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Introduction

The liver is one of the most important glands in the human 
body, and its primary function is material metabolism. It 
participates in a series of physiological processes of the 
human body, such as the metabolism of lipid,1 fatty acid, 
and glucose,2 the secretion of immune response,3 and the 
detoxification of growth factors4 and cytokines.5 According 
to the GLOBOCAN 2020 database statistics, approximately 
905 million people worldwide suffer from chronic liver dis-
eases, and approximately 830 million people die from liver 
diseases. The most common liver diseases include viral hep-
atitis, alcoholic liver disease (ALD), metabolic-associated 
fatty liver disease (MAFLD), liver cirrhosis and hepatocellu-
lar carcinoma (HCC).6 In February 2022, the National Cancer 
Center released the latest issue of national cancer statistics, 
approximately 388 million people suffer from liver diseases 
in China.7 Follistatin-like protein 1 (FSTL1) is also known as 

transforming growth factor-beta inducible protein (TSC-36) 
or follistatin-related protein (FRP).8 Studies have revealed 
that FSTL1 plays an important role in cardiovascular dis-
eases, obesity, endocrine diseases, autoimmune diseases, and 
fibrous system diseases.9–12 It is closely related to the path-
ological type of tumor, the degree of malignancy, and the 
degree of inflammation in inflammatory diseases. However, 
studies on its mechanism in liver diseases such as liver cir-
rhosis and cancer are scarce. This article reviews the relation-
ship between FSTL1 and liver diseases.

FSTL1 overview

FSTL1 structure

FSTL1 is a secretory extracellular glycoprotein which is 
originally isolated in mouse osteoblastic MC3T3E1 cells, 
and is upregulated upon transforming growth factor-beta 
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Impact statement

Liver diseases are major global health challenges, 
and the prognosis of end-stage liver diseases 
remains poor. Persistent inflammatory reactions 
and substantial damage eventually lead to liver 
fibrosis and cirrhosis when liver diseases progress 
to the chronic phase. There are no ideal therapies 
at present. In this review, we summarized the role 
and mechanism of Follistatin-like protein 1 (FSTL1) 
in liver diseases. FSTL1 plays a key role in cell 
survival, proliferation, differentiation, and migra-
tion, as well as the regulation of inflammation and 
immunity. However, studies on its mechanism in 
liver diseases such as liver fibrosis and cancer are 
scarce. Therefore, we present this review while try-
ing to show the role of FSTL1 in liver diseases more 
intensively. With further research, FSTL1 will be a 
promising target and potential marker for treating 
liver diseases in the future.
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1 (TGF-β1) stimulation.13,14 It is a member of the secretory 
protein acidic, rich in the cysteine (SPARC) family, and is 
expressed in various human tissues.8 Similar to other mem-
bers of the family, FSTL1 has a follicular statin domain and 
an extracellular calcium (EC) domain.15 The human FSTL1 
gene is located on the long arm of chromosome 3 (3q13 and 
33) and contains 11 exons, which can encode FSTL1 protein 
and microRNA-198 after transcription.12 FSTL1 protein con-
sists of 308 amino acids, and its amino-terminal comprises 
12 amino acid residues. FSTL1 has two O-glycosylation sites 
and four N-glycosylation sites, and its molecular weight is 
35 kDa. More than two-thirds of the common amino acid 
sequences between FSTL1 and follistatin family members 
are identical. Like other family members, FSTL1 has an extra-
cellular calcium-binding region and follistatin-like domain 
(FS). Its first EF-hand in the EC domain contains one fewer 
amino acid than those of other family members, which is a 
nonfunctional region. This may be why FSTL1 has different 
functions from the family in evolution.16 Furthermore, FSTL1 
has a von Willebrand C-type domain, which is involved in 
protein-protein interactions.

FSTL1 biological function

Although the biological function and mechanism of FSTL1 
are unclear, studies have found that it regulates many bio-
logical processes such as the regulation of embryonic organ 
tissue formation,17 cell proliferation, differentiation, apop-
tosis,18 the improvement of ischemia/reperfusion injury19 
(Figure 1). It plays a major role in many systemic diseases 
such as cardiovascular disease, obesity, rheumatoid arthri-
tis, and tissue fibrosis.20 In cardiovascular diseases such as 
heart failure and acute coronary syndrome (ACS), the FSTL1 
concentration in circulating blood increases.21 Increased 
serum FSTL1 is related to the mortality of ACS patients 
and the severity of chronic heart failure.22 Overexpressed 
FSTL1 can prevent extensive cardiac injury and abnormal 
vascular remodeling and offer protection and regenera-
tion, whereas the lack of FSTL1 aggravates cardiac injury.8 
FSTL1 plays dual roles in systemic autoimmune disease 
(SADS). It mainly plays an anti-inflammatory role in acute 
inflammation but has a pro-inflammatory effect in chronic 
diseases, which may result from the activation of various 

Figure 1.  The biological function and mechanism of FSTL1. Known signaling pathways that interact with FSTL1 are displayed in the schematic. Colored sections 
indicate known receptors. Gray components indicate unknown receptors. 
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signal pathways by FSTL1.23 In respiratory diseases, FSTL1 
is one of the proteins with the highest expression level in the 
sputum of asthmatic patients through proteomic analysis. 
The concentration of FSTL1 is negatively correlated with 
pulmonary function parameters and is positively correlated 
with airway remodeling indexes.24 The results of various 
studies on the expression of FSTL1 in various tumors vary. 
Compared with healthy tissues, the expression of FSTL1 in 
renal cell carcinoma,25 nasopharyngeal carcinoma,26 ovarian 
cancer, and endometrial carcinoma decreases.27 In contrast, it 
is upregulated in esophageal,28 colorectal,29 and brain tumor 
cells.30 FSTL1 may have different regulatory mechanisms 
and effects in various tumor types.

Association of FSTL1 with body mass index and 
fibrosis

A recent study suggested that FSTL1 levels were signifi-
cantly higher in overweight and obese subjects and corre-
lated with their body mass index (BMI) values.31 During the 
differentiation of preadipocytes (3T3L1) into adipocytes, the 
expression of FSTL1 was temporarily upregulated and then 
downregulated to its baseline level. The differentiation of 
3T3L1 cells can be prevented by blocking the initial peak of 
FSTL1 expression or maintaining a high level of FSTL1 in 
the medium.32 In tissues and organs, fibrosis is character-
ized by an increase in fibrous connective tissue and a rela-
tive decrease in parenchymal cells. Compared with healthy 
tissues, the expression of FSTL1 was higher in patients 
with idiopathic pulmonary fibrosis. The effect of FSTL1 on 
fibrosis may be because FSTL1 can inhibit the Smad1/5/8-
mediated BMP-4 signal transduction pathway, and stimu-
late the Smad2/3-mediated TGF-β1 signal transduction 
pathway, thereby destroying the balance of TGF-β/BMP.33 
During nephrectomy, high-level expressions of circulating 
FSTL1 can inhibit the formation of renal fibrosis by reduc-
ing the expression of collagen-I, collagen-III, TGF-β1, and 
connective tissue growth factor. However, similar to its role 
in inflammation, the effect of FSTL1 on fibrosis progresses to 
exhibit the opposite effect.34

FSTL1 and liver diseases

FSTL1 is involved in many physiological and pathological 
processes and affects the occurrence and development of 
various diseases. Furthermore, FSTL1 plays a major role 
in liver diseases, especially hepatic fibrosis and liver neo-
plasms, and serves as a biomarker and therapeutic target for 
these diseases (Figure 2). Therefore, FSTL1 may be helpful 
for the diagnosis and treatment of liver diseases in the future.

Chronic liver diseases

Non-neoplastic chronic liver diseases include ALD, MAFLD, 
viral hepatitis, liver cirrhosis, and autoimmune liver dis-
ease. ALD, MAFLD, and hepatitis C virus (HCV) infections 
are more common in North America and Europe, whereas 
hepatitis B virus (HBV) infection, HCV, MAFLD, and ALD 
are more common in Asia and Africa.35

Non-alcoholic fatty liver disease (NAFLD) is one of the 
most common chronic liver diseases worldwide. International 

experts reached a consensus that the disease abbreviation 
should be changed from NAFLD to MAFLD.36–40 Despite 
no a clear worldwide consensus, global multi-stakeholder 
and some associations have endorsed the new terminology, 
including the Asian Pacific Association for the Study of the 
Liver (APASL), the Latin American Association for the Study 
of the Liver (ALEH), the Chinese Society of Hepatology, the 
Arabic Association for the Study of Diabetes and Metabolism, 
and societies and clinicians in the Middle East and North 
Africa (MENA).41 Its pathological changes include non-
alcoholic steatohepatitis (NASH) and steatosis, which are 
characterized by fat accumulation, hepatocyte swelling, and 
the development of inflammation and/or fibrosis.42 Its main 
characteristics are insulin resistance and abnormal lipid 
metabolism.43 Severe steatosis can cause liver failure and 
even hepatocyte necrosis. Studies have demonstrated that 
in patients with HCV and steatosis, FSTL1 is significantly 
increased in the late and early stages of fibrosis, but there is 
an insignificant difference in patients with simple HCV infec-
tion. The increased expression of FSTL1 may be an important 
marker of poor prognosis.44

For viral hepatitis, HBV and HCV are the most common 
viral infections. HBV or HCV infection is an important path-
ogen of liver cirrhosis, and HCC. Zhang and Wang45 found 
that HBV infection may upregulate the expression of FSTL, 
but in HBV infected cells with annular RNAcirc-0004812 
knockout, the expression of FSTL1 decreases, whereas over-
expressed circ-0004812 can promote the expression of FSTL1 
by inhibiting miR-1287-5p, indicating that circ-0004812/
miR-1287-5p/FSTL1 axis can regulate HBV-induced immu-
nosuppression and can be used as a potential therapeutic 
target for the treatment of chronic hepatitis B (CHB). Fatty 
liver is the most common histological feature in chronic 
hepatitis C. Compared with HCV patients without steato-
sis, a steatosis-enriched gene set associated with advanced 
fibrosis, typically FSTL1, is identified in the biopsies of HCV 
patients with steatosis. Patients with advanced fibrosis had 
higher Serum FSTL1 levels than those with steatosis (versus 
those without). Liver FSTL1 mRNA levels were also elevated 
in murine chronic liver disease models.46

Liver cirrhosis

Liver cirrhosis, which seriously affects human health, is a 
healing reaction caused by chronic liver injury resulting from 
various causes.47 It may develop into liver cirrhosis and, if 
not prevented, may lead to liver cancer and liver failure.48 
The common causes of liver cirrhosis include viral infec-
tion, ethanol, parasite infection, drug or chemical poison, 
and autoimmune liver disease. These causes lead to chronic 
inflammation of the liver, followed by abnormal healing 
response.49

The activation of hepatic stellate cells (HSC) and exces-
sive deposition of extracellular matrix (ECM) are two major 
processes in developing hepatic fibrosis.50 HSCs are liver-
specific mesenchymal cells in the peri-sinusoidal space of the 
liver. In normal liver, hepatic stellate cells contain many lipid 
droplets. HSC stores vitamin A in the form of retinol and 
expresses glial fibrillary acidic protein (GFAP) in a resting 
state.51 Under the stimulation of long-term liver pathogenic 
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factors, hepatic stellate cells are activated and transdiffer-
entiated into myofibroblasts.49 It is characterized by the up-
regulation of a-smooth muscle actin (a-SMA), desmin, and 
type I collagen, as well as the production of a large number 
of extracellular matrix and fibrotic cytokines.52 Therefore, 
hepatic stellate cells play a crucial role in the regression of 
hepatic fibrosis.

The activation of the TGF-β signal transduction pathway 
plays a central role in the regulation of hepatic fibrosis.34 
TGF-β1 is the most widely and most intensely investi-
gated isoform in liver fibrogenesis. The canonical signal-
ing pathway is initiated via phosphorylation of R-SMADs, 
that is, SMAD2 and SMAD3. The non-canonical SMAD-
independent pathways are activated through MAPK, 

mTOR, PI3K/AKT, and Rho/GTPase pathways. The study 
found that TGF-β can promote the synthesis of various col-
lagen components and tissue metalloprotein inhibitors by 
HSC, and inhibit the synthesis of matrix metalloprotein-
ases, causing the accumulation of extracellular matrix and 
leading to the occurrence of cirrhosis.53 TGF-β is a critical 
cytokine triggering canonical and non-canonical intracellu-
lar pathways leading to activated HSC, macrophages with 
variant polarization, and liver sinusoidal endothelial cell 
capillarization.54 TGF-β was reported to induce glycolysis, 
and thus can be considered a driver of metabolic reprogram-
ming in the activation process of HSC. Furthermore, reactive 
oxygen species (ROS) plays crucial roles in liver fibrosis and 
HSC activation, and TGF-β augments mitochondrial ROS 

Figure 2.  Upon various types of chronic injury, including that caused by alcohol, viral, and non-alcoholic steatohepatitis (NASH), hepatic stellate cells (HSCs) are 
activated, the latter of which secrete abundant extracellular proteins that contribute to liver fibrosis. Untreated or relapsed fibrosis progresses to liver cirrhosis, which 
may eventually develop into liver cancer. 
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production by activating the mTOR pathway and reducing 
the activity of complex III and IV.55 In addition, SMAD7 is an 
effective inhibitor of TGF-β signaling and is a key regulator 
of TGF-β-induced fibrogenesis.56

FSTL1 can regulate hepatic fibrosis by affecting the TGF-β 
signal transduction pathway. FSTL1 is significantly upregu-
lated in HSC activated by TGF-β1 stimulation, whereas the 
knockout of FSTL1 can inhibit the phosphorylation of Smad3 
in the TGF-β 1/Smad3 signal pathway, thereby attenuating 
the activation of HSCs and alleviating liver fibrosis. The plas-
mid verification experiment of MiR29a target gene 3’UTR 
demonstrated that FSTL1 is the direct target of miR29a. 
There may be a TGF-β 1-miR29a-FSTL1 regulatory loop to 
regulate hepatic fibrosis through the TGF-β 1/Smad2/JNK 
signal pathway. FSTL1 can regulate the fibrosis degree of 
hepatic stellate cells and hepatic fibrosis induced by CCL4 
by inhibiting the expression of miR29a, whereas blocking 
FSTL1 signal transduction with neutralizing antibody can 
upregulate the expression of miR29a in CCL4-treated mice.57

Xu et al.57 and other studies58 have demonstrated that 
FSTL1 is significantly upregulated in human and mouse 
activated HSCs and liver fibrosis. 4-Methyl umbrella ketone 
(4MU) can downregulate the expression of FSTL1 in CCL4-
induced liver fibrosis model mice, thereby inhibiting hya-
luronic acid (HA) deposition and reducing fiber formation 
and collagen deposition. In the study of the mechanism by 
which FSTL1 regulates hepatic fibrosis, it was found that 
FSTL1 regulates hepatic fibrosis by affecting the Smad2/c-
Jun N-terminal kinase (JNK) signal transduction pathway. In 
the mice with half-fold deletion of FSTL1 or the use of FSTL1 
neutralizing antibody to block the function of FSTL1 in CCL4-
induced liver fibrosis mice, Smad2/JNK signal pathway can 
be inhibited and, simultaneously, the activation of HSCs can 
also be inhibited, ECM deposition can be decreased, and the 
degree of liver fibrosis can be alleviated. Furthermore, FSTL1 
may affect the senescence and apoptosis of HSCs through 
the PI3K-AKT and MAPK signaling pathways, thereby 
affecting liver fibrosis.13 Rao’s group demonstrated the role 
of macrophage FSTL1 in liver fibrosis. Macrophage FSTL1 
promotes the progression of liver fibrosis by inducing M1 
polarization and inflammation based on the intracellular 
PKM2 reprogramming function of macrophages.59

Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is one of the highest inci-
dences of malignant tumors worldwide and is also a cancer 
type with extremely high mortality.60 In 2020, liver cancer 
accounted for 4.7% of new cancer cases and 8.3% of deaths.61 
Nearly half of the world’s new cases and deaths occur in 
China, seriously threatening people’s health and quality of life. 
The most common type of liver neoplasms is HCC, accounting 
for 80–90% of cases. HCC usually develops from chronic liver 
diseases.60 Liver transplantation is the most effective treatment 
for liver cancer, but the overall survival rate remains poor.62

Recently, it was found that the occurrence and develop-
ment of HCC are closely related to the expression of FSTL1. 
Yang et al.63 discovered an abnormal increase of FSTL1 pro-
tein in 172 cases of HCC (81.9%). FSTL1 expression increases 
with an increase in tumor size, Tumor Node Metastasis 

stage, portal vein invasion, and intrahepatic metastasis. 
Furthermore, the overall survival rate of patients was nega-
tively correlated with the expression level of FSTL1, and a 
high expression of FSTL1 is identified as an indicator of a 
poor prognosis for HCC. FSTL1 inhibits tumor cell apoptosis 
by the over-activation of protein kinase B (AKT)/glycogen 
synthase kinase (GSK-3β) signal pathway, which increases 
the expression of Bcl-2 and downregulates the expression of 
Bcl-2-related X protein (BAX and Bim). Loh et al.64 found that 
treating HCC cells and 3D organs derived from patients with 
recombinant FSTL1 or conditioned medium collected from 
HSC or cells overexpressing FSTL1 can promote growth and 
metastasis HCC. FSTL1 binds to the TLR4 receptor, which 
leads to the activation of AKT/mTOR/4EBP1 signal path-
way. In a preclinical mouse model, inhibiting FSTL1 can 
reduce the malignancy and metastasis of HCC, renders HCC 
tumor sensitive to sorafenib, prolongs survival time, and 
eradicates Tumor-initiating cells subsets. FSTL1 is a valu-
able new diagnostic, prognostic biomarker and therapeutic 
target for HCC.

Cancer-associated fibroblasts

Normal fibroblasts (NFs) are resting mesenchymal cells bur-
ied in interstitial fibers. They can be activated environment-
dependent during wound healing, tissue inflammation, and 
organ fibrosis, and apoptosis occurs when the stimulation 
is removed. The HSC in the liver is activated into myofibro-
blasts under the stimulation of chronic injury, which pro-
motes the occurrence and development of hepatic fibrosis 
and even liver tumors.65 Cancer-associated fibroblasts (CAF) 
can promote the occurrence and development of tumor cells, 
which is an important part of the tumor microenvironment 
and plays a role by secreting various growth factors and 
cytokines.66 It can cause malignant tumors and participate in 
their development. For HCC, liver cirrhosis is carcinogenic, 
and CAF’s involvement in carcinogenesis is supported.67 
FSTL1 expression in healthy liver tissues is very low but sig-
nificantly increased in activated HSCs cells and liver fibrosis 
tissues. In cirrhotic liver tissues, the expression of FSTL1 is 
co-located with the expression of α-SMA and is higher than 
that in normal liver tissues, indicating that FSTL1 plays a 
crucial role in activating HSC.13 Studies have revealed that 
fibroblasts, especially CAF in the tumor matrix, are the main 
sources of FSTL1. There is a significant correlation between 
FSTL1 and CAF features of HCC. Recently, CAF has received 
increasing attention as a new target for anticancer therapy.

Concluding remarks

Persistent inflammatory reactions and substantial damage 
eventually lead to liver fibrosis and cirrhosis when liver dis-
eases progress to the chronic phase. Chronic hepatocyte loss 
occurs in chronic liver disease of any etiology and is related 
to HSC activation and abnormal liver microenvironment.68 
The inhibition of HSC activation is considered an effec-
tive method to alleviate the progression of liver cirrhosis. 
Considering the clinical correlation between cholangiopa-
thies and liver diseases, we conducted literature search in 
NCBI PubMed and other databases with keywords related 
to biliary diseases, such as cholestatic liver diseases, primary 
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sclerosing cholangitis, primary biliary cholangitis, biliary 
atresia, or cholangiocarcinoma. None of these diseases were 
reported to be related to FSTL1 as of the submission of 
this review. We suppose this might be a novel direction for 
researchers.

FSTL1 is a secreted glycoprotein whose function varies in 
response to pathological states. Studies have demonstrated 
that the up-regulation of FSTL1 promotes the development 
and progression of chronic liver diseases, especially liver cir-
rhosis and HCC. However, the role and mechanism of HSC 
FSTL1 in the process of liver cirrhosis evolving into HCC 
require further investigation. With further research, FSTL1 
will be a promising target and potential marker for treating 
liver diseases in the future.
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