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Introduction

Cancer is driven by different driver genes and is a complex 
disease. Some systemic cancer genomics projects have been 
used for cancer research, such as The Cancer Genome Atlas 
(TCGA),1 and International Cancer Genome Consortium 
(ICGC)2 have generated a lot of genomic data to provide a 
basis for cancer research. In biomedical research, identifying 
cancer drivers is one of the most important tasks. Identifying 
cancer drivers can help design better treatments for can-
cer patients. Research has shown that the occurrence and 
development of cancers are closely related to gene muta-
tions. Gene mutations have many different types. Normal 
cells become tumor cells after undergoing gene mutations, 
thereby promoting the development of cancer. For example, 
BRCA1 and AKT1 can cause breast cancer when they are 
mutated.3 Although gene mutations can cause cancer, not all 

gene mutations are related to cancer. Some mutations have 
nothing to do with cancer, which are called passenger muta-
tions.4 The mutations which can promote the occurrence and 
progression of cancer are driver mutations. The genes with 
driver mutation are considered as driver genes.5 But some 
genes with no mutations can promote the development of 
cancer, which are also considered as cancer driver genes. 
Not only coding genes are related to cancer, but non-coding 
genes also account for most of the genome, and they are also 
closely associated with cancer.

Around this biological research task, some methods of 
identifying driver genes have been developed. We have 
divided these methods into two main categories based on 
their characteristics: (1) mutation-based methods and (2) 
network-based methods. Because the gene mutation rate in 
tumor cells is significantly higher than in normal cells,6 the 
mutation-based methods identify cancer drivers by using 
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The complex mechanisms of cancer lead to dif-
ficulty in diagnosis and treatment. Coding and 
non-coding cancer drivers play crucial roles in the 
occurrence and progression of cancer. Therefore, 
we attempt to design a Network-based Method for 
identifying cancer Driver Genes based on node 
Control Centrality (NMDGCC). The results show 
that NMDGCC identifies a large number of coding 
and non-coding cancer drivers and has better per-
formance than existing methods. Our research can 
help precision medicine and provide better treat-
ment options for cancer patients.
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mutation characteristics and the network-based methods 
rely on the importance and influence of each gene to iden-
tify cancer drivers in different networks. In the mutation-
based approaches, CoMEt7 identifies cancer genes by testing 
the mutual exclusivity of genes. OncodriveFM8 detects 
driver genes by using the functional effect of mutated 
genes. DriverSub9 uses mutation data of genes through the 
subspace learning framework to identify cancer drivers. 
MutSigCV10 predicts driver genes by evaluating the signifi-
cance of mutations. DriverML11 detects cancer drivers by 
using the functional effect of mutations and a machine learn-
ing approach. CHASM12 predicts driver mutations by using 
a machine learning technique (random forest). WeSME13 
identifies driver genes by assessing the mutual exclusivity 
of mutations. HetRCNA14 identifies cancer drivers by using 
a matrix decomposition framework. However, because the 
mutation data is incomplete, the mutation-based methods 
often have limitations in the identification of cancer drivers.

The second type of network-based methods rely on indi-
cators such as the influence and importance of genes in the 
network to identify driver genes. DriverNet15 predicts can-
cer drivers by combining different omics data to evaluate 
the influence of mutations on the transcriptional network. 
MEMo16 uses mutation and network information to predict 
cancer drivers. TieDIE17 predicts cancer drivers by using net-
work diffusion. NetBox18 uses biological networks to detect 
cancer drivers. Tri-NMF19 uses an unsupervised learning 
model to predict cancer drivers. DawnRank20 applies the 
PageRank algorithm to the gene network for detecting driver 
genes. CBNA21 uses the controllability of complex networks 
to find critical nodes in the network, which are considered 
as cancer drivers. There is also a method that integrates 
expression data and mutation data of genes into a network 
to identify cancer drivers.22 However, the network-based 
methods often use a general network, not a specific network 
for certain cancer types. In addition, most of these methods 
often only identify coding cancer drivers.

Recently, with the widespread application of control the-
ory and the development of network science, many methods 
are developed to evaluate the importance of nodes in the 
network, such as control range23 and control centrality.24 The 
control range is the control ability exhibited by the node 
while maintaining the overall controllability of the network. 
However, control centrality is the maximum control abil-
ity that a node has in the network. Hence, control central-
ity better reflects the importance of nodes in the network 
than the control range. We design a Network-based Method 
for identifying cancer Driver Genes based on node Control 
Centrality24 (NMDGCC), which can identify both coding 
driver genes and non-coding cancer drivers. Based on micro-
RNAs (miRNAs), mRNAs, and transcription factors (TFs) 
expression data of breast invasive carcinoma (BRCA) from 
TCGA, a specific gene regulatory network for breast cancer 
is constructed. Then, we filter out those edges that are not in 
the protein–protein interaction (PPI) network,25 TargetScan,26 
and TransmiR.27 Based on the constructed network, we take 
advantage of the control centrality of complex network to 
identify the nodes with high control centrality values and 
consider them as candidate cancer drivers. Because some 
gene mutations are associated with the progression of cancer, 

we use the mutation frequency to rank candidate cancer 
drivers. The candidate cancer drivers with high mutation 
frequency are considered as driver genes. We use the BRCA 
dataset from TCGA and compare NMDGCC with the other 
four methods of identifying cancer drivers to test its effec-
tiveness. To further assess the capabilities of NMDGCC, 
we also apply it to predict driver genes for different cancer 
subtypes.

Materials and methods

Data collection

We obtain 747 tumor samples of the BRCA dataset from 
TCGA. The expression data of mRNAs, miRNAs, and TFs 
are obtained from tumor samples to construct the gene 
regulatory network. As the dataset we obtained has a large 
number of coding genes, we need to screen for these coding 
genes by using the PPI network. Finally, the expression data 
of 5168 mRNAs, 839 TFs, and 1719 miRNAs are selected to 
construct the gene regulatory network. The PPI network25 
is used to obtain the coding genes and refine the network. 
The TF list28 is used to obtain TFs from coding genes. We 
refine the network by using several gene interaction data-
bases, including TargetScan26 version 7.0 to refine miRNA-
mRNA/TF interaction, and TransmiR27 version 2.0 to refine 
TF-miRNA interaction. We also use the Cancer Gene Census 
(CGC)29 from the COSMIC database30 as the gold standard 
for identified coding cancer drivers. The mutation data of 
breast cancer provided by TCGA1 is used to calculate muta-
tion frequency; among the mutation classification, we use 
functional mutation data.

The overview of NMDGCC

The overview of NMDGCC is described in Figure 1. 
NMDGCC contains two stages: (1) Construct the gene regu-
latory network: (a) Construct mRNA-TF-miRNA regulatory 
network by using expression data and (b) Refine the gene 
interaction network by using several interaction databases 
and PPI network, and (2) Identify coding driver genes and 
miRNA drivers: (a) Calculate the control centrality values 
for each node and (b) Identify candidate driver genes for 
cancer patients.

Construction of the gene interaction network

We utilize the expression data of mRNAs, miRNAs, and TFs 
to build a network. Each node in the network represents a 
gene, which can be miRNA, TF, or mRNA. We calculate the 
Pearson correlation coefficients (PCC) between all pairs of 
nodes. If the absolute value of PCC between two nodes is 
larger than or equal to the average of the absolute values of 
PCC between all nodes in the network, then there exists an 
edge between them.

Refinement of gene regulatory network

In order to make the constructed network more reliable, we 
remove some false-positive edges in the constructed net-
work. We utilize PPI network25 and several gene interac-
tion databases to refine the interaction network. The edges 
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between mRNA-mRNA and TF-TF/mRNA in the network 
are removed if they are not in the PPI network. The edges 
between TF-miRNA in the network are removed if they are 
not in TransmiR.27 The edges between miRNA-TF/mRNA 
in the network are removed if they are not in TragetScan.26 
The final interaction network contains 7726 nodes (includ-
ing 5168 mRNAs, 839 TFs, and 1719 miRNAs) and 90,169 
edges (including 814 TF-mRNA edges, 1228 TF-TF edges, 
10,082 miRNA-TF edges, 11,249 mRNA-mRNA edges, 29,956 
TF-miRNA edges, and 36,840 miRNA-mRNA edges).

Control centrality

Based on the constructed network, we utilize control  
centrality24 to assess the importance of cancer drivers. In 
the network we constructed, the control centrality (Cc ) of 
a node (gene) represents the capability of controlling the 
constructed interaction network. The larger the control cen-
trality, the larger the control ability of node. Nodes with 
large control centrality values are more important than other 
nodes in the network. The N-node directed weighted net-
work describes a complex system that can be modeled as

 x( ) ( ) ( )t Ax t Bu t= +  (1)

where A  represents an N N×  matrix that describes the 
network. The element aij  is the strength of the node j  that 
can affect the node i  in the matrix A . x t( )  represents the 
state of the node at time t . B  represents an N M×  input 

matrix that detects the controlled nodes. u t( )  is the time-
dependent input vector with M  independent signals. The 
( , )A B  denotes the system (1), and the C = B AB A BN - 1( , ,..., )  
denotes the controllability matrix. In the system ( , )A B , the 
rank( )C  denotes the rank of the controllability matrix C ,  
and it represents the dimension of the controllable sub-
space. When we control node i  only, the rank( )( )C i  repre-
sents the ability of node i  to control the system. If node i  
cannot control other nodes except itself, then rank( )( )C i = 1 .  
We consider elements of A  and B  are independent free 
parameters or zeros. The rank ( )g C  represents the generic 
rank of the C . For each node i , its control centrality can be 
defined as

 C i CC g
(i)rank )( ) (≡  (2)

We can calculate the computation of rank ( )g C  by solv-
ing a combinatorial optimization problem. Then, connecting 
N  state nodes and M  input nodes forms a directed graph 
G A B( , ) . The Gs  represents stem-cycle disjoint subgraph of 
G A B( , ) , and it contains cycles and stems only. The stem is a 
directed path, and there are no duplicate nodes in the stem. 
The rank ( )g C  can be calculated by

 rank ( )=maxg C E G
G G s
s∈

| ( )| (3)

where | ( )|E Gs  is the number of edges in the subgraph Gs . 
In the directed network, we can calculate max | ( )|G Gs

E G∈  by 
solving a linear programming problem.31

Figure 1. The overview of NMDGCC for identifying cancer drivers. (1) Construct gene regulatory network: (a) construct gene regulatory network by using  
expression data, (b) refine the gene regulatory network by using several interaction databases and PPI network, and (2) identify coding and non-coding driver  
genes: (a) calculate the control centrality values for each node and (b) identify candidate cancer drivers. 
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Identification of coding drivers and non-coding 
drivers

Gene mutations are often associated with cancer. Therefore, 
we regard frequently mutated genes with high control cen-
trality in the network as cancer drivers. The control centrality 
of the leaf node is 1, which means that it can only control 
itself in the network. This kind of node has little influence on 
the network, then we remove the nodes with control central-
ity of 1 (leaf nodes). Calculate the average of the control cen-
trality values of all other nodes. Consider the nodes whose 
control centrality values are larger than the average value 
as candidate cancer drivers. Then, we use the mutation fre-
quency to rank them. The higher the mutation frequency of 
the identified driver genes, the higher the ranking.

Evaluation metrics

We use three measures to assess the performance of the 
five methods. These three metrics are Precision , Recall , 
and FScore1 , respectively. Precision represents the fraction 
of the validated driver genes in the identified cancer driv-
ers. Recall  represents the fraction of validated driver genes 
in the gold standard. FScore1  calculates the harmonic mean 
of Recall  and Precision . The mathematical formula for the 
three measures is as follows

 Precision
tp

tp fp
=

+
 (4)

 Recall
tp

tp fn
=

+  (5)

 FS
Precision Recall
Precision+Recall1 2core = ×

×  (6)

where tp  represents the number of detected driver genes 
in the gold standard, fp  represents the number of detected 
driver genes that are not in the gold standard, and fn  repre-
sents the number of genes in the gold standard that are not 
in the detected driver genes.

Results

We calculate the control centrality (Cc ) values of each node 
in the constructed regulatory network by utilizing con-
cept of control centrality. After calculating the Cc  values 
of all nodes, we remove the leaf nodes with Cc  value of 1. 
In the network, the leaf node only controls itself and does 
not control other nodes. Then, we calculate the average val-
ues of the Cc  values of other nodes. If the Cc  values of a 
node are larger than average values, we consider this node 
to be a node with high Cc  values. The higher the Cc  val-
ues of a node, the more nodes it can control in the network. 
Therefore, nodes with high Cc  values are very important in 
the network, so they are thought to be candidate cancer driv-
ers. In the gene interaction network we constructed, a total of 
703 nodes with high Cc  values are identified and considered 
as candidate cancer drivers.

Comparison analysis with other methods on 
identifying coding driver genes

We apply NMDGCC to the BRCA dataset from TCGA and 
compare the performance with four existing methods. These 
methods include mutation-based method ActiveDriver32 
and network-based methods DriverNet,15 DawnRank,20 and 
CBNA.21 Because most methods only identify coding driver 
genes, we only compare them with mutated coding driver 
genes identified by NMDGCC.

The cancer genes in CGC29 are used as the gold standard 
to assess the performance of each method according to the 
predicted cancer drivers. The more the driver genes pre-
dicted by each method in the CGC, the better the perfor-
mance of the method. Therefore, we compare NMDGCC 
with four identification methods on three aspects: (1) the 
number of validated cancer drivers in the predicted top  
(50, 100, 150, and 200) cancer drivers; (2) Precision , Recall ,  
and F score1  of five methods based on the predicted top  
(50, 100, 150, 200) cancer drivers; and (3) the total number 
of predicted cancer drivers and the fraction of the total pre-
dicted cancer drivers in CGC.

To facilitate the performance comparison of these five 
methods, we first compare the number of validated driver 
genes in the top (50, 100, 150, and 200) cancer drivers pre-
dicted by each method.

We validate the cancer drivers identified by five methods 
by CGC (Figure 2). The number of cancer drivers detected by 
NMDGCC and CBNA validated with the gold standard are 
similar for the top 50 identified drivers. Among the top (50, 
100, 150, 200) cancer drivers detected by these five methods, 
our method has more cancer driver genes validated with CGC 
than the other four methods. In general, NMDGCC performs 
better than the other four methods. Furthermore, our method 
also identifies novel cancer driver genes, and these drivers 
can be prioritized as candidates for further experiments.

Then, to evaluate the effectiveness of the NMDGCC, 
we also compute Precision , Recall , and FScore1  based on 
CGC and top (50, 100, 150, 200) identified cancer drivers by 
NMDGCC and other four methods. It can be seen from the 
results (Figure 3) that NMDGCC outperforms the other four 
methods in the three measures.

In order to further test the performance of the above 
methods in predicted cancer drivers, we calculate the total 
number of predicted cancer drivers and the fraction of the 
total identified cancer driver genes in the gold standard 
(Figure 4). The total number of cancer drivers detected by 
CBNA, DawnRank, and NMDGCC is all the genes they 
predicted. The total number of cancer drivers predicted for 
ActiveDriver and DriverNet is the genes with P < 0.05. The 
result shows that while the total number of cancer drivers 
identified by NMDGCC is less, the fraction of correct predic-
tion validated by CGC is higher than other methods.

The cancer driver genes identified through these methods 
are all important genes. Therefore, these methods identified 
cancer driver genes and may have overlap parts. Then, we 
compare the five methods of identifying driver genes to find 
the overlap parts (Figure 5). For this experiment, we use 
validated driver genes of each method. From the diagram, 
these methods identify some of the same driver genes, but 



236  Experimental Biology and Medicine  Volume 248  February 2023

NMDGCC identifies many cancer drivers that cannot be 
identified by other methods. Therefore, NMDGCC can be 
combined with other methods to jointly advance the identi-
fication of cancer drivers and cancer research.

Identification of miRNA cancer drivers

The occurrence and progression of cancer are not only associ-
ated with coding drivers but also with non-coding drivers. 
Therefore, NMDGCC also identifies miRNA cancer drivers. 
NMDGCC has identified a total of 295 miRNA cancer driv-
ers as non-coding drivers, 158 of them have been confirmed 
involved in tumorigenesis of BRCA by OncomiR.33 In the pre-
dicted top 10 miRNA cancer drivers, 6 miRNA drivers have 
been validated to be associated with tumorigenesis (Table 1).

Identification of coding cancer drivers without 
mutation

The proposed method also explores coding cancer drivers 
without mutations. We apply gene ontology (GO) enrich-
ment analysis to assess the ability of the NMDGCC in 

discovering coding driver genes without mutations through 
an online software of DAVID.34 In the enrichment analysis 
results, we select the top 10 GO biological processes terms 
and top 10 GO molecular functions terms involved with the 
highest number of coding drivers and select the top 20 can-
cer drivers based on their occurrence in these GO terms. 
The results show that our method identified cancer drivers 
which are involved in numerous GO molecular functions 
and GO biological processes (Figure 6). The corresponding 
terms of the top 10 biological processes and top 10 molecu-
lar functions are provided in Tables 2 and 3. This promising 
result suggests that the driver genes predicted by NMDGCC 
are biologically meaningful.

Rank of coding driver genes with mutation based 
on mutation density

In our method, final ranking of predicted driver genes is 
based on the mutation frequency, which may produce some 
false positives. The reason for this phenomenon is the length 
of the gene. If a gene is longer, its mutation frequency may 
be higher, and it will be ranked higher in the results. In order 

Figure 2. Comparison of the number of coding cancer drivers identified by five methods validated with CGC. In the figure, each bar represents the number of 
validated driver genes. 
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Figure 3. Comparison of Precision, Recall, and Fscore1  of five methods identified top cancer drivers. The x-axis denotes the predicted top cancer drivers by each 
method. The y-axis denotes the value of three measures. 

Figure 4. Comparison of the total number of cancer drivers identified by five methods: (a) the total number of predicted driver genes and (b) fraction of driver genes 
validated with gold standard.
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to have a more reliable ranking, we rank predicted driver 
genes by using the mutation density. The mutation density is 
the ratio of mutation count to the length of the gene. Among 
the top 10 driver genes ranked using mutation density, there 
are 4 genes in CGC which are TP53, FOXA1, GATA3, and 
HOXA11 (Table 4).

Identification of driver genes specific to cancer 
condition

The network is constructed in our method by using the data 
of tumor samples, and the cancer driver genes are nodes with 

high control centrality24 values in this network. These nodes 
are important in the constructed networks based on cancer 
data. There are some differences between the gene expression 
of normal people and cancer patients. But the nodes with 
high control centrality in the network constructed by the 
gene expression data of normal samples may also be nodes 
with high control centrality values in the cancer patient net-
work. Hence, we identify the cancer drivers specific to the 
cancer condition. We construct a gene interaction network by 
utilizing gene expression data from normal samples and find 
nodes with high Cc  values in this network. Then compare 
with the node with high Cc  values in the cancer state and 
identify driver genes that are only specific to cancer condi-
tions. As the number of coding genes without mutation and 
miRNA specific to cancer state is very small, we only analyze 
coding genes with mutation. We have identified a total of 
33 cancer drivers specific to cancer condition, of which 7 are 
in CGC (Table 5).

Prediction of driver genes for different cancer 
subtypes

There are many different subtypes of breast cancer, and 
patients with different subtypes of cancer will have differ-
ent clinical manifestations and survival outcomes. Different 
driver genes may cause different cancer subtypes. To provide 
better treatments for patients with different cancer subtypes, 
we analyze the driver genes specific to the cancer subtype. 
First, the Pam5035 method is used to divide breast cancer into 

Figure 5. Overlap between predicted top-k driver genes by five methods. The horizontal bars at the bottom left represent the number of confirmed cancer drivers 
using CGC. The dotted lines and vertical bars indicate the number of confirmed cancer drivers which overlap with each other.

Table 1. miRNA drivers predicted by NMDGCC.

No. Identified miRNA drivers Confirmed

1 hsa-miR-137 √
2 hsa-miR-520b  
3 hsa-miR-520d-5p  
4 hsa-miR-520e  
5 hsa-let-7a-5p √
6 hsa-let-7d-5p √
7 hsa-let-7e-5p √
8 hsa-let-7f-5p  
9 hsa-let-7g-5p √
10 hsa-let-7i-5p √

miRNA: microRNA; NMDGCC: Network-based Method for identifying cancer 
Driver Genes based on node Control Centrality; √: miRNA was associated with 
the tumorigenesis of BRCA.
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five subtypes, namely Her2, Basal, Normal-like, Luminal 
A, and Luminal B. After dividing the 747 samples of the 
BRCA dataset using the Pam50 method, we obtain 158 Basal 
subtype samples, 221 Luminal A subtype samples, 108 Her2 
subtype samples, 165 Luminal B subtype samples, and 95 
Normal-like subtype samples. Then, we use the NMDGCC 
to identify cancer drivers of different cancer subtypes. If the 
mutation frequency in one subtype is higher than the muta-
tion frequency in any other subtype, it indicates that the 

Table 2. The top 10 enriched terms are shown in Figure 6(a) and 
corresponding biological processes.

Enriched term Biological process

GO:0006357 Regulation of transcription from RNA polymerase II 
promoter

GO:0045944 Positive regulation of transcription from RNA 
polymerase II promoter

GO:0000122 Negative regulation of transcription from RNA 
polymerase II promoter

GO:0045893 Positive regulation of transcription, DNA-templated
GO:0006355 Regulation of transcription, DNA-templated
GO:0045892 Negative regulation of transcription, DNA-templated
GO:0008285 Negative regulation of cell proliferation
GO:0030154 Cell differentiation
GO:0010628 Positive regulation of gene expression
GO:0051726 Regulation of cell cycle

Figure 6. (a) and (b) The heatmap of the top 20 identified coding drivers across top 10 GO biological processes and GO molecular functions enriched terms, 
respectively. Blue cells in the matrix indicate that a driver gene is related to an enriched term. 

Table 3. The top 10 enriched terms are shown in Figure 6(b) and 
corresponding molecular functions.

Enriched term Molecular function

GO:0000978 RNA polymerase II core promoter proximal region 
sequence-specific DNA binding

GO:0000981 RNA polymerase II transcription factor activity, 
sequence-specific DNA binding

GO:0005515 Protein binding
GO:0003700 Transcription factor activity, sequence-specific DNA 

binding
GO:0003677 DNA binding
GO:1990837 Sequence-specific double-stranded DNA binding
GO:0001228 Transcriptional activator activity, RNA polymerase II 

transcription regulatory region sequence-specific binding
GO:0043565 Sequence-specific DNA binding
GO:0000977 RNA polymerase II regulatory region sequence-

specific DNA binding
GO:0000976 Transcription regulatory region sequence-specific DNA 

binding

Table 4. The top 10 mutated coding drivers using mutation density ranked.

No. Identified cancer drivers In CGC

1 TP53 √
2 FOXA1 √
3 GATA3 √
4 MAZ  
5 HOXA11 √
6 HOXA5  
7 ATF4  
8 IRF3  
9 DLX5  
10 FOXD3  

CGC: Cancer Gene Census; √: driver gene validated with CGC.

Table 5. List of validated coding drivers of specific cancer condition.

No. Identified driver gene

1 ZFHX3
2 HOXA11
3 ZNF521
4 HOXA13
5 MLLT1
6 MLLT3
7 SKI
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mutation of this gene is dominant in this subtype, and the 
mutation of this gene is also specific to this subtype. The 
results show that we have identified specific driver genes for 
each subtype (Table 6).

Discussion

In this work, we have designed NMDGCC, a network-
based method for identifying coding cancer drivers and 
non-coding cancer drivers based on node control central-
ity. In NMDGCC, we integrate mRNAs, TFs, and miRNAs 
expression data to construct a gene interaction network. We 
also use gene interaction databases to refine the constructed 
network. We remove some false-positive edges to make the 
edges in the constructed network closer to the real gene inter-
action. Then, the concept of the control centrality of complex 
network is used to calculate control centrality values of each 
node in the constructed network. The centrality values of 
node represent the size of its controllable subspace, and the 
node with higher centrality values has a larger control ability. 
If a node with higher Cc  values is mutated, it may change 
the cell from a normal state to a tumor state. Hence, we con-
sider nodes with significantly larger control centrality values 
as cancer drivers.

We apply NMDGCC to the breast cancer data and identify 
coding and non-coding drivers associated with the devel-
opment of breast cancer. Comparing the validated coding 
drivers with four methods, the results show that NMDGCC 
has better performance. NMDGCC also identifies miRNA 
cancer drivers. More than 50% of the miRNA cancer drivers 
we identified have been confirmed to be associated with 
tumorigenesis of BRCA through a database. NMDGCC also 
succeeded in identifying the driver genes of different cancer 
subtypes in breast cancer. In summary, NMDGCC is an effi-
cient method for the identification of cancer coding drivers 
and non-coding drivers. It can complement existing methods 
and jointly promote the identification and prediction of can-
cer drivers, and it can help in the treatment of cancer patients 
and provide better treatment options.

In the feature, we will apply NMDGCC to predict driver 
genes of other cancer types and also use more different types 
of data to improve NMDGCC.
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