, i.p. Activating Nrf2/ARE pathway. 96

Tanshinone IIA C57BL/6J mice, 300 mg/kg, i.p. Upregulating the levels of GCLC, HO-1and NQO1 by 
activating Nrf2 pathway.

97

Caffeic acid ICR mice, 400 mg/kg, p.o. Upregulating the expression of HO-1 and NQO1 by 
activating Keap1-Nrf2 pathway.

98

Esculentoside A BALB/c mice, 400 mg/kg, i.p. Activating Nrf2 through AMPK/Akt/GSK3β pathway. 99

Doxorubicin C57BL/6 mice, 400 mg/kg, i.p. Activating p53 to enhance APAP transport and 
metabolism and to inhibit oxidative damage.

 

Nutlin 3a C57BL/6N mice, 300 mg/kg, i.p. Suppressing JNK activation. 45

Resveratrol C57BL/6 mice, 400 mg/kg, i.p. Promoting hepatocyte proliferation by regulating 
SIRT1-p53 signaling pathways.

100

Sterile 
inflammation

Benzyl alcohol C57BL/6 mice, 400 mg/kg, i.p. Reducing the release of IL-1 and IL-18 in TLR4-
dependent way.

101

Resolvin C57BL/6 mice, 400 mg/kg, i.p. Inhibiting the adhesion of neutrophils to endothelial cells. 102

Atractylenolide I C57BL/6 mice, 500 mg/kg, i.p. Downregulating the expression of pro-inflammatory 
cytokines, including IL-1β, IL-6, and TNF-α, by inhibiting 
NF-κB through TLR4/MAPKs/NF-κB pathway.

103

Lactoferrin C57BL/6J mice, 300 mg/kg, i.p. Modulating inflammatory responses. 104

Endoplasmic 
reticulum stress

Simvastatin C57BL/6 mice, 400 mg/kg, i.p. Inhibiting CHOP expression. 105

Ozagrel hydrochloride ICR mice, 330 mg/kg, i.p. Downregulating CHOP expression. 106

4-Phenylbutyric acid C57BL/6 mice, 450 mg/kg, i.p. Suppressing CHOP expression. 107

Kahweol C57BL/6N mice, 400 mg/kg, i.p. Inhibiting ERS. 108

PF543 C57BL/6J mice, 200 mg/kg, i.p. Relieving the ERS by reducing SPHK1-mediated eIF2α 
phosphorylation and ATF4 level.

109

Guanabenz Swiss Webster mice, 370 mg/
kg, i.p.

Reducing ERS by inhibiting the proteolysis of ATF6. 110

Autophagy Adiponectin C57BL/6J mice, 500 mg/kg, i.p. Activating AMPK- and ULK1-mediated autophagy. 111

Rapamycin C57BL/6 mice, 500 mg/kg, i.p. Inducing autophagy. 66

Cardamonin C57BL/6 mice, 400 mg/kg, i.p. Enhancing autophagy by activating NFE2L2 signaling 
pathway.

112

Fisetin C57BL/6 mice, 400 mg/kg, p.o. Promoting autophagy by increasing ATG5 expression. 113

Glycycoumarin C57BL/6 mice, 300 mg/kg, i.p. Decreasing JNK phosphorylation and mitochondrial 
oxidative stress by activating sustained autophagy.

114

Microcirculation 
dysfunction

V-PYRRO/NO CD-1 mice, 600 mg/kg, i.p. Maintaining hepatic vasculature by releasing NO. 115

2-((4-Biphenylsulfonyl) amino)-
3-phenyl-propionic acid

C57BL/6 mice, 600 mg/kg, p.o. Attenuated microvascular injury by inhibiting MMP. 75

Prazosin CD-1 mice, 3.5 mmol/kg, i.p. Reducing hepatic erythrocyte accumulation. 116

Heparin C57BL/6J mice, 400 mg/kg, i.p. Inhibiting coagulation system. 78

Dabigatran C57BL/6 mice, 300 mg/kg, i.p. Inhibiting coagulation system. 117

APAP: acetaminophen; LXR: liver X receptor; ETC: electron transport chain; JNK: Jun N-terminal kinase; GCLC: glutamate cysteine ligase catalytic; NQO1: NAD(P)H:quinone 
oxidoreductase 1; CHOP: C/EBP homologous protein; ERS: endoplasmic reticulum stress; MMP: matrix metalloproteinase; p.o.: per os; i.p.: intraperitoneal injection; CYP2E1: 
cytochrome P450 2E1; CYP1A2: cytochrome P450 1A2; PXR: pregnane X receptor; 5-LO: 5-lipoxygenase; PPARα: peroxisome proliferate–activated receptor α; Gadd45: 
growth arrest and DNA-damage inducible 45; ARE: antioxidant response element; HO-1: heme oxygenase-1; Nrf2: nuclear factor erythroid 2-related factor 2; AMPK: AMP-
activated protein kinase; GSK3β: glycogen synthase kinase-3 beta; NFE2L2: nuclear factor erythroid 2-related factor 2; eIF2α: eukaryotic initiation factor 2α; ATF4: activating 
transcription factor 4; NF-κB: nuclear factor-κB; interleukin: interleukin; TNF-α: tumor necrosis factor-alpha; MAPK: mitogen-activated protein kinase.
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autophagy by increasing the expression of ATG5, thereby 
inhibiting the development of AIH.113 Moreover, globu-
lar adiponectin was also found to prevent APAP-induced 
hepatocyte death, which was achieved partly through the 
inhibition of ERS and inflammasome activation by inducing 
autophagy.121 Mo et al.122 discovered that AMPK-dependent 
autophagy is involved in the liver protection of IL-22 against 
APAP-induced liver injury. Furthermore, glycycoumarin 
remarkably decreased APAP-induced JNK phosphorylation 
and mitochondrial oxidative stress through the sustained 
activation of autophagy.114 It is noteworthy that excess 
autophagy is detrimental to organisms, as it can initiate pro-
grammed cell death that is similar to apoptosis or necro-
sis.123,124 Therefore, inducing moderate autophagy can be 
considered as a potential therapeutic strategy against AIH.

Targeting microcirculation dysfunction

NO plays an important role in maintaining an adequate 
blood supply for hepatic microvessels by affecting the 
expression of leukocytes, platelets, and endothelial cell adhe-
sion molecules.125 L-NMMA, an NOS inhibitor, indirectly 
suppressed NO synthesis and aggravated liver microcir-
culation disturbances, suggesting that NO could stabilize 
hepatic microcirculation.126 A prior study reported that NO 
donor maintained the normal operation of the hepatic vas-
cular system to prevent congestion, thus effectively blocking 
AIH in mice.115 In addition, MMP inhibitor was confirmed 
to significantly attenuate APAP-induced parenchymal and 
microvascular injury, which implied MMP as a promising 
intervention target.75 Elevated catecholamine levels contrib-
ute to AIH pathophysiology by impairing hepatic perfusion. 
Alpha(1)-adrenoceptor antagonists have also been shown to 
improve hepatic microvascular dysfunction by significantly 
reducing hepatic erythrocyte accumulation, thereby effec-
tively alleviating APAP-induced liver injury.116 These evi-
dences strongly indicate that microcirculatory disturbance 
plays a key role in AIH pathogenesis, and its prevention may 
be a critical therapeutic approach. In particular, it has been 
reported that the anticoagulant effect of heparin can allevi-
ate AIH in the early stage, that is, 6 h after APAP treatment.78 
Another anticoagulant, dabigatran, also showed the same 
curative effects on AIH. Despite the benefits of anticoagu-
lant treatment with dabigatran, liver injury was significantly 
aggravated 24 h after APAP administration due to a decrease 
in hepatocyte proliferation.117 Therefore, the benefits of anti-
coagulant therapy remains uncertain, which need to be con-
firmed through in-depth studies in the future.

Summary and outlook

With the widespread use of APAP, AIH has gradually become 
a significant public health problem. NAC is used clinically 
as the primary antidote to relieve APAP-induced oxidative 
stress. The molecular mechanisms of AIH are rather com-
plex and involve a series of cellular events, including liver 
metabolism, mitochondrial oxidative stress and dysfunction, 
sterile inflammation, ERS, autophagy, and microcircula-
tion dysfunction. To date, many bioactive substances have 
been confirmed to be effective in preventing AIH by target-
ing the key nodes in these biological processes (Table 1).  

These bioactive substances can be exploited as potential 
drugs to develop the most suitable therapeutics for AIH. It 
should be emphasized that mitochondrial oxidative stress 
and dysfunction are the major cellular events associated with 
AIH. Therefore, targeted intervention against mitochon-
drial oxidative stress and dysfunction may be a promising 
therapeutic strategy. In addition to mitochondrial oxidative 
stress and dysfunction, other cellular events may also be 
potential therapeutic targets for AIH. This study shows that 
treatments targeting hepatic metabolism can provide early 
interventions for AIH. However, follow-up clinical studies 
are needed to further explore the clinical therapeutic effects 
and potential adverse reactions of these drugs. Treatments 
targeting ERS or microcirculation disorders can also prevent 
AIH to some extent, but the protective mechanisms need to 
be further clarified in future clinical studies. Notably, sterile 
inflammation and autophagy play distinct roles in different 
stages of AIH, making them contradictory regulators of AIH. 
Therapeutic strategies targeting these two cellular events 
may ultimately be ineffective. In conclusion, in the future, 
we need to conduct more research to further clarify the exact 
role of these cell events in AIH to make later-stage treatments 
possible in clinics.
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