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Physiology and molecular biology of 
store-operated Ca2+ channels

Store-operated Ca2+ channels (SOC), which open when 
intracellular Ca2+ stores are depleted, play central roles in 
podocyte signaling.1 Physiologically, G protein coupled 
receptors and receptor tyrosine kinases activate phospho-
lipase C (PLC) β and γ isoforms, respectively, which in turn 
hydrolyze phosphatidylinositol 4,5-bisphosphate, yielding 
diacylglycerol and inositol 1,4,5-trisphosphate (IP3).2,3 IP3 
interacts with its (sarco)endoplasmic reticular membrane 
receptors to elicit Ca2+ discharge from (sarco)endoplasmic 
reticulum.4,5 Depletion of these Ca2+ stores activates SOC in 
the plasma membrane, allowing extracellular Ca2+ to enter 
the cell.

Initially termed capacitative Ca2+ entry, store-operated 
Ca2+ entry (SOCE), via SOC was first proposed in 1976 by 
Putney, who studied the refilling of intracellular Ca2+ stores 
after their depletion by the PLC-linked agonists carbachol 

and phenylephrine.6 Subsequent studies combining Ca2+ 
imaging and patch clamp techniques demonstrated that 
endoplasmic reticular Ca2+ depletion in leukemic T cells4 
and mast cells activated Ca2+ conductance.5 More recent 
research defined the biophysical and pharmacological hall-
marks of SOC. Multiple SOC subtypes with distinct biophys-
ical properties, for example, Ca2+ selective and nonselective 
cationic SOC, have been identified,4,5,7–10 and SOC subtype 
expression is cell type- and tissue-specific.4,5,8,9,11 However, a 
property of all SOCs is the dependence of their activation on 
depletion of their internal Ca2+ stores, not on cytosolic Ca2+ 
concentration.9,12,13 This unique property distinguishes SOCs 
from nonselective Ca2+-activated cation channels.

In the decades following discovery of SOCs, intensive 
research effort encompassing physiology, pharmacology, cell 
biology and molecular biology has focused upon identifying 
the molecular components of SOCs and delineating their 
gating mechanisms. Around the turn of the 21st century, the 
transient receptor potential canonical (TRPC) channel family 
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Minireview

Impact statement

Podocyte integrity is critical for normal glomerular 
filtration, and podocyte injury is implicated in the 
pathogenesis of proteinuria in kidney diseases. 
During the past decade, store-operated Ca2+ entry 
(SOCE)-mediated Ca2+ signaling has been dem-
onstrated as a central mechanism for maintaining 
podocyte integrity, and it is increasingly evident that 
abnormal store-operated Ca2+ channel (SOC) func-
tion contributes to podocyte damage. This review 
integrates recent progress on podocyte physiology 
and pathophysiology with new insights regarding 
SOCE-initiated signaling. These advances in our 
understanding of the mechanisms of physiological 
podocyte homeostasis and pathological podocyte 
injury are providing the foundation to develop drugs 
targeting podocyte SOC to treat kidney diseases.
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garnered the most attention,1,14 and numerous studies identi-
fied critical contributions of TRPC channel isoforms to SOC 
gating.15–21 However, important differences in the pharma-
cological and biophysical properties of SOCs versus TRPC 
channels questioned whether TRPC proteins are truly SOC 
components. Concurrently, the mechanisms activating SOCs 
were examined. Three major mechanisms were proposed 
involving (1) diffusible messengers,22 (2) vesicle fusion/
exocytosis,23 and (3) physical interaction of IP3 receptors 
located on ER and Ca2+ channels on cell plasma membrane24 
including TRPC channels. Evidence for these mechanisms 
was equivocal until 2005 to 2006, when stromal interaction 
molecules (STIM) and Orai proteins were revealed by gene 
array and high throughput RNA interference screening.25–29 
STIM1 contains a single transmembrane domain, is localized 
in the endoplasmic reticular (ER) membrane, and functions 
as a sensor monitoring luminal Ca2+ concentration in the ER. 
When ER Ca2+ is depleted, STIM1 aggregates and migrates 
toward ER-plasma membrane junctions, leading to physical 
interaction with Orai1, which is the pore-forming unit of 
SOCs located on the cell plasma membrane, at STIM1: Orai1 
stoichiometries ranging from 1:1 to 2:1. This interaction acti-
vates Orai1, permitting Ca2+ influx from the extracellular 
fluid into the cytosol.30–32

In addition to STIM1 and Orai1, STIM2, a closely-related 
mammalian STIM1 homolog, and the mammalian Orai1 
homologues Orai2 and Orai3 also may constitute and/or 
regulate SOC, but with distinct functional properties.33–38 
The recent identification of Orai1 α and β splicing vari-
ants39,40 and the STIM1 splicing variant STIM1L,41–44 which 
generate SOCs with distinct signaling and regulatory prop-
erties, adds another layer of complexity to Orai/STIM-
constituted SOCE. Several TRPC isoforms, which initially 
were proposed as SOC molecular components before Orai1 
and STIM1 were discovered, may also function as SOC by 
interacting with STIM1 and/or Orai1.45–52 The composition 
of SOCs is still under investigation.

SOC in podocytes

Podocytes are pivotal determinants of the molecular selectiv-
ity of glomerular filtration. Located on the external face of the 
glomerular basement membrane (GBM), these terminally dif-
ferentiated, polarized, highly specialized visceral epithelial 
cells constitute the glomerular filtration barrier’s outermost 
layer (Figure 1).53–55 Several primary processes extend from 
the podocyte cell body, from which further extend second-
ary and even tertiary foot processes, termed pedicels. Those 
structures encircle the basement membrane surrounding the 
glomerular capillaries.54 Spanning the narrow gaps between 
adjacent foot processes are slit diaphragms composed of 
highly specialized adhesion molecules including nephrin, 
Neph1 and other junctional proteins. Slit diaphragms con-
tain pores, 30 to 40 nm wide, which permit free filtration of 
water, electrolytes and small organic solutes from the glo-
merular capillaries to the urinary (Bowman’s) space, while 
restricting filtration of albumin and other plasma proteins.56

Under physiological conditions, the intact GBM and 
podocytes maintain essentially protein-free glomerular fil-
tration. However, inflammatory, metabolic or mechanical 

stimuli associated with various diseases provoke distinctive 
and substantial changes in podocyte morphology termed 
foot process simplification and effacement. During this pro-
cess, cytoskeletal re-arrangements widen and shorten the 
individual foot processes; in more severe cases, the second-
ary and tertiary processes are resorbed into the primary 
processes.54,57–59 Foot process effacement and simplification 
exposes the outer face of the GBM, increasing the protein 
permeability of the glomerular filtration barrier and produc-
ing pathological proteinuria.

As in vascular smooth muscle and glomerular mesangial 
cells, the structural integrity of podocytes depends on the 
maintenance of Ca2+ homeostasis inside the cell. In podo-
cytes, multiple signaling mechanisms controlling intracellu-
lar Ca2+ concentrations converge on plasma membrane ion 
channels. Podocyte Ca2+ signaling has been studied most 
extensively in TRPC5 and especially TRPC6 channels.60–65 
Recently, SOCE and the SOC components Orai1 and STIM1 
have been reported in podocytes.66,67

In 2013, podocyte SOCE was first reported by Yang et al.,66 
who studied signaling mechanisms activating podocyte 
apoptosis in response to high glucose concentrations. Using 
Ca2+ imaging, they showed that thapsigargin, a (sarco)
endoplasmic reticular ATPase inhibitor which depletes ER 
Ca2+ stores, activated SOCE in cultured podocytes. Recent 
electrophysiology evidence from our group also supports 
existence of SOC in podocytes. By use of whole cell patch 
clamp, we recorded thapsigargin-stimulated inward cur-
rents in cultured human podocytes which were blocked by 
La3+, an inhibitor of SOCE.67 Acting on its AT1 receptors, 
angiotensin II, an important regulator of podocyte physi-
ology and pathology,63,64 activates the PLC-IP3 signaling 
pathway, which could open SOCs via IP3-induced ER Ca2+ 
release. Indeed, we demonstrated in human podocytes that 
angiotensin II evoked robust inward Ca2+ currents which 
were suppressed by the SOC blocker 3,5-bis(trifluoromethyl)
pyrazole 2.67

Expression of the channel or channel-gating proteins in 
cultured mouse and human podocytes further demonstrated 
the fundamental role of SOCE. In 2015, Xu et al.68 reported 
that the saturated fatty acid palmitate induced STIM1 oli-
gomerization, the initial step in SOC activation, in ER mem-
branes of cultured mouse podocytes, possibly through PLC 
signaling. As expected, palmitate elicited SOCE,68 although 
the functional consequences of palmitate-stimulated SOCE 
were not evaluated.68

Although mounting biochemical, biological and func-
tional evidence unambiguously supports existence of SOC 
in podocytes, this evidence was obtained almost exclusively 
in cultured cells, and in vivo data are lacking. Future stud-
ies should be directed toward confirming podocyte SOC 
in intact animals. Furthermore, to date all biochemical and 
molecular studies of SOC in podocytes have focused on 
Orai1 and STIM1, the prototypical SOC channel and gating 
proteins, respectively. However, homologs (Orai2, Orai3, 
and STIM2)33–38 and splicing variants (Orai1α, Orai1β, and 
STIM1L)39–44 of the two proteins have not been studied in 
podocytes. These homologs and splicing variants reportedly 
function as SOC or gate/regulate SOC in other cell types.33–44  
Moreover, the location of SOC in podocytes should be 
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identified, because the downstream pathways and functions 
of SOC in foot processes may differ from those in the cell 
body. For instance, TRPC6 activation in the podocyte cell 
body modulates gene expression,69 but in foot process alters 
slit diaphragm permeability.70,71

It should be noted that various SOC subtypes may exist 
with cell type–specific distributions and distinct biophysi-
cal and pharmacological profiles.1 Although formation of 
highly Ca2+-selective SOC by homo- or heteromultimeric 
Orai subunits is widely accepted, nonselective SOCs may 
also be formed by Orai-TRPC channel interactions.40,72 
Indeed, Orai1-TRRPC1 interactions were indispensable for 
functional SOCE activation in human embryonic kidney 
(HEK293) cells45 and osteoclasts.48 Although podocytes pos-
sess Orai1 and TRPCs 5 and 6, whether these proteins act 
independently or cooperatively is unclear and awaits more 
molecular, biophysical, and pharmacological evidence.

Physiological impact of podocyte SOCs

Podocytes integrate with the glomerular endothelial cells to 
build and maintain the GBM. Collectively, podocytes, GBM, 
and the glomerular endothelium with its surface glycocalyx 
constitute the interface that effects glomerular filtration. The 
slit diaphragms bridging the adjacent podocyte foot pro-
cesses impose steric hindrance selectively limiting filtration 
of protein-size molecules. As in many cell types, podocyte 
structure and function are largely regulated by intracel-
lular Ca2+ signals and podocyte Ca2+ homeostasis is, to a 
large extent, attributed to plasma membrane Ca2+ channels. 
Emerging evidence suggests that SOC and its downstream 

signaling help maintain podocyte integrity and, thus, normal 
glomerular filtration.

Miao et al.73 found that STIM1 and Orai1 overexpression 
lowered contents of the slit diaphragm proteins podocin and 
CD2-associated protein (CD2AP) while increasing content 
of the cytoskeletal protein α-actinin-4. All these proteins are 
essential for podocyte integrity and normal structure of the 
glomerular filtration barrier (Figure 1). As expected, over-
expression of STIM1 and Orai1 increased podocyte perme-
ability.73 Although they did not assess the impact of podocin, 
CD2AP and α-actinin overexpression on SOC function, Miao 
et al. reported direct evidence that SOC signaling proteins are 
associated with podocyte structure and function. Recently, in 
cultured human podocytes we also found that SOCE regu-
lates abundance of the slit diaphragm protein nephrin.67

Foot process morphology and podocyte function highly 
depend on the actin cytoskeleton. Regardless of the initial 
insult, the ultimate pathway for podocyte damage is actin 
cytoskeleton rearrangement and dysfunction.56 Recently, 
both Kim et al.74 and our group67 demonstrated in cultured 
podocytes that Orai1-mediated SOCE contributed to nor-
mal distribution and organization of cytoskeleton proteins. 
Enhancement of the Ca2+ signaling resulted in disorganiza-
tion of cytoskeleton and actin remodeling, an indication of 
podocyte injury.67,74

Pathophysiological relevance of SOC 
in podocytes

Podocytes are terminally differentiated epithelial cells. Their 
limited regenerative capacity and their vulnerability to 

Figure 1.  Podocyte structure and connections with glomerular basement membrane. 
CD2AP: CD2-associated protein; ER: endoplasmic reticulum; GBM: glomerular basement membrane; Neph1: nephrin 1; SD: slit diaphragm; STIM1: stromal interaction 
molecule 1; TRPC6: transient receptor potential.



428   Experimental Biology and Medicine   Volume 248   March 2023

various diseases make podocyte injury particularly impor-
tant in glomerular pathology. Loss of sufficient numbers of 
podocytes inevitably leads to glomerulosclerosis and even-
tual loss of the nephron. Podocyte structural and functional 
integrity depend on intracellular Ca2+ homeostasis; thus, 
disruption of intracellular Ca2+ signaling contributes to 
podocyte injury and glomerular disease. In addition to the 
well-described cause–effect relationship between TRPC6 
overactivation in podocytes and focal segmental glomeru-
losclerosis/proteinuria,61–64,75 recent evidence indicates that 
abnormal SOC Ca2+ signaling also contributes to podocyte-
associated glomerular disease. Miao et al.73 demonstrated 
elevated abundances of mRNA encoding STIM1 and Orai1 
in renal cortex of mice with adriamycin-induced nephropa-
thy versus control mice. STIM1 and Orai1 overexpression 
decreased contents of slit diaphragm proteins podocin 
and CD2AP, leading to increased permeability of mouse 
podocytes.73

The leading cause of chronic kidney disease in the United 
States, diabetic nephropathy (DN) is characterized by micro-
albuminuria in its early stages which intensifies into fulmi-
nant proteinuria as the disease progresses. Also in the early 
stages of DN, glomerular hyperfiltration imposes shear stress 
which damages podocytes.76 Podocyte injury and loss dis-
rupts the glomerular filtration barrier, allowing plasma pro-
teins to pass from the glomerular capillaries into Bowman’s 
space. Excessive protein in the proximal tubular lumen over-
whelms tubular capacity for endocytosis, allowing albumin 
and other plasma proteins to spill into the urine. The con-
tributions of abnormal SOC signaling to podocyte pathol-
ogy in DN are the focus of ongoing, intensive research. Jin 
et al.77 found that both STIM1 and STIM2 contents increased 
in kidneys of rats and patients with diabetic kidney disease. 
STIM1 and Orai1 overexpression increased Ca2+ influx in 
cultured mouse podocytes, and increased Ca2+ entry pro-
voked podocyte epithelial-to-mesenchymal transition (EMT) 
in humans and rats with DN.77,78 Furthermore, increased 
podocyte STIM1 content augmented Orai1-mediated Ca2+ 
entry in rats with diabetic kidney disease.78 Moreover, dele-
tion of STIM1 in cultured podocytes not only ameliorated 
high glucose-induced podocyte apoptosis and EMT, but also 
enhanced podocyte autophagy.77,78 Thus, disordered SOC 
contributes to podocyte injury in DN.

Podocytes are among several insulin signaling targets 
in kidney.79 Insulin receptor signaling is pivotal for podo-
cyte function, and perturbation of podocyte insulin signal-
ing compromises the glomerular filtration barrier, causing 
proteinuria.80–82 Recently, Kim et  al.74 reported increased 
podocyte Orai1 plasma membrane trafficking through a 
Vesicle Associated Membrane Protein 2 (VAMP2)-dependent 
mechanism in response to insulin stimulation, resulting in 
enhanced SOCE. Insulin-activated SOCE in podocytes trig-
gered actin remodeling and transepithelial albumin leakage. 
Intensification of SOCE-induced podocyte injury by insulin 
signaling was further validated in animals. Genetic orai1 
overexpression in mice results in podocyte foot processes 
effacement, compromising the glomerular filtration barrier. 
In contrast, podocyte-specific Orai1 ablation blunts insulin-
stimulated SOCE, synaptopodin depletion, and proteinuria. 
In diabetic mice, Kim et al.74 showed that podocyte damage 

and proteinuria coincided with increased Orai1 expression 
at the hyperinsulinemic stage, and that suppression of Orai1 
Ca2+ signaling ameliorated the detrimental effects of ele-
vated insulin.

Recently, we demonstrated in cultured podocytes that 
exposure to elevated glucose concentration-dependently 
increased Orai1 protein content and SOCE. Furthermore, 
high glucose provoked overt F-actin remodeling and low-
ered nephrin content, indicating podocyte injury (Figure 2). 
Importantly, both pharmacological Orai1 inhibition by BTP2 
or genetic orai1 ablation via CRISPR-Cas9 lentivirus prevent 
these indicators of podocyte injury (Figure 2). Since hyper-
glycemia is the main pathogenic factor promoting podocyte 
injury in DN,83 these results strongly suggest enhanced SOCE 
in podocytes is a pivotal contributor to DN pathogenesis.

SOC-initiated signaling in podocytes

Store-operated Ca2+ channels are essential to myriad cellu-
lar processes including exocytosis, enzyme regulation, gene 
transcription, proliferation, and apoptosis.1 Not surprisingly, 
multiple downstream pathways mediate SOCE-induced 
physiological and pathological consequences. The diverse 
SOC signaling pathways could be cell-type specific and cell 
function dependent. In podocytes, studies on SOC signaling 
have focused on the intracellular pathways regulating cell 
phenotype transition, turnover and structural integrity.

Inflammation and immune mechanisms contribute 
to DN pathogenesis.84–87 Receptors for the Fc domains of 
immunoglobulin G antibodies (FcγRs) trigger phagocytosis, 
antibody-dependent cellular cytotoxicity, release of inflam-
matory mediators, and other effector functions.88 Preventing 
FcγR activation alleviated renal hypertrophy, inflammation 
and fibrosis in diabetic mice, suggesting that targeting FcγR 
may prove renoprotective against DN.89 Podocyte SOCE 
signaling is augmented in DN, and increased Ca2+ signaling 
induced podocyte EMT in diabetic kidney,77,78 a phenomenon 
associated with renal fibrosis.90 Jin et al.77,78 demonstrated 
that FcγRII activation mediated SOCE-activated podocyte 
EMT, and inhibition of SOCE by STIM1 silencing blunted 
high glucose-induced FcγRII activity and podocyte injury.77 
Accordingly, targeting the SOCE-FcγRII signaling pathway 
might be a powerful strategy to treat inflammatory kidney 
diseases, including DN.

Activation of calcineurin, a serine/threonine phosphatase, 
requires increased intracellular Ca2+ concentrations. In car-
diomyocytes and vascular endothelial cells, SOCE-activated 
calcineurin signaling mediated SOCE-induced hypertro-
phy91,92 and apoptosis.93 Moreover, calcineurin-nuclear factor 
of activated T cells (NFAT) mediated downstream signal-
ing in podocytes initiated by NMDA receptor- and TRPC6-
mediated Ca2+ entry.70,71,94,95 Recently, Kim et al.74 reported 
that calcineurin is also a downstream SOCE effector in podo-
cytes. In cultured podocytes and in diabetic mice, calcineurin 
activation contributed to podocyte injury and proteinuria 
induced by insulin-activated SOCE. Thus, the insulin-SOCE-
calcineurin signaling cascade in podocytes may be pivotal to 
the pathogenesis of renal disease.

Calpains, a family of Ca2+-activated cysteine proteases 
highly responsive to increased intracellular Ca2+, also mediate 
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Figure 2.  Confocal microscopic images, showing contribution of SOCE to podocyte cytoskeleton organization. (A & B): Representative immunofluorescence staining 
of F-actin of podocytes with different treatments. (C & D): Statistical analysis of data from experiments presented in A and B, respectively (Adapted from Tao et al.67 
with permission of the American Society for Biochemistry and Molecular Biology). 
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SOCE-initiated signaling in podocytes.96–98 Activation of 
TRPC6 in podocytes led to calpain activation.97,98 Interestingly, 
Farmer et al.97 demonstrated that calpain is activated by its 
direct interaction with TRPC6, rather than TRPC6-mediated 
Ca2+ influx. Recently, we demonstrated calpain activation 
by SOCE-mediated, high glucose-induced injury in cultured 
human podocytes.67 Since pharmacological SOC inhibition 
decreased and SOC activation increased calpain activity,67 
the calpain activation in our study could be ascribed to Ca2+ 
influx through SOCs.

Collectively, multiple pathways have been shown to 
mediate SOCE signaling in podocytes (Figure 3). These 
diverse signaling pathways are concordant with the multi-
ple functions of SOC, all of which are critical for podocyte 
homeostasis.

Concluding remarks

This review has summarized the functions and downstream 
signaling of SOC in podocytes and its physiological and 
pathological impact. The evidence reviewed herein dem-
onstrates unequivocally that SOCE is essential to podocyte 
integrity. As in other cell types, multiple mechanisms regulate 
SOC function in podocytes, and diverse intracellular mes-
sengers mediate SOC Ca2+ signaling. Intriguingly, the most 
substantial evidence relates to the contributions of SOC to 
cellular processes associated with disease states, for example, 
ultrastructural changes effecting podocyte simplification and 
effacement. Therefore, SOC signaling pathways are promis-
ing therapeutic targets for podocyte-associated renal diseases. 
However, several factors must be considered when pursu-
ing such strategies. First, SOCs are ubiquitously expressed 
in the body, both in excitable and non-excitable cells.1  

Systemic application of SOC modulators in humans will have 
broad effects, including potential “off-target” consequences 
within and beyond the diseased organ or system. Second, 
SOC function is cell type specific. For instance, activation 
of SOC in glomerular mesangial cells inhibits extracellular 
matrix production, which is beneficial in diabetic kidney,99–101 
but in proximal tubular cells, SOC activation exacerbates renal 
fibrosis.102 Moreover, some evidence in the same cell types 
from different laboratories seem contradictory. For instance, 
Soni and Adebiyi103 reported that SOC stimulated mesan-
gial cell proliferation and synthesis of extracellular matrix 
proteins; in contrast, SOC inhibited these phenomena in our 
studies.99–101 Similarly, Zeng et al.104 demonstrated that SOC 
inhibition exacerbates proteinuria in DN mice by impairing 
proximal tubular endocytosis of albumin, a finding divergent 
from the adverse effects of SOC on proximal tubular cells 
reported by Mai et al.102 Finally, although many SOC inhibi-
tors have been used over the past 30 years, none has proven to 
be purely SOC selective.105 Therefore, podocyte-specific SOC 
signaling and its regulatory mechanisms must be delineated 
further to permit interrogation of strategies targeting SOC 
pathways for treatment of podocyte-related kidney diseases. 
Indeed, developing targeted delivery of selective agents to 
podocytes to modulate SOC holds particular promise for 
addressing SOC-mediated podocyte injury.
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