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Introduction

The study of biological pathways helps scientists learn 
more about diseases and develop new drugs, hence tools 
that could assist scientists in identifying biological path-
ways associated with diseases are of great importance. The 
recent COVID-19 pandemic as well prompted the urgent 
need for efficient methods that could help researchers better 
understand the condition of the disease in a timely manner. 
In this article, we propose an efficient pipeline to infer the 
existence of multiple alternative biological pathways from 
clinical phenotypes. The shorter version of the article was 
presented by Karisani et al.1 As used here, “Pathway” refers 
to physiologically connected processes, ranging from a cas-
cade such as the clotting cascade, to looser systems such 
as the renin–aldesterone–angiotensin system (RAAS) that 
angiotensin-converting enzyme 2 (ACE2) is a part of. Our 
approach is to identify distinctive phenotypic clusters satis-
fying logical relationships (implication) and to seek possible 

connections to the underlying pathways. For this aim, we 
utilize topological properties – homology cycles – among 
the phenotypic clusters. Given the possibility of multiple 
paths to severity that typically mark complex diseases, a goal 
would be to identify logical relationships among phenotypic 
clusters that may point to distinct pathways. Cycles in com-
putational homology may identify candidates for multiple 
pathways. We use unstructured clinical notes as the source of 
information to automatically extract phenotypes to be used 
in our topological model. Phenotypes are the symptoms and 
signs that reflect the presence of disease – in the following, 
we refer to them as symptoms.

Advancement in technology has helped scientists to 
garner enormous amounts of biomedical data. This has 
provided the community with unprecedented opportuni-
ties to study and better understand the spread of diseases. 
However, this burst of information has posed significant 
challenges to the traditional data analysis and visualization 
techniques. Traditional infographics, such as Venn diagrams, 
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which are still widely used to compare and contrast set of 
symptoms, fail to aid practitioners in analyzing large set 
of symptoms. Thus, tools that can effectively employ the 
techniques in other scientific communities to facilitate this 
process are of immense value.

Machine learning models and statistical methods are used 
to exploit biomedical data. Particularly, patient similarity 
and symptom clusters are the two concepts that have been 
widely explored in recent literature. Patient similarity aims 
to identify patients according to similarities of their health 
records, including phenotypes and genomic profiles. In this 
area, several models have been proposed for disease pre-
dictions and clustering patients based on selected similar 
biomarkers,2 to perform outcome prediction tasks,3 and in 
general to improve precision medicine.4,5 On the contrary, 
symptom clusters relate to sets of symptoms – usually more 
than two symptoms within each set – that occur together 
and might share the same etiology; moreover, relationships 
among symptoms within a cluster are stronger than the 
ones across the clusters.6 For a thorough review of meth-
ods of identification of symptom clusters, see the study by 
Barsevick.7 However, here we add to the body of literature 
by considering clusters of symptoms whose samples are 
not necessarily independent from each other but give rise 
to similar subsets of patients within a cohort – known as 
redescriptions. We construct a topological space based on 
the closeness of those clusters and investigate its topological 
properties to identify underlying pathways.

In our experiments, we use clinical notes as the source 
of data. Combining electronic health records from multiple 
sources provides a valuable pool of data for researchers to 
address crucial questions.8,9 However, a well-designed epi-
demiological study would follow a standard questionnaire 
containing a response to all the symptoms and signs of 
interest. Hence, unstructured clinical notes may be biased 
by which physician filled out the forms; consequently, that 
could introduce a systematic bias in the study.10 We apply 
statistical analysis on the symptoms associated with the 
extracted topological properties to investigate a possible 
bias.

We propose a pipeline to automatically extract candidate 
pathways associated with a disease from clinical notes. Our 
pipeline, which is based on the notion of redescriptions and 
the topological properties among them, consists of four 
phases: (1) pre-processing the notes and identifying the can-
didate symptoms, (2) mapping the symptoms to the space 
of the patients, (3) extracting the topological properties and 
their visualization, and finally, (4) perform statistical analy-
sis to detect the possible bias in the extracted features. We 
have evaluated our pipeline in a publicly available dataset 
of COVID-19 clinical notes. The results show that our model 
can extract meaningful pathways. We demonstrate that there 
are potentially distinctive pathways between coughers and 
non-coughers among patients with abnormal sputum.

Background

In this section, we briefly introduce the notion of persistent 
homology, which is the main component of our proposed 
pipeline. Persistent homology is a tool from topological 

data analysis (TDA), which uses techniques from Algebraic 
Topology to analyze topological spaces, particularly point 
cloud data. TDA has been widely applied to solve biological 
problems.11 Here, we avoid the mathematical detail, which is 
beyond the scope of this article. For a thorough description, 
see the study by Dey and Wang.12

Let M  be a continuous space equipped with a metric δ  
(used as a parameter), the topological invariants of M  are 
defined as the properties that do not change under continu-
ous deformation (i.e. twisting but not tearing). The invari-
ants of M  in lower dimensions are usually referred to as 
the connected components, the holes, and the void spaces, 
respectively, in dimension 0, 1, and 2; in the higher dimen-
sions, they are understood as the k-dimensional holes (also 
known as k-dimensional homology cycles). The number of 
k -dimensional holes in M are called the kth betti numbers.

Given a set of data points X and a distance function δ (X  
represents as the points sampled from M ), the goal is to com-
pute the topological invariants of the underlying space of X
(i.e. space M ). A common approach to associate a structure 
to X  is by constructing k-simplexes (or simplices) over X. 
Intuitively, one could think of a k-simplex as a convex hull of 
k + 1 affinely independent points. A collection of simplexes 
over X  satisfying some conditions12 is called a simplicial 
complex. In particular, the simplexes are constructed in a 
sequence of steps (based on a parameter) to create a filtra-
tion of simplicial complexes over X . First, the initial sim-
plicial complex S0  is set to be the collection of points in X , 
each data point is considered as a 0-simplex; then the para-
meter is increased such that at each step i only a finite set 
of simplexes that satisfy some conditions could be added to 
the current simplicial complex Si−1 ; this procedure creates 
a filtration of simplicial complexes on X (i.e. S S0 1⊆ ⊆ ), 
which then is used to infer the topological invariants of the 
underlying space of X. The conditions that are required to 
be satisfied for the simplexes in order to be added to X  give 
rise to a variety of simplicial complexes.

An example of a simplicial complex is Čech complex. 
Figure 1 shows a simple illustrative example. The goal is to 
recover the topological invariants of the space in Figure 1(a), 
in which the zeroth betti number is 1, since there is only one 
connected component; and the first betti number is 2, since 
there are two independent holes; the higher dimensional 
betti numbers are zero. The dataset X  is given by the six 
sampled points in Figure 1(b).

To construct the Čech complex over X , we begin with 
the points in X  as 0-simplexes, i.e. S X0 = . To add to S0 
the higher dimensional simplexes, we start growing a ball 
at each point, as in Figure 1(c); at this state, the zeroth betti 
number is 6, and first betti number is 0. By increasing the 
radius, some of the balls start to overlap with each other; for 
each k + 1  overlapped balls, we insert a k -simplex. Figure 
1(d) shows a collection of 1-simplexes, line segments joining 
the two points, created by the pairwise overlap of their cor-
responding balls; what can be clearly seen in this simplicial 
complex is that it recovers the topological properties of the 
underlying structure in Figure 1(a). If we increase the radius 
further, the three balls at the top begin to overlap with each 
other, hence we can add a 2-simplex – a filled in triangle –  
as in Figure 1(e). Therefore, the hole which was created at 
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Figure 1(d) disappeared by increasing the radius at Figure 
1(e), as a result that topological property is lost; this could 
eventually happen for the second hole as we continue to 
increase the radius and add more simplexes. It is impor-
tant to notice that the topological properties that persist 
for a longer period, before they disappear, best represent 
the topological invariants of the underlying structure. This 
characteristic is the basic principle of the persistent homol-
ogy method, which was first formalized in the study by 
Edelsbrunner et al.13

A diagram known as barcode is commonly used to keep 
track of the lifetime of topological properties. In the barcode, 
each topological property is represented as a horizontal line 
segment. The line segments span the period that the corre-
sponding topological properties exist, along the parameter 
axis (i.e. radius). In the above example, assuming the edges 
in Figure 1(a) have equal lengths, Figure 2 illustrates the bar-
code of 0-dimensional topological properties. Therefore, each 
line segment in the barcode is identified to a connected com-
ponent. In the beginning of the filtration there are six data 
points corresponding to six connected components, hence 
there are six bars at radius zero. A 0-dimensional topologi-
cal property disappears when its corresponding connected 
component gets merged with another connected component.  
In Figure 2, five bars last until the radius reaches r1, this 
identifies the time when the growing balls start to overlap 
with each other and create the 1-simplexes. Then, a single 
connected component is created that never disappears, 
which corresponds to the bar that lasts forever. This single 
long ball of 0-dimensional topological properties suggests 
that the data points in Figure 1(b) correspond to a single 
connected component.

Materials and methods

In this section, we first introduce our general pipeline and 
then discuss our experimental setup.

Proposed pipeline

We are seeking to identify evidence of multiple distinct bio-
logical pathways leading to disease; for this aim, we pro-
pose a pipeline of four phases. In the first phase, we process 
the unstructured clinical notes to extract the set of symp-
toms and their corresponding patients. In the next phase, 
we define the feature space, the sampling strategy, and the 

metric to measure the similarity between the data points that 
are based on the notion of redescription. Next, we extract the 
topological properties using persistent homology and then 
visualize them to identify important topological properties. 
Finally, we measure the bias among the symptoms of the 
selected topological properties to infer possible pathways.

Concept extraction. We carry out the first phase in three 
steps: (1) We parse the clinical notes and map the biological 
terms to the concepts in a medical ontology. This step uni-
forms physicians’ records and utilizes techniques in natu-
ral language processing (NLP), which are widely applied 
to analyze biomedical documents. (2) Since the clinical 
notes have informal language model, their parsing can be 
noisy. Thus, we ask a user (system user, e.g. practitioner) to 
cure the candidate relations and resolve the inconsisten-
cies. Inconsistencies of the mappings could vary depend-
ing on the method used in the first step. Despite the 
significant advances in neural text processing over the last 
decade, the existing methods are not adequate to effec-
tively parse the medical records.14,15 An example of that is 
misspelling – the use of unknown words – which is a chal-
lenge in NLP. Manually curating the automated results is 
crucial to generate high-quality mappings.16 Thus, to 
reduce the noise and ensure that the extracted terms are 
indeed valid medical concepts, we use manual supervision 
in step 2 (as mentioned above) to validate the automated 
associations between the extracted terms and the concepts 
in the medical ontology. (3) We use electronic health records 
to construct a binary association matrix between the 
patients and the extracted concepts.

Feature space construction. In our model, features corre-
spond to the patients, and the data points correspond to the 

Figure 1. Recovering topological properties using simplicial complexes.

Figure 2. Barcode of 0-dimensional topological properties of the sampled points 
in Figure 1(b). (A color version of this figure is available in the online journal.)
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combination of concepts – we call them patterns. Given a 
feature vector – a data point – a feature is set to 1 if the cor-
responding patient shows all the symptoms associated 
with the data point. Thus, a data point is understood as a 
cluster of patients, who share the same set of symptoms, i.e. 
pattern.

Patterns are generated from the concepts that are extracted 
in the previous phase. We only select the patterns whose 
clusters are non-empty. However, the space of all k-combi-
nations of symptoms grows exponentially as k  increases. An 
efficient way to generate the patterns is to take advantage 
of the combinations of symptoms that are already recorded 
for the patients. Note that a set of k  symptoms associated 
with a patient suggests a pattern of size k  whose cluster is 
not empty – at least includes that single patient. Based on 
this idea, Figure 3 summarizes Algorithm 1 for generating 
the patterns.

Line 1 determines the variable k , which is an upper bound 
for the number of symptoms in any pattern. Line 2 initializes 
the output with patterns of size k . Lines 3–9 describe the 
construction of patterns of size t , t  – the minimum of two 
symptoms and the maximum of k −1  symptoms. Note that a 
pattern of size t  either corresponded to patients with exactly 
t  symptoms (Line 4) or can be obtained from patterns of size 
t + 1 (Lines 5–8). Finally, Line 10 describes the construction 
of patterns of size 1 associated to each extracted symptom.

The complexity of Algorithm 1 is exponential in terms of 
the total number of extracted symptoms. However, in real 
life, rarely the size of the search space will be exponential, 
since often not all possible t-combinations of symptoms are 
recorded for the patients; moreover, k  is notably smaller 
than m. Subsequently, in practice the running time improves 
significantly; our experiment in the next section demon-
strates this fact.

To make an inference about the underlying pathways,  
it is important to analyze the patterns whose clusters are 
statistically significant. The challenge involving higher order 
correlations is that some moments may appear to be non-
zero, even when there are subsets of participating variates 
that are statistically independent of each other. One solution 
to this problem is to compute joint cumulants (also called 
Ursell functions). Percus proved that cumulants involving 
products of independent subsets of variables are zero.17 This 
provides a way to exclude patterns whose moments involve 
those subsets of independent variates.

Let G  represent the moments in moment-generating 
functions [exp( ])Σi i ix J , where the Ji  s are the conjugate 
variables, and let Γ  represent the higher dimensional 
cumulants, for example, for the symptoms x x xi j k, , , then 
G x xij i j= ( )  and G x x xijkk i j k= ( )2 , and Γij  and Γijkk  are 
the corresponding cummulants. The factorizations are as 
follows:

Figure 3. Algorithm 1 to construct patterns–i.e., data points–using the patients-symptoms association matrix.
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where A  is nominally 1, seen by setting Ji = 0. The power 
series in the Ji  s then requires
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We apply the above factorization to the clusters to obtain 
estimates of the cumulants. We constructed a null hypoth-
esis representation by repeatedly computing the cumu-
lants on randomly shuffled variates following Fisher-Yates 
(pp. 26–27)18 to determine if the measured cumulants dif-
fered from variations expected for random uncorrelated 
samples.

After selecting the significant patterns, we associate to 
each selected pattern a vertex (i.e. data point). To define the 
distance function between all the patterns, we first introduce 
the notion of redescription.

Redescriptions are used to identify the phenomena that 
occur in separate ways.19,20 Two different sets of symptoms, 
which correspond to the same group of patients are an 
example of redescriptions. They can highlight the underly-
ing pathways and are used to derive rules in pathways.21 
Redescriptions are mathematically formalized using Boolean 
algebra. Suppose s s1 2,  are two symptoms, and P P1 2,  their 
respective sets of patients. If the presence of symptom s1  
implies the presence of symptom s2 , then P P1 2⊆ . If we 
consider the combination of the symptoms (i.e. s s1 2∧ ), then 
the group of the patients who experience both symptoms 
is P P1 2∩  by assumption is equal to P1 . Therefore s1  and 
s s1 2∧  are examples of redescriptions since both correspond 
to the same group of patients which is P1 . To investigate 
redescriptions, we need to find patterns that give rise to an 
identical set of patients. However, in applications due to 
misclassifications of patients, for example, caused by wrong 
diagnosis, the set inclusion property does not hold in the 
data. Therefore, we should deal with approximate equali-
ties. This estimation can be done by Jaccard distance, which 
measures the dissimilarity between sets. For the two sets A  
and B, Jaccard distance is defined by

d A B
A B
A B

,( ) = − ∩
∪

1

when P P1 2⊆ , then the Jaccard distance d P P P( , )1 2 1 0∩ = , 
otherwise, if P P1 2  then 0 11 2 1< ∩ ≤d P P P( , ) , which can be 
interpreted as the probability that subjects picked from the 
two sets are not shared.

Thus, we consider Jaccard distance to measure the dis-
tances between the sampled data points.

Topological analysis and visualization. In this phase, we 
explore the underlying structure of the space of data points 
representing the patterns using TDA. We employ Vietoris-
Rips (VR) complexes to construct the filtration. The VR 
complex is an abstract simplicial complex with 0-sim-
plexes as the data points, and k-simplexes are created for 
any k + 1 points whose pairwise distances are at most r , 
while r  is fixed and is selected experimentally based on 
the dataset.

First, the initial simplicial complex is set to be the collec-
tion of 0-simplexes corresponding to the sampled data points 
– that is, the clusters of patients selected in the previous phase 
– and the VR complexes are constructed considering Jaccard 
distance as the filtration parameter. Next, the barcodes corre-
sponding to the topological properties of dimension one and 
higher are generated and visualized (Note that topological 
properties of dimension zero are the connected components. 
They show significant relationships between phenotypes, 
however, they do not reveal logical relationships – implica-
tions – among patterns). Finally, the important bars are identi-
fied, and their representative cycles are retrieved to identify 
the logical patterns and infer the hypotheses.

Bias in the clinical notes. Samples collected from unstruc-
tured clinical notes are prone to bias. In the absence of a 
standardized questionnaire, individual physicians could 
notice and record distinct sets of symptoms. To identify 
that there was a bias in whether a term might have been 
selected or not by certain physicians over others, we apply 
a standard χ 2  test among the concepts in the selected 
cycles from the previous phase. For a specific concept, the 
variable of χ 2  of degree P −1  for P  populations would be

u
n qN

qNj

j j

j

= ∑
−( )P

2

where, for a population j , Nj  is the total number of sam-
ples, nj  is the number of observations of the concept in 
the population j , and q  is the estimate of the proportion 
that the concept appears across all the populations, which 
is denoted by

q
n

N

j
j

P

j
j

P=
∑

∑

Finally, we obtain a degree of certainty to infer hypotheses 
regarding the existence of alternative biological pathways.

Experimental setup

We begin this section by describing the dataset, then we 
discuss the experiments.

Dataset. We used the dataset introduced in the study by Xu 
et al.22 The dataset is continually updated with the available 
records of confirmed COVID-19 patients. We used the 
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version published on 8 June 2020. Among the available 
records in the data set, we retained all the records that their 
“symptom” field was non-empty, this amounted to 1513 
patients. This field, which is a textual feature, is a clinical note 
describing the patient’s medical state. Of the 1513 subjects 
included in the study, 640 were women (42.3%) and 873 were 
men (57.7%).

Experimental details. In the first phase, to parse the clini-
cal notes and extract the biomedical terms, we used Ama-
zon Comprehend Medical (ACM), an online proprietary 
NLP programming interface to analyze the unstructured 
clinical notes. For technical details regarding ACM see the 
study by Jin et al.23 We also used the International Classifi-
cation of Diseases (ICD-10-CM) to select the concepts. 
Extracted terms are mapped to the concepts by ACM, 
which brings more uniformity to the translated physician 
comments. ICD is a medical ontology, published by the 
World Health Organization to classify diseases, symptoms, 
and other medical conditions in a comprehensive, hierar-
chical manner.

ACM associates a list of ICD-10-CM codes to each 
extracted medical condition, ordered by their confidence 
scores. Hence, for each extracted term, we retained a code 
with the highest confidence score. If a medical condition 
was associated to more than one ICD-10-CM code with 
high confidence scores, to prevent loss of information we 
considered all those codes as a group and annotated them 
by their common prefix code. An example of that includes 
R53. = {R53.1: Weakness, R53.81: Malaise, R53.83: Other 
fatigue}. Table 1 provides the list of ICD-10-CM codes that 
are grouped together. We also incorporated manual super-
vision when ACM was not able to detect a term due to mis-
spellings, such as “Mialgia” and “Milagia” for “Myalgia.”

The first phase of the pipeline resulted in 86 ICD-10-CM 
codes. However, most clusters associated with the codes 
were sparse (two or three samples). We filtered sparse classes 
to enhance the validity of the analysis by obtaining stronger 
associations among redescriptions. Thus, we retained 31 
ICD-10-CM codes. Table 2 presents the selected classes and 
their number of patients. Based on the data, fever, cough, 
and fatigue are the most common symptoms among the 
COVID-19 patients.

In the second phase, we used Algorithm 1 to generate 
the combinations of codes from the selected classes. Since 
the algorithm takes advantage of patterns obtained from 
each patient’s set of symptoms, we provided the number of 
patients who experienced k  symptoms in Table 3. This table 
suggests that clusters associated to combinations of more 
than seven symptoms are empty; moreover, there are at most 
two patterns of size 7 whose clusters are non-empty. Using 
Algorithm 1, we obtained 734 patterns of non-empty clus-
ters. The runtime of our implementation was about 1 s on a 
regular personal computer, which is remarkable given that 
the total number of extracted symptoms is 31  and k = 7 .

In the third phase, we used Dionysus package for the 
construction of simplicial complexes and visualization. We 
also incorporated the Cyclonysus implementation to retrieve 
the representative cycles of the one-dimensional topological 

Table 1. Grouped ICD-10-CM concepts.

Class ICD-10-CM groups

J18. J18.9, J18.0
J96. J96.00, J96.01, J96.90
R06. R06.03, R06.00, R06.02, R06.89, R06.2
R07. R07.89, R07.9, R07.81
R11. R11.0, R11.10
R19. R19.7, R19.8
R53. R53.1, R53.83, R53.81

ICD-10-CM: International Classification of Diseases.

Table 2. Thirty-one ICD-10-CM concepts with the number of patients in 
each class and their respective percentage of total.

Description ICD-10-CM # %

Acute myocardial infarction I21.9 5 0.3
Pulmonary heart disease I27. 0.4 0.4
Cardiac arrhythmia I49.9 5 0.3
Heart failure I50.9 9 0.6
Acute pharyngitis J02.9 136 8.8
Pneumonia J18. 151 9.7
Nasal sinuses J34.89 65 4.2
Respiratory failure J96. 64 4.1
Pain in joint M25.50 23 1.5
Muscle spasm M62.838 24 1.6
Myalgia M79.10 70 4.5
Disorders of bone M89.8X9 10 0.6
Kidney failure N17.9 9 0.6
Cough R05 594 39.3
Abnormalities of breathing R06. 138 9.1
Sneezing R06.7 17 1.1
Chest pain R07. 24 1.6
Abnormal sputum R09.3 43 2.8
Nasal congestion R09.81 11 0.7
Abdominal pain R10.9 6 0.4
Nausea R11. 29 1.9
Diarrhea R19. 28 1.8
Dizziness R42 6 0.4
Fever R50.9 1073 71
Headache R51 76 5
Unspecified pain R52 24 1.6
Fatigue R53. 177 11.7
Anorexia R63.0 8 0.5
Sepsis R65.21 17 1.1
Chills R68.83 41 2.7
Dry mouth R68.2 6 0.4

ICD-10-CM: International Classification of Diseases.

Table 3. Number of patients with k symptoms.

k #

1 663
2 462
3 277
4 84
5 23
6 2
7 2
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properties. To construct the VR filtration, we set the thresh-
old of the filtration parameter to 0 5. . Because Jaccard dis-
tance is interpreted as the fraction of subjects that are not 
shared between the two clusters, hence a distance exceed-
ing 0 5.  represents a situation where there is less than 50% 
chance for any subject to be in both clusters, which does not 
imply strong clinical relationship among the patterns.

Before we present the main results of the proposed pipe-
line as a motivating example, we report our experiments on 
analyzing the extracted data using one of the well-known 
algorithms.

Biclustering. Biclustering algorithms24 have been widely 
applied to analyze the association matrix between the 
samples and the phenotype features and, in particular, are 
used to identify subgroups of patients who exhibit similar 
features.24,25

We are interested in identifying evidence that highlights 
multiple distinctive biological pathways that lead to the 
disease. For redescription analysis, and TDA, we are seek-
ing distinct and independent descriptions – patterns – that 
capture the same subjects, marking connections between 

phenotypes and underlying biological processes tying these 
phenotypes together. By Percus’ theorem, cumulants repre-
sent factored correlations, which cancel if the cumulant is 
comprised of independent subsets of features, so they pro-
vide a distinct and unique set of phenotype combinations 
that may be validated by significance tests. Since biclustering 
generally seeks relationships between subject subsets that 
share groups of features identified by some variant of low 
two-way analysis of variance (ANOVA)-like within-groups 
variations, we considered whether the information provided 
with these techniques would be informative.

We applied several biclustering algorithms, implemented 
in the biclust package (version 2.0.3) using the R language 
(version 4.7.8), on the association matrix between the patients 
and the ICD-10-CM codes that we obtained from the first 
phase of the pipeline. The PLAID model offered the largest 
number of clusters. Figure 4 shows several clusters domi-
nated by just one or two phenotypes, and one large cluster 
with a number of phenotypes. The heatmap is also shown in 
Figure 5. The largest cluster may indicate systematic report-
ing bias excluding some comorbid features among COVID 
patients. In this situation, approaches such as biclustering 

Figure 4. Bicluster membership graph. (A color version of this figure is available in the online journal.)
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identify multivariate associations, but we require more 
information in order to (1) extract logical implications from 
the data as provided by redescriptions and (2) derive their 
topological connectivity elucidating the multiple etiological 
pathways typifying complex diseases.

Results

In this section, we report the main result and discuss its 
significance.

We obtained topological properties of dimension 1; there 
was no topological property of higher dimensions. Figure 6 
shows the barcode of the one-dimensional topological prop-
erties whose lifetimes are within the interval (0, 0.5). The 
horizontal axis corresponds to the parameter of the filtration 
– Jaccard distance – and the vertical axis corresponds to the 
number of properties.

First, we retrieved a representative cycle for each bar in 
Figure 7. Next, we selected the cycles based on two factors: 
(1) Cycles that are dominated by sparse clusters are weak 
for inferring clinical hypothesis, hence it is important to 
note the number of subjects. (2) With respect to the size of 
the clusters, cycles with low Jaccard distances have higher 
preference. At any two data points, the lower the distance, 
the more similar are their sets of patients. Therefore, low 
Jaccard distances lead to better estimations of redescriptions. 
Considering these two factors, of the retrieved cycles, only 
one stood out; it corresponds to the first bar annotated by the 
circled line – spans between 0.23 and 0.34. The other bars not 
only belong to the higher Jaccard distances, but also corre-
spond to small clusters. Hence, what follows is an account of 
the one-dimensional topological property, which is striking.

This cycle suggests that among the subjects in R09.3 
– abnormal sputum – there is not a particular interaction 

Figure 5. Bicluster heatmap graph. (A color version of this figure is available in the online journal.)
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between subjects in R05 – Cough – with subjects in R50.9 
– fever. This opens the question of whether there is a dis-
tinctive signature showing alternative pathways to disease 
among dry coughers compared to productive coughers.

Discussion

To interpret the relationships between the symptoms in 
Figure 7, we rely on Jaccard distance. Since the equivalence 
of sets of subjects matching different patterns produces logi-
cal constraints determined by biological processes, multi-
ple pathways connecting phenotypes to disease may yield 
information about multigenic complex diseases marked by 
multiple pathways leading to disease. However, phenotype 
definitions are prone to misclassification for several reasons. 
Therefore, equivalence may be meaningfully characterized 
based on the chances that a subject in one or the other of 

two phenotype clusters is not in both, which is the Jaccard 
distance, described above.

In the case of Figure 7, which corresponds to a subset of 
patients of size 43 (Table 4), there are two paths leading from 
R09.3 (abnormal sputum) to R R R5005 09 3 9∩ ∩. . , one passing 
through R R5009 3 9. .∩  and the other through R R05 09 3∩ . ,  
where R05 is cough and R50.9 is fever. In both pathways, 
the distances between sputum and cough is larger than that 
between sputum and fever. So coughing is not as strong an 
association as fever for abnormal sputum production. In this 
case, the relationship between sputum and fever is independ-
ent of coughing since the cycle appears to be a parallelogram. 
So, a coughing symptom is independent of fever among 
sputum productive subjects. This suggests the paths are inde-
pendent predictors of severe disease.

The patient records were generally gleaned from hospital 
records, suggesting some level of severity among those we 
had any records for. Those items whose ICD-10-CM records 
we retained related to severity would include sepsis, pneu-
monia, kidney failure, and so on. Some cardiac features may 
refer to pre-existing comorbidities or were perhaps acutely 
induced in COVID-19; the records are not clear on the point. 
So, it may not be clear if associations with these features 
indicate susceptibility due to comorbidities, or whether they 
are caused by COVID-19 among more severe patients. In any 
case, any significant associations may be identified, even if 
the chronic/acute status has not been recorded.

One of the major limitations of the approach involves 
missing clinical outcomes and non-standardized physi-
cian records. Since there was no systematic design for 
study enrollment or questionnaire construction, correla-
tions between recorded symptoms and outcomes could be 
induced by individual physician preferences at the facilities 
from which the records were gleaned. For example, it would 
not be clear whether cough productivity (sputum) would 
be due to a distinct set of severe cases, or whether a specific 
physician dealing with severe patients noted productivity. 
This would yield an apparently distinct group of severe 
patients with larger Jaccard distances from other groups.

COVID-19 refers to the disease that emerged from infec-
tion of severe acute respiratory syndrome coronavirus 2 
(SARS-COV-2) virus. As such, disease presentation includes 
cytokine storms, vascular leaking, and other features that 
may be associated with physiological response to the virus. 
While cytokine storms are shared among some respiratory 
infections, COVID-19 shows some very distinctive features in 
response among severe patients. The nature of that response 
among patients with certain comorbidities is also a hallmark 
of COVID-19. Patients that are selected as relevant to specific 
clusters (redescriptions) are good candidates for identifying 
differences in gene expression levels or other genetics or 
proteomics that may mark these as distinctive pathways, 
offering a window to the process – if such associated data 
were available. As it stands, scope has been limited by what 
data have been available. We have no sequence (subject or 
virus), -omics, or other data associated with these records; so 
given available scope, we have not articulated this what-if.

Distinctive feature of COVID-19 is the rarity of productive 
coughs. Given that these symptom cycles reflect correlations 
among several features including phlegm, we sought to under-
stand or identify bias in how this symptom was recorded. 

Table 4. Age groups of the 43 subjects in R09.3.

Age # %

<30  4  9
30–39  4  9
40–49 11 26
50–59  7 16
60–69  6 14
70–79  5 12
80–89  6 14

Figure 6. Barcode of one-dimensional topological properties. (A color version of 
this figure is available in the online journal.)

Figure 7. Representative cycle of the annotated bar.
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The first feature was that the choice of word was idiosyn-
cratic. Some reports preferred “phlegm” others “sputum” or 
“expectoration” leading to the question of whether the words 
were specific to individual physicians more prone to reporting 
an observation of a productive cough. However, the records 
included in the database were scraped and translated from 
records in the languages of the source regions. The selection 
of terminology was an artifact of the translation software in 
the pre-processing step, and not necessarily reflective of indi-
vidual physicians. Furthermore, in any one country, the reports 
spanned multiple provinces, indicating that the reports did not 
issue from any specific clinic, in general.

Another level of test was to check whether there were 
some regions more likely to pay attention to productivity in 
coughs due to variations in traditional medical practices and 
education. We applied the standard chi-square test, χP−1

2 , as 
mentioned in the last phase of the pipeline, P  is the number 
of regional jurisdictions in the database, nj  is the number of 
records showing an ICD-10-CM of R09.3, Nj  is the number 
of patient records scraped from the regional jurisdiction, and 
q  is the estimate of the proportion of cases with ICD-10-CM 
of R09.3. Two outliers were identified in Heilongjiang, China, 
who had four patients, all with productive cough; and Ulsan, 
South Korea, which had two patients, all with productive 
cough. Excluding these, the representative q  = 2.498 % , with 
a p-value of 0.996, indicating the variations in reported R09.3 
across populations well within levels expected due to sam-
pling variation. So, we do not accept the hypothesis that bias 
is present, except possibly in the two outliers.
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