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Introduction

Chemotherapeutic agents have a toxic effect on cells that 
have active replication such as cancer cells. However, they 
adversely also affect proliferating somatic cells. For this 
reason, chemotherapeutics also have side effects on normal 
cells.1 Cytotoxic drug–related nephrotoxicity is among the 
most frequently observed side effects of chemotherapy.2 
Although the division rate of kidney cells is not high, they are 
highly susceptible to toxic damage as they encounter a high 
blood flow, and they have the capacity to concentrate tox-
ins.3 Among drugs that most frequently cause nephrotoxicity 

are antimetabolites, alkylating drugs, and anthracyclines.4 
Cyclophosphamide (CP) is a highly potent, nitrogen mustard-
type alkylating cytotoxic drug that is prevalently employed 
in clinics in the therapy of cancer and some other diseases.5 
CP is mostly metabolized in the liver to phosphoramide mus-
tard and acrolein (ACR).6 CP is associated with toxicities such 
as nephrotoxicity,7 lung toxicity,8 cardiotoxicity,9 and hepato-
toxicity.10 It is stated that ACR causes toxicity by producing 
high amounts of reactive oxygen species (ROS) and interfer-
ing with the antioxidant defense mechanism.11

Nuclear factor E2–related factor 2 (Nrf2), a transcrip-
tion factor, is found with its inhibitor known as Kelch-like 
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Abstract
Phenethyl isothiocyanate (PEITC), a secondary metabolite in Cruciferous plants, 
exerts chemopreventive and antioxidant effects. However, its therapeutic potential 
in cyclophosphamide (CP)-induced nephrotoxicity is not clear. So, we focused 
to research on the effect of PEITC against renal toxicity caused by CP and its 
relationship to the Nrf2 signaling mechanism. Thirty female Wistar albino rats 
were allocated to three groups: control (n = 10), CP (n = 10), and PEITC-pretreated 
group (150 µmol/kg b.w. orally; n = 10). The antioxidant enzyme activities and levels 
of malondialdehyde (MDA), sirtuin 1 (SIRT1), glutathione-S-transferase (GST), 
nuclear factor E2–related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), serum 
urea, and creatinine (Cr) were measured. In the CP group, serum urea and Cr, MDA, 
and NF-κB levels have risen, and the activities of antioxidant enzymes and SIRT1, 
Nrf2, and GST levels have reduced significantly (P < 0.05). PEITC diminished 
levels of Cr, urea, MDA, and NF-κB while it enhanced antioxidant enzyme activities 
and GST, Nrf2, and SIRT1 levels significantly (P < 0.05). Pretreatment with PEITC 
ameliorated kidney tissue injury. The renal protective effect of the PEITC was 
supported by the histological analysis of the kidney. PEITC prevented CP-induced 
nephrotoxicity by decreasing oxidative damage through Nrf2 and SIRT1 activation 
and NF-κB inhibition. Therefore, we have suggested that PEITC may be a useful 
agent for protection against CP-induced renal injury.
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Impact statement

Cancer treatment involves administering various 
toxic chemicals to eliminate cancer cells. The tar-
get organs of chemotherapeutics are the kidneys 
and the liver. Kidney is the most commonly affected 
organ in cyclophosphamide (CP)-related toxicity. 
Food supplements are an important part of can-
cer therapy. Phytochemicals have been extensively 
studied because they are easily available and have 
fewer side effects. Phenethyl isothiocyanate (PEITC) 
has been shown to have chemopreventive and anti-
oxidant effects in various experimental models. The 
role of PEITC has not previously been studied in 
CP-induced kidney injury. We studied the benefi-
cial effects of PEITC on CP-induced renal injury. We 
proved that pretreatment with PEITC prevented 
renal dysfunction and tissue injury through nuclear 
factor E2–related factor 2 (Nrf2), sirtuin 1 (SIRT1), 
and nuclear factor kappa B (NF-κB). Our study is the 
first to provide data regarding this subject and will 
provide insights of development of phytochemicals 
as an adjunct treatment in cancer patients.
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epichlorohydrin-associated protein 1 or INrf2 in physiologi-
cal conditions. When oxidative stress increases, Nrf2 sepa-
rates from INrf2, locates in the nucleus, and then activates 
the antioxidant response element.12 Its activation leads to 
increased levels of antioxidant and phase II detoxifying 
enzymes that eliminate toxic reactive by-products formed in 
xenobiotic metabolism.13,14

Nrf2 activation in the presence of ROS causes an increased 
expression of sirtuin 1 (SIRT1) and activators.15 SIRT1 is the 
most researched among the sirtuins, a member of NAD+-
dependent protein deacetylases, which is demonstrated to 
regulate the inflammatory, stress response, apoptosis, and 
energy metabolism.16–18 SIRT1 inhibits inflammation through 
deacetylation of the p65 subunit of the nuclear factor kappa 
B (NF-κB) and prevents the synthesis of other inflamma-
tory factors.19 Phenethyl isothiocyanate (PEITC) is a phyto-
chemical of the Cruciferae family and has been declared to 
exert antioxidant and chemopreventive effects through Nrf2 
activation.20 We assessed the potential preventive effect of 
PEITC on CP-induced nephrotoxicity via the Nrf2/SIRT1 
pathways.

Materials and methods

Experimental animals and design

We studied in compliance with the “Ethical Guidelines 
for Animal Use” after receiving approval from the Local 
Experimental Animals Ethics Committee of the İnönü 
University (decision date: 25 March 2019 and number: 2018/
A-48). The rats were accommodated under a 12-h light/dark 
period (22°C–24°C) and were fed ad libitum and tap water.

The study included 30 female Wistar albino rats (6–8 weeks 
old, 150–250 g weight) and they were randomly separated 
into three groups (10 rats each): In the control group (C), 
rats received saline daily for seven days by gavage; in the 
second group (CP), rats have been injected single-dose CP 
(150 mg/kg) intraperitoneally; and the rats in the third group 
(CP + PEITC) received PEITC (150 µmol/kg; Sigma-Aldrich) 
daily for one week by gavage followed by CP injection.

Sample collection

The day following the CP injection, blood was collected 
under xylazine/ketamine anesthesia and it was centrifuged 
at 2000g for 10 min. Serum creatinine (Cr) and urea levels 
were determined. One of the kidneys was kept in 10% for-
maldehyde until histopathological examinations. The other 
kidney was homogenized in phosphate buffer (50 mM, pH 
7.4), centrifuged at 15,000g and 4°C for 15 min, and used 
for biochemical analyses. Nuclear extracts were prepared 
using a nuclear extraction kit (Abcam). Hybrid Multi-Mode 
Microplate Reader (Biotek Synergy H1M, USA) was used for 
biochemical analyses.

Biochemical analyses

Protein quantification was performed by the Bradford 
method.21 Kidney function was evaluated by the determina-
tion of serum levels of Cr and urea with Creatinine ELISA 
kit (SunRed Biotechnology Company) and Urea (blood 
urea nitrogen [BUN]) Colorimetric Assay Kit (Elabscience), 

respectively. Results were expressed as milligrams per deci-
liter for Cr and millimoles per liter for urea.

Assays of oxidative stress parameters

Malondialdehyde (MDA) (nmol/g wet tissue) measure-
ment was performed with the procedure of Uchiyama and 
Mihara.22 Superoxide dismutase (SOD) activity (U/mg pro-
tein) by the procedure of Sun et al.,23 catalase (CAT) activity 
(U/mg protein) by the method of Aebi,24 and glutathione 
peroxidase (GPx) activity (U/mg protein) by the method of 
Paglia and Valentine25 were performed.

Assays of GST, NF-κB, Nrf2, and SIRT1 levels

Glutathione-S-transferase (GST) and SIRT1 levels were meas-
ured by rat ELISA kits (Bioassay Technology Laboratory) 
in the tissue supernatant. Nrf2 Transcription Factor assay 
kit (Abcam) and NF-κB p65 ELISA kit (Elabscience) were 
used for the measurement of nuclear Nrf2 (%DNA bind-
ing activity) and NF-κB (pg/mg protein) levels respectively.

Histopathological evaluation

The kidneys were fixed in formalin (10%) and then embedded 
in paraffin. The slices (5-µm-thick cut) were stained with hema-
toxylin and eosin. They were evaluated regarding vascular 
congestion, mononuclear cell infiltration, edema, hemorrhage, 
glomerular degeneration, sloughing into the lumen in tubule 
cells, and swelling in tubule cells. The microscopic alterations 
for each criterion were defined as none (0), mild (1), moderate 
(2), and severe (3). Leica DFC 280 light microscope and the 
Leica Q Win Image Analysis System were used for analysis.

Statistical analysis

The IBM SPSS Statistics 22.0 for Windows package program 
was used for statistical analysis. The results were expressed 
as mean and standard deviation (SD). For testing normal-
ity, the Shapiro–Wilk test was used. Analysis of variance 
(ANOVA) was used in the intergroup comparisons among 
parametric tests, and pairwise comparisons were made 
using the least significant difference (LSD) test. P < 0.05 was 
accepted as statistically significant.

The statistical analysis of the histological examinations 
was performed with the SPSS and MedCalc programs. The 
non-parametric Kruskal–Wallis ANOVA test followed by 
the Mann–Whitney U-test was performed. Results were pre-
sented as mean ± standard error (SE), and P < 0.0001 was 
accepted as statistically significant.

Results

PEITC inhibits CP-induced kidney dysfunction

CP increased serum levels of Cr and urea significantly. 
Pretreatment with PEITC significantly diminished kidney 
damage by reducing Cr and urea levels (P < 0.05) (Figure 1).

PEITC alleviates CP-induced oxidative injury

The MDA levels were markedly increased in the CP-induced 
group (P < 0.05). Pre-administration of PEITC caused a 
reduction in MDA content compared to animals intoxicated 
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with CP significantly (P < 0.05) (Figure 2). CP exposure 
caused a reduction in SOD, GPx, and CAT activities. PEITC 
pretreatment before CP administration raised significantly 
the activities of SOD, GPx, and CAT (P < 0.05) (Figure 2).

PEITC pretreatment affects the levels of GST, 
SIRT1, NF-κB, and Nrf2

The GST level was reduced in the CP group significantly 
(P < 0.05). PEITC given led to a significantly increased 

level of GST according to CP-induced rats (P < 0.05) 
(Figure 3). The SIRT1 level was reduced in the CP-induced 
group significantly compared to the control group. PEITC 
led to a significantly increased level of SIRT1 compared 
to the CP-induced rats (P < 0.05) (Figure 3). Nrf2 activ-
ity was lessened after CP administration significantly 
(P < 0.05). PEITC treatment showed a significant eleva-
tion in Nrf2 activity by comparison with the CP-induced 
group (P < 0.05) (Figure 3). The level of NF-κB was sig-
nificantly elevated in the CP group compared to control. 

Figure 1.  Effect of PEITC on kidney function markers against CP-induced kidney injury. 
Data are displayed as mean ± SD.
aP < 0.05 compared to control; bP < 0.05 compared to CP.

Figure 2.  Effect of PEITC on oxidative stress parameters against CP-induced kidney injury. 
Data are displayed as mean ± SD.
aP < 0.05 compared to control; bP < 0.05 compared to CP.
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Pretreatment of rats with PEITC significantly reduced 
NF-κB levels (P < 0.05) (Figure 3).

PEITC reduces histopathological changes evoked 
by CP-induced injury

The pathologic analyses of the samples showed that the con-
trol group had a normal histological structure of renal tubule 
and glomerular cells (Figure 4(A) and (B)). In the CP group, 
vascular congestion (Figure 5(A) and (B)), mononuclear cell 
infiltration (Figure 5(A), (C), and (D)), edema (Figure 5(B)), 
hemorrhage (Figure 5(D) and (F)), glomerular degeneration 
(Figure 5(A) to (C), (E)), tubule cell shedding (Figure 5(E)), 
and swelling of tubule cells (Figure 5(F)) were observed. 
In the CP + PEITC group, histopathological damage in the 
kidney tissue was significantly reduced. A slight (mild) 
mononuclear cell infiltration (Figure 6(A) and (C)) and hem-
orrhage (Figure 6(C)) were observed. (P < 0.001). The renal 
damage score of the groups was control group (0.57 ± 0.11a), 
CP group (1.83 ± 0.14b), and CP + PEITC group (1.07 ± 0.09c), 
respectively. (Mean ± SEM n = 7; the lowercase letters (a, b, c) 
indicate the differences between the groups, P < 0.0001).

Discussion

Drug-induced nephrotoxicity is a common side effect of can-
cer chemotherapeutics. Perfusion abnormalities, excess pro-
duction of ROS, and inflammation are the major responsible 
mechanisms that contribute to drug-induced renal damage.26 
CP causes the generation of ROS, membrane lipid peroxida-
tion, protein denaturation, and DNA damage which results 
in cellular damage and necrosis.27,28 The reason for toxicity 
is its toxic metabolites such as ACR that increase the amount 
of free radicals and disrupt the antioxidant system.29 Studies 
are investigating the efficacy of protecting effects of some 
natural products against nephrotoxicity induced by CP.30–33 
PEITC is a secondary metabolite in cruciferous vegetables, 
which is produced through hydrolysis of gluconasturtiin by 
myrosinase.34 It is reported that PEITC has antioxidant and 
anti-inflammatory effects.35 But there has been no report on 
the use of PEITC on CP-induced renal toxicity yet. This is the 
first study evaluating the efficacy and mechanism of action 
of PEITC in preventing CP-induced nephrotoxicity.

Mechanisms that lead to drug-induced nephrotoxicity 
include urine sediment anomalies, electrolyte imbalance, 

Figure 3.  Effects of PEITC on the activity of Nrf2 and levels of GST, SIRT1, and NF-κB against CP-induced kidney injury. 
Data are displayed as mean ± SD.
aP < 0.05 compared to control; bP < 0.05 compared to CP.
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and a decrease in the rate of glomerular filtration.36 In our 
research, Cr and urea levels were elevated in the rats that 
were administered CP according to the control group. This 
difference among the groups may be attributed to renal glo-
merular and tubular damage. The treatment with PEITC 
reduced serum Cr and urea levels. Our histopathologi-
cal results supported that PEITC decreased kidney injury. 
Therefore, we have clearly shown that PEITC is effective in 
preventing CP-induced nephrotoxicity in rats.

In this investigation, CP administration led to an ele-
vation of MDA and a reduction in GPx, SOD, and CAT, 
together with a significant decrease in the GST level. Our 
results showed that PEITC protected the adverse effects of 
CP on renal functions. The reversal of kidney injury seems 
to be associated with decreased MDA and elevated antioxi-
dant enzyme levels in rats which are pretreated with PEITC. 
Nrf2 is a principal transcriptional factor, and it actuates by 
oxidative stimuli caused to cell damage and inflammation.37 
Thus, the activation of Nrf2 signaling is accepted as a signifi-
cant way of increasing antioxidant defense and protecting 
the cell. In our study, we showed that PEITC pretreatment 
activated the Nrf2 pathway and also increased antioxidant 
enzyme activities. Furthermore, PEITC diminished the MDA 
levels remarkably checked with the CP group. Thus, our data 
are the proof of concept that Nrf2 activation causes activa-
tion of antioxidant and cytoprotective pathways.

It was shown that numerous natural products with anti-
oxidant attributes have favorable effects in repairing nephro-
toxicity through Nrf2 activation in various kidney injury 
models.38 Fan et al.39 reported that iso-orientin showed a 
protective effect through the SIRT1/SIRT6/Nrf2 pathway 
against Cisplatin-induced nephrotoxicity. In addition, it was 
presented that pyrroloquinoline quinone reduced oxidative 
kidney damage in CP-induced nephrotoxicity through Nrf2 
activation.40 Some studies have demonstrated that PEITC 
has a cytoprotective effect via Nrf2 activation.41,42 The results 
of our study pointed out that CP injection led to reducing 

the Nrf2 activity and it was significantly increased by PEITC 
administration.

Our study represented that SIRT1 and Nrf2 activation 
and NF-κB inhibition contribute to the preventive efficacy 
of PEITC against CP-induced renal toxicity. SIRT1 regulates 
various signal pathways and assists in the defense against 
oxidative stress.43 SIRT1 may also prevent inflammation by 
downregulating NF-κB activity.44 A study by Jung et al.45 also 
showed that NF-κB p65 acetylation is regulated through 
SIRT1, and they argued that SIRT1 activation may be a prob-
able target in repairing cisplatin-induced kidney damage. 
In addition, Tian et al.46 informed that toxicity caused by CP 
was prevented via regulating the Nrf2/HO-1 and TLR4/
NF-κB signaling. We showed that in the CP-treated group, 
Nrf2 activation and SIRT1 levels decreased and NF-κB levels 
increased, whereas PEITC pretreatment caused the activa-
tion of Nrf2 and led to an elevation in the SIRT1 levels and 
inhibition of NF-κB.

Our data demonstrated that PEITC was able to reduce the 
CP-induced kidney damage by activation of Nrf2 signaling. 
Based on data, we can state that activation of Nrf2 and SIRT1 
pathways, and NF-κB inhibition may be the target mecha-
nisms for CP-induced nephrotoxicity and are prevented by 
PEITC pretreatment. The protective effects of PEITC on other 
organ systems such as lungs, liver, and bone marrow, which 
are possible sites of adverse effects of chemotherapeutics, 
should also be investigated. PEITC can be a useful thera-
peutic tool for cancer patients to prevent the adverse effects 
of chemotherapeutics. Furthermore, concomitant or post-
exposure treatment with PEITC should also be investigated 
with further experimental studies.

Conclusions

According to our findings, PEITC administration may 
have useful and renoprotective effects on CP-induced kid-
ney damage. PEITC affected presumably the Nrf2/SIRT1 

Figure 4.  (A, B) Normal histological appearance of kidney tissue of control group (kidney tubules and glomeruli). (A) H&E, ×20 (bar = 100 µm) and (B) H&E, ×40 
(bar = 50 µm). 
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Figure 5.  (A to F) CP group. Vascular congestion (black star) (A, B), mononuclear cell infiltration (black arrows) (A, C, D), edema (white star) (B), hemorrhage 
(black thin arrows) (D, F), glomerular degeneration (A, B, C, E), spillage of tubule cells into its lumen (white arrows) (E), and swelling of tubule cells (F) were 
observed. (A) H&E, ×10 (bar = 200 µm), (B to D) H&E, ×20 (bar = 100 µm), and (E, F) H&E, ×40 (bar = 50 µm). 
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pathway and interfered with some events including oxida-
tive stress and inflammation processes in renal tissues.
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