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Introduction

Digital pathology is a subfield of pathology that focuses 
on acquisition, management, sharing, and interpretation 
of pathology information from digitized specimen slides. 
It can be traced back to the 1960s when first telepathology 
experiments took place.1 Since the idea of virtual micros-
copy appeared in several areas of life science research in the 
1990s,2 digital imaging has revolutionized the practice of 
pathology in many ways – not only decreasing costs asso-
ciated with storage and handling of glass slides, but also 

shortening waiting times on diagnostic decisions, increasing 
precision of diagnosis, and enabling faster treatment.

Compounded by demographic changes, pathology services 
in healthcare systems across the world are under pressure from 
increasing demand and resource limitations – even as the digi-
tization of specimen samples paves the way for the use of com-
putational image analysis technology and software. Modern 
artificial intelligence (AI)-based systems have the potential to 
handle vast amounts of data, far in excess of what humans are 
capable of, and as such have huge potential to assist patholo-
gists in their diagnostic work and allay these pressures.
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Abstract
Fully supervised learning for whole slide image–based diagnostic tasks in histo
pathology is problematic due to the requirement for costly and time-consuming 
manual annotation by experts. Weakly supervised learning that utilizes only slide-
level labels during training is becoming more widespread as it relieves this burden, 
but has not yet been applied to endometrial whole slide images, in iSyntax format. 
In this work, we apply a weakly supervised learning algorithm to a real-world 
dataset of this type for the first time, with over 85% validation accuracy and over 
87% test accuracy. We then employ interpretability methods including attention 
heatmapping, feature visualization, and a novel end-to-end saliency-mapping 
approach to identify distinct morphologies learned by the model and build an 
understanding of its behavior. These interpretability methods, alongside consultation 
with expert pathologists, allow us to make comparisons between machine-learned 
knowledge and consensus in the field. This work contributes to the state of the art 
by demonstrating a robust practical application of weakly supervised learning on 
a real-world digital pathology dataset and shows the importance of fine-grained 
interpretability to support understanding and evaluation of model performance in 
this high-stakes use case.
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Impact Statement

Our article contributes to the growing body of work 
on weakly supervised deep learning for diagnostic 
tasks in digital pathology, a promising field of enquiry 
which has potential to significantly benefit patients 
with faster and more accurate diagnoses while reliev-
ing pathologists from the burden of time-consuming 
manual annotation necessary for fully supervised 
methods. We use real-world endometrial dataset col-
lected from multiple labs and demonstrate over 85% 
diagnostic accuracy despite huge variation in image 
size, magnification, and staining across the data. 
We show in detail how we achieved these results to 
enable replication of our work. We also apply three 
interpretability methods to our trained model, and in 
consultation with expert pathologists demonstrate 
that weakly supervised learning can produce mod-
els that learn to identify highly salient features in the 
data. Work of this kind is crucial to support wide-
spread, and crucially, safe adoption of these powerful 
deep-learning techniques in digital pathology.
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Endometrial cancer is the most common gynecologi-
cal cancer in industrialized countries. It is the fourth most 
common cancer,3 with around 9700 new cases in the UK 
every year – fortunately, deaths from this type of cancer are 
decreasing year on year due to early diagnosis via trans-
vaginal ultrasound or biopsy tests. Deep learning can assist 
pathologists in automating the image analysis process and 
thereby speed up life-saving detection, and so increasingly 
AI solutions are applied to endometrial whole slide images 
(WSIs) to detect cancers and segment regions of interest.

However, training deep-learning models on gigapixel 
size WSIs is prohibitively computationally expensive, and 
so patching approaches (in which the input image is divided 
into a series of small patches before training) are typically 
employed in this use case. Another constraint associated 
with machine learning on WSIs is the high cost of label 
acquisition – in order to perform supervised learning, many 
slides are necessary, and each slide requires time-consuming 
manual annotation by experts (in comparison with image 
classification or segmentation tasks on natural image data, 
which may be easily labeled by laymen). This cost can be 
prohibitive at scale, and so it is often necessary to use weakly 
supervised training methods, as we employ herein.

Weakly supervised learning methods are often used to 
train deep neural networks to detect and localize different 
cancer types, but understanding how these models work 
can be difficult due to the opaque nature of their “black-box” 
architecture. This is a broader problem in deep learning as a 
whole, but particularly relevant here due to the high-stakes 
use case. If our model is performing well because of some 
spurious correlation in the data, we definitely want to know 
about it before using that model for clinical diagnostic tasks. 
This concern has been a topic of much study, and various 
approaches to model interpretability for machine learning 
in medicine have been developed.4

Multiple instance learning (MIL) is a variation of super-
vised learning that assigns a single class label to a set of 
instances (e.g. the patches extracted from of a WSI).5 The 
original MIL algorithm restricts its scope to binary classi-
fication problems, based on the assumption that if at least 
one patch belongs to the positive class, then the entire slide 
should be classified as positive, whereas a slide should be 
classified as negative if all patches are of the negative class. 
This assumption is reflected in the rigid, non-trainable aggre-
gation function of max pooling which simply uses the patch 
with the highest predicted probability for the positive class 
for the slide-level prediction, rendering MIL in this form 
suitable for neither multiclass classification nor binary clas-
sification problems in which no intrinsic positive/negative 
assumption can be made.6 Further work has employed dif-
ferent aggregation methods to provide better slide-level 
accuracies. For example, attention-based deep MIL7 replaces 
permutation-invariant aggregation operators (e.g. the maxi-
mum, or mean) with a trainable weighted average using a 
two-layered neural network, corresponding to the attention 
mechanism.

Other learning-based aggregation methods include that 
of Campanella et al.,8 which employs a full inference pass 
through the dataset to rank the patches according to their 
probability of being positive, and learning takes place only 

on the top-ranking patches of each slide. The aggregation 
of patch-level to slide-level classification is carried out by a 
recurrent neural network (RNN), such that the most suspi-
cious patches in each slide are sequentially passed to the 
RNN to predict the final slide-level classification.

The weakly supervised approach for classification of 
whole slide lung cancer images proposed by Wang et al.9 
takes advantage of a patch-based fully convolutional net-
work for discriminative block retrieval. Furthermore, con-
text-aware feature selection and aggregation strategies are 
proposed to generate globally holistic WSI descriptors.

The clustering-constrained attention MIL10 requires only 
slide-level labels while being data-efficient, adaptable, and 
capable of handling multiclass subtyping problems. This 
method has been applied to a variety of datasets such as 
Camelyon 16, Camelyon 17, and The Cancer Genome Atlas 
(TGCA) datasets.

Huang and Chung11 propose a weakly supervised con-
volutional neural network (CNN) method for localizing 
cancerous evidence on histopathology images. Unlike 
the conventional feature-based approaches, the proposed 
Cancerous Evidence Localization Network (CELNet) does 
not rely on specific feature descriptors but learns discrimina-
tive features for localization from the data. The localization 
results based on cancerous evidence localization map high-
light the localized evidence which provides visual assistance 
for the pathologists.

CNN-based models used for endometrial cancer detec-
tion along with visualization techniques have provided 
pathologists better interpretability of model diagnoses. 
While state-of-the-art methods for WSI diagnosis rely on 
fully supervised methods, experimental results of weakly 
supervised methods as discussed above demonstrate com-
petitive performance and can offer a realistic solution for 
triage where acquiring detailed annotations is impractical.

The computer-aided diagnosis (CADx)12 approach uses 
a convolutional neural network and attention mechanisms 
for detecting four fine-grained classes of endometrial tissue, 
namely, the (normal) endometrium within a regular men-
strual cycle, endometrial polyp, endometrial hyperplasia, 
and endometrial adenocarcinoma. The hematoxylin and 
eosin–stained (H&E) slides used in this experiment were 
scanned at 10× or 20× magnification. Interpretability is pro-
vided by highlighting the histopathological correlations of 
local (pixel-level) image features to morphological charac-
teristics of endometrial tissue.

Hong et al.13 employ a customized multiresolution deep 
convolutional neural network that predicts molecular sub-
types and 18 common gene mutations in endometrial can-
cer based on digitized H&E-stained pathological images. 
The models learn human interpretable and generalizable 
features, indicating potential clinical application without 
sequencing analysis.

Li et al.14 propose a weakly supervised framework that 
learns the feature representations of various lesion areas 
from endometrial histopathology WSIs. The proposed 
framework consists of a contrastive learning network as the 
backbone and a designed contrastive dynamic clustering 
(CDC) module to embedding the lesion information into 
feature representations.
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However, all the above approaches are constrained to 
binary classification, which significantly limits their applica-
tion to real-world datasets. For this reason, we here adopt the 
clustering-constrained attention multiple instance learning 
(CLAM) method as proposed by Lu et al.,10 which resolves 
these issues by extending the MIL paradigm to support mul-
ticlass subtyping problems.

In addition, the use of attention-based aggregation allows 
for straightforward attention heatmap generation, which is 
useful for the evaluation of model behavior.

Materials and methods

In this article, we adopt the weakly supervised CLAM 
method proposed by Lu et al.10 for slide-level diagnosis of 
endometrial H&E WSIs. This task is framed as a multiclass 
classification problem, with three classes: malignant, benign, 
and insufficient.

We integrated the CLAM method with Philips Pathology 
Software Development Kit (SDK) to enable its use with 
endometrial WSIs in iSyntax format. Code to achieve this is 
available at https://github.com/Mahnaz54/icaird-weaklys-
upervisedlearning, which we believe will prove useful to the 
interested community as the CLAM method has not previ-
ously been applied to iSyntax format data. Moreover, we 
extend this approach using end-to-end saliency-based seg-
mentation to identify key regions within patches at the pixel 
level, thereby generating far more detailed segmentation 
maps for interpretability purposes than attention mapping 
can offer from only weakly labeled data. We also use fea-
ture visualization via input optimization to identify distinct 
morphologies learned by the model to differentiate between 
tissue classes and discuss how these interpretability methods 
enable us to better understand the trained model behavior 
with expert pathologist input.

Data collection

The H&E WSIs used to train, evaluate, and test the algorithm 
in this article are part of the national database for automated 
reporting of the digital diagnostics within the pathology AI 
stream of iCAIRD (Industrial Centre for Artificial Intelligence 
Research in Digital Diagnostics), used to develop a system to 
identify and segment pathologies in endometrial H&E WSIs. 
These slides are of different sizes and scanned at different 
resolution levels, and also vary in color, as H&E staining 
intensity and hue vary across different labs. No color nor-
malization has been applied to the slides or patches at any 
step of the pipeline, to ensure that our trained model will 
generalize to unseen hue and intensity in the test set, and 
each slide is from a different patient to ensure robustness to 
interpatient application of the trained model.

Due to these factors, our dataset exhibits a wide vari-
ance – Figure 1 illustrates an overview of data complexity 
in this experiment. Figure 1(a) to (d) shows examples of 
color variations, fragmentation intensity, slides scanned at 
low resolution, and few slides that contain more than one 
subimage, respectively.

The tissue blocks for this study originate from Glasgow 
Royal Infirmary (NG), Southern General Hospital (SG), 
Royal Alexandria Hospital (RAH), and Queen Elizabeth 

University Hospital (QEUH) (all in Glasgow, Scotland), each 
with independent tissue handling including fixation and tis-
sue processing. New tissue sections were cut from the tissue 
blocks at one of two different thicknesses (3 or 4 µm) and 
stained with one of four different H&E protocols (routine 
H&E, muscle biopsy protocol, neuro protocol, and paeds 
protocol). Together, these options maximize WSI variance 
and thereby decrease the likelihood of overfit to any one lab. 
Table 1 gives an overview of the main categories (slide-level 
labels) and subcategories, along with the numbers of sam-
ples in each main category for train, validation, and test sets. 
As the table illustrates, the dataset is quite imbalanced. For 
this experiment, only the whole slide-level diagnosis (slide-
level labels) has been used, and no segmentation annotations 
or subcategory labels are used for training.

We received a total of 2910 WSIs of endometrial biopsies 
with just one WSI per patient. All WSIs from two of the stain-
ing labs (staining labs 6 and 8) and 10% of WSIs from other 
labs which were randomly selected and balanced over the 
category, subcategory, and staining labs were set aside as 
test set. Remaining slides were used for training. We selected 
25% of the training slides randomly but balanced over cat-
egory, subcategory, and staining labs for validating the algo-
rithm during the training. This resulted in 1497 train, 499 
validation, and 911 test samples as shown in Table 1.

Overall distribution of data between train, validation, and 
test sets based on staining sites and staining labs is shown 
in Tables 2 and 3. To assess the generalization ability of our 
model to unseen staining protocols, the entirety of the data 
from two of the labs was withheld from the training set and 
included only in the test set.

The endometrial H&E WSIs used in this experiment are 
of iSyntax format. The iSyntax image format combines the 
medical-grade image quality of JPEG 2000 with the speed 
of JPEG and enables scalable cost-effective image storage 
both on premise and in the cloud, which makes it a distin-
guished image format for storing pathology WSI. The wave-
let transformation technology allows users to zoom and pan 
through WSI images quickly. iSyntax encoding and decod-
ing can be processed in real-time, and because the wavelet 
technology obviates the need for the redundant storage of 
lower magnification images in a pyramid format, it results 
in a 25% smaller file size. Unlike other formats that have a 
limited dynamic range, the iSyntax pathology format allows 
for medical image quality featured by arbitrarily high bit-
depths, unlimited number of channels, lossless and lossy 
compression, and progressive decompression in terms of 
resolution and quality.15

Annotations

The annotation process stratified each slide into four  
primary diagnostic categories: Endometrial Carcinoma, 
Carcinosarcoma, Uterine Sarcoma, and Endometrial 
Hyperplasia with Atypia. All slides from a balanced set of 
benign and malignant endometrial biopsies were digitally 
scanned on a Philips UFS Scanner as iSyntax WSIs. These 
were exported from the Philips Information management 
System and converted to OME-Tiffs using Glencoe Software 
as the original iSyntax images were not compatible with 
QuPath (Version v0.2.3). Images were manually annotated 
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Figure 1.  Overview of data complexity in endometrial dataset. (a) Color variations in endometrial whole slide images. (b) Intense fragmentation in endometrial whole 
slide images. (c) Low-resolution scanned whole slide images. (d) Multi subimages in endometrial whole slide images. (A color version of this figure is available in the 
online journal.)
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on a touchscreen Microsoft Surface Studio using a Surface 
Pen. The annotation protocol was to define the overall 
slide class followed by manual annotation of any different 
classes present on the WSI. Annotation classes were labeled 
in QuPath and annotations and labels were exported. The 
annotation vector files were aligned to the original iSyntax 
images for analysis. The annotation process was tracked in 
a bespoke Microsoft Access Database.

Each slide was randomly assigned to one of four par-
ticipating Consultant Pathologists for annotation. Each of 
the participating pathologists had a subspecialist interest in 
Gynecological Pathology and participated in the National 
Gynecological Pathology External Quality Assurance 
Scheme. Primary annotation was performed either by one of 
the four pathologists or by a Biomedical Scientist, who were 
specifically trained for this project. All annotations done by 
a Biomedical Scientist were signed off by one of the study 
pathologists.

These annotated slides were divided into three sets: a 
training set, a validation set, and a test set, none of which 

overlap. Besides annotations on the digital slides themselves 
(detailed annotations/subcategories), the pathologists have 
supplied the diagnosis decision (main categories/slide-level 
labels). In this experiment, we only use the diagnosis deci-
sions. The category labels are defined as follows:

1.	 Malignant: If a slide contains any of the four pri-
mary diagnostic categories (Endometrial Carcinoma, 
Carcinosarcoma, Uterine Sarcoma, and Endometrial 
Hyperplasia with Atypia), it is labeled as Malignant 
at slide level.

2.	 Insufficient: A slide which does not contain enough 
tissue on it to make diagnosis is labeled as Insufficient. 
Often an insufficient slide contains a tiny amount of 
tissue surrounded by blood and mucus.

3.	 Other/Benign: Slides with Menstrual/Shedding 
Endometrium, Inactive/Atrophic Endometrium, 
Hormonal Change, Proliferative Endometrium, and 
Secretory Endometrium are categorized as Normal/
Benign.

Weakly supervised whole slide analysis pipeline

The deep-learning-based weakly supervised method used in 
this article is a CLAM method proposed by Lu et al., which 
we integrated with the Philips Pathology SDK to enable the 
processing of iSyntax WSIs. CLAM is a deep-learning-based 
weakly supervised method that uses attention-based learn-
ing to automatically identify subregions of high diagnos-
tic value to accurately classify the whole slide while also 
utilizing instance-level clustering over the representative 
regions identified to constrain and refine the feature space. 
For whole slide-level learning without annotation, CLAM 
uses an attention-based pooling function for aggregating 
patch-level features into slide-level representations for clas-
sification. Figure 2 shows the structure of the pipeline for 
weakly supervised whole slide analysis.

To avoid repetition, we just give a brief description of 
different steps of the pipeline in this article. Details for each 
step can be found in the paper by Lu et al.10

Tissue segmentation and patching of the WSI.  The WSIs 
are encoded in a pyramid structure consisting of multiple 
images at different resolutions. The baseline image has 
the highest resolution. WSIs generated at diagnostic resolu-
tion are exceptionally large: a typical WSI may contain 
100,000 × 100,000 pixels. The large size of WSIs makes it 
necessary to break down the WSIs to smaller patches for 
analysis. For each WSI, the pipeline reads in the slide to the 
memory at a downsampled resolution and then segments 
the tissue from the background to reduce the irrelevant 
white space in the slide. The segmentation process starts 
with converting the downsampled WSI from RGB to HSV 
color space. A binary mask is then created after applying 
median blurring to smooth the edges and thresholding the 
saturation channel of the smoothed image. The small gaps 
and holes will be filled by morphological closing. Finally, 
the deleted foreground contours are filtered based on an 
area threshold and the coordinates of the contours are 
saved. A segmentation mask for each WSI is then created for 

Table 1.  Number of samples in each category for iCAIRD endometrial 
dataset.

Category Subcategory Train Validation Test

Malignant - Hyperplasia with atypia
- Adenocarcinoma
- Carcinosarcoma
- Sarcoma

444 148 269

Other/Benign - Hormonal Change
- Inactive/atrophic
- Menstrual
- Secretory
- Proliferative

954 318 595

Insufficient - Insufficient   99   33   47

Table 2.  iCAIRD endometrial dataset distribution over staining sites.

Staining Site Train Validation Test

NG   367 140 253
SG   407 128 277
RAH   336 100 164
QEUH   387 131 217
Total 1497 499 911

NG: Glasgow Royal Infirmary; SG: Southern General Hospital; RAH: Royal 
Alexandria Hospital; QEUH: Queen Elizabeth University Hospital.

Table 3.  iCAIRD endometrial dataset distribution over staining labs.

Staining Site Train Validation Test

Lab-1 268 75 37
Lab-2 260 85 38
Lab-3 241 90 37
Lab-4 263 83 37
Lab-5 236 83 34
Lab-6 – – 343
Lab-7 229 83 34
Lab-8 – – 351
Total 1497 499 911



2030   Experimental Biology and Medicine   Volume 247   November 2022

visual inspection. Patches are cropped from the segmented 
tissue area at the specified magnification (level 0) at the 
desired patch size (256 × 256). The coordinates of the 
patches are saved to avoid storing the patches in memory. 
The number of patches extracted for each slide depends on 
the size of the slide and the magnification level. Patches also 
can be extracted with overlap, but in this experiment, we 
have not used overlapping patches.

Feature extraction.  Features are then extracted from each 
patch using a deep neural network – in our case, a ResNet50 
model pretrained on ImageNet. The pretrained ResNet50 
model is modified by adding an adaptive mean-spatial 
pooling after the third residual block of the network to con-
vert each patch into a 1024-dimensional feature vector. 
Feeding these extracted features as inputs to a deep neural 
network results in faster training time and lower computa-
tional cost, which makes training a deep-learning model on 
substantial number of slides practical.

Instance-level clustering and attention scoring.  The fea-
ture vectors are then passed to the rest of the pipeline to be 
clustered. For each class, the attention network ranks each 
patch in the slide and assigns an attention score based on its 
relative importance to the slide-level diagnosis. Attention-
pooling weighs patches by their respective attention scores 
and summarizes patch-level features into slide-level repre-
sentations, which are used to make the final diagnostic pre-
diction. These attention scores also can be visualized as a 
heatmap to identify which regions the model used for diag-
nosis. The regions of high attention are displayed in red 
(positive evidence, high contribution to model’s prediction 
relatively to other patches) and the regions of low attention 
are displayed in blue (negative evidence, low contribution 
to model’s prediction relatively to other patches).

Saliency segmentation

One of the largest problems in machine learning from WSIs 
is the lack of available pixel-level annotations for train-
ing. Classifying intraslide regions requires many hours of 
expert annotation, which is often prohibitively costly and 

time-consuming – hence the weakly supervised approach 
we adopt.

A common way of obtaining class-specific segmentation 
in this context, without the need for human annotators, is 
by inspecting the attention apportioned to each patch by 
the attention backbone component of our classifier model, 
as described above. This approach is useful for validating 
model predictions, as it enables easy inspection of smaller 
regions and insight into which areas were more or less 
instrumental in producing the final slide prediction – how-
ever, it can tell us little about smaller learned features present 
within patches, other than whether they are present or not, 
and produces segmentations too coarse for clinical use. To 
create more detailed saliency maps to aid in understand-
ing and validating our model’s behavior, we here outline 
an end-to-end saliency-mapping algorithm that generates 
pixel-level segmentations for each patch.

For this, we use Hierarchical Perturbation (HiPe),16 a sali-
ency-mapping method which is both model-agnostic and 
highly computationally efficient – this is necessary in order 
to mitigate the huge computational cost of pixel-level attri-
bution on gigapixel input images. Given that our model is 
dual-stage, combining first feature extraction followed by a 
classification network, and that in this work we tested dif-
ferent model architectures, patch sizes, and other hyperpa-
rameters, model agnosticism was also key in this choice of 
saliency algorithm.

As our goal is to segment tissue, as well as to generate 
saliency maps for interpretability purposes, in this work we 
adapt HiPe to focus on perturbing regions not with higher 
saliency, but with lower saliency variance between classes 
– thus, we optimize for more detailed mapping in regions 
where the model is less certain which class is predominant 
by adapting HiPe to operate over all classes simultaneously 
and replacing the standard threshold function:

t s,m =
if max s m min s+

max s min s

otherwise
( )

( ) ≥ −( )


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2

0

°

with the following:

Figure 2.  Weakly supervised WSI classification from patch features. (A color version of this figure is available in the online journal.)
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of classes (in this case, three: malignant, insufficient, and 
benign/other). This results in fine-grained segmentation 
maps that can be compared with the ground truth labels 
provided by the experts.

Feature visualization

Interpretability of deep neural networks can be helpful to 
healthcare. Feature visualization is one the fundamental 
building blocks that combined with additional tools helps 
to see what a network is looking for by generating examples.

Neural networks, in general, are differentiable with 
respect to their inputs. Iteratively tweaking the input toward 
a specific goal using the derivatives can help find out what 
kind of input causes that certain behavior. Different optimi-
zation objectives show what different parts of a network are 
looking for. To create examples of output classes from a clas-
sifier, we can optimize the class logits before the softmax or 
optimize the class probabilities after the softmax.

As proposed by Erhan et al.,17 learned features for each 
class (class logits before the softmax) can be visualized via 
input optimization in order to better understand how a 
trained model discriminates between classes. Hence, to visu-
alize what the model is using to discriminate between the 
classes, we optimize the input image using derivatives for 
each class to maximize the output of the model for that image.

Results

The CLAM model described in section “Materials and meth-
ods” was trained on training endometrial WSIs of three dif-
ferent classes (Malignant, Insufficient, and Other/Benign). It 
was then evaluated on validation set and tested on test set 
WSIs. We also trained multiclass variant of the MIL model 
proposed by proposed by Lu et al.10 on the same data for 
comparison. Table 4 shows the performance evaluation of the 
CLAM model on the validation and test sets and its compari-
son with multiclass variant of the MIL model performance 
on the same sets. This performance comparison declares an 
improvement of 4.41% and 4.83% in accuracy for validation 
set and test set, respectively, for CLAM over the MIL model.

Figure 3 shows the confusion matrices for validation and 
test sets for both models. Figure 3(a) and (b) shows the con-
fusion matrices over validation and test sets for the CLAM 
model, and Figure 3(c) and (d) shows the confusion matrices 
over validation and test sets for the MIL model. As previ-
ously noted, the dataset used in this experiment exhibits 
significant class imbalance – the insufficient class has far 
fewer samples compared with the other classes. A malignant 
slide can contain both malignant and benign tissue, along-
side blood and mucus. Insufficient slides contain very little 
tissue and some blood or mucus in most of the cases. Benign 

or Other labeled slides do not contain any malignancy but 
can also contain blood or mucus. This makes the separation 
between classes more difficult for the model to learn, particu-
larly as far fewer insufficient labeled slides are available. The 
CLAM model does far better for recognizing the malignant 
slides than the MIL model. The sensitivity of the malignant 
class for the CLAM model is 87.16% and 90.33% over valida-
tion and test sets, while for the MIL model, the sensitivity of 
the malignant class is 78.33% and 83.64% over validation and 
test sets, respectively.

Human-readable interpretability of CLAM models is eas-
ily available via patch-level attention heatmaps. These heat-
maps identify the importance of different regions in a slide to 
the model’s final slide-level prediction as shown in Figure 4.

Examples of generated attention heatmaps for each of 
the slide-level categories serve high similarity between the 
strongly attended regions highlighted by the trained CLAM 
models and the annotations provided by the pathologists 
and can be used to validate that the predictive basis of the 
model aligns with well-known morphology used by pathol-
ogists for clinical diagnosis. Figure 4(a), (c), and (e) is the 
ground truth annotations provided for three of the slides 
from malignant, insufficient, and normal/benign catego-
ries. In ground truths, pink color represents blood/mucus, 
red shows malignant tissue, and gray shows normal tissue. 
Figure 4(b), (d), and (f) is the attention heatmaps generated 
for the same slides. In generated heatmaps, the regions of 
the tissue in the slide with high diagnostic relevance (higher 
attention score) are in warm color shades and the regions 
with lower diagnostic relevance (low attention score) are in 
cool color shades. Red shows the regions with the highest 
attention scores.

The fine-grained saliency segmentation maps (see Figure 6) 
identify similar regions to those labeled by experts, as shown 
in Figure 5, although with some interesting divergences, as 
we will discuss later.

Quantifying the results of these kinds of segmentation 
method is very time-consuming, as at high resolution the 
human expert annotations are actually far coarser than the 
saliency-based segmentation – so we do not really have 
access to a ground truth. Similarly, to our weakly supervised 
slides, any region of tissue may contain cells that are actually 
benign, and yet are still labeled malignant by humans, as vis-
ible in Figure 4. Human annotators do not work at the pixel 
level, and because of this we cannot directly compare the 
two. For this reason, we primarily consider the segmentation 
generated here as artifacts offering insight into the model’s 
behavior, as considered further in the “Discussion” section. 
However, for completeness and to evaluate how similar the 
saliency segmentation maps are with the ground truth seg-
mentation provided by experts, we compared the saliency 
segmentation maps of correctly classified malignant WSIs in 
validation set (total 129 malignant WSIs) with their ground 
truth segmentation provided, using standard segmentation 
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Figure 3.  Confusion matrices for valid and test datasets (patch size, 256 × 256). (a) Confusion matrix for valid set (CLAM), (b) confusion matrix for test set (CLAM) 
(c) confusion matrix for valid set (MIL), and (d) confusion matrix for test set (MIL). (A color version of this figure is available in the online journal.)

Table 4.  Performance evaluation of the CLAM and MIL models on validation and test sets.

Model Valid set Test set

Accuracy (ACC) 
(%)

Area under the ROC curve (AUC)
(%)

ACC
(%)

AUC
(%)

CLAM 85.57 95.19 87.04 95.06
MIL 81.16 90.13 82.21 90.54

CLAM: constrained attention multiple instance learning; MIL: multiple instance learning.
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Figure 4.  Comparison of predicted attention heatmaps with ground truth annotations provided by experts. (a) Malignant slide ground truth, (b) malignant slide–
predicted attention heatmap, (c) normal/benign slide ground truth, (d) normal/benign slide–predicted attention heatmap, (e) insufficient slide ground truth, and (f) 
insufficient slide–predicted heatmap. For ground truth: Red: malignant tissue, gray: normal tissue, pink: blood/mucus, black: background (non-tissue). For attention 
heatmap: Red: highest attention regions, blue: lowest attention regions. (A color version of this figure is available in the online journal.)
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metrics as defined in the following equations. This compari-
son produced an average accuracy of 0.89 and an F1 score of 
0.59, with 0.72 precision and 0.52 recall:

tp = tn =x,y x,y
x,y=

d

x,y x,y
x,y=

d
τ ρ τ ρ

0 0
1 1∑ −( ) −( )∑

fp = fn =x,y x,y
x,y=

d

x,y x,y
x,y=

d
1 1

0 0
−( )∑ −( )∑τ ρ τ ρ

P =
tp

tp+ fp
R =

tp
tp+ fn

F =
PR

P+R
A =

tp+tn
tp+ tn+ fp+ fn

1
2

where tp is the true positive rate, fp is the false positive rate, 
tn is the true negative rate, and fn is false negative rate. P is 
precision, R is recall, F1 is F-score, and A is accuracy.

To visualize the features for each class, we begin with a 
zero input matrix of size 256 × 256 (equal to the slide patch 
size) and optimize the pixels in it using gradient descent 
to maximize the output logit for each class in turn, using 

a learning rate of 0.001. We do this for 1000 epochs for 
each class, producing the feature visualizations shown in 
Figure 7.

Discussion

Despite the promising results of automatic WSI process-
ing for digital pathology using deep convolutional neu-
ral networks, the shortage of annotations has become the 
major bottleneck of WSI diagnosis model development.18 
Manual annotation of gigapixel WSIs which is a requirement 
for these models is a laborious and time-consuming task. 
Weakly supervised learning models have gained popular-
ity due to their ability to classify tissue without any need of 
detailed annotations.

Endometrial cancer is one of the most common types of 
gynecological cancer among women around the world.19,20 
Early diagnosis of endometrial cancer types can help to save 
lives of the patients, and studies such as ours demonstrating 
the performance of weakly supervised learning methods on 
real-world data are key to enabling widespread adoption of 
these powerful techniques.

Figure 6.  High-resolution saliency segmentation of a malignant slide. (A color version of this figure is available in the online journal.)

Figure 5.  Comparison of areas identified as malignant (in red) by a human expert (left) and by our saliency-based segmentation method (right). (A color version of 
this figure is available in the online journal.)
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Our results indicate an overall good separation percent-
age between the categories for both validation and test sets, 
although the confusion matrices (shown in Figure 3) in sec-
tion “Materials and methods” clearly show that there is some 
confusion between insufficient and normal classes and that 
the model has not been able to distinguish between these 
two categories well. This can be due to two reasons: first, 
the number of WSIs for the insufficient category is far lower 
compared to the other two categories; and second, the WSIs 
in this experiment can be multiclass (multi slide-level cat-
egories) as well as multilabel (i.e. a slide can contain tissue 
from more than one category). An insufficient WSI usually 
contains a tiny bit of normal tissue, and the rest of the WSI 
is blood or mucus – thus explaining the model’s confusion 
between these two categories. For practical purposes, accu-
racy in labeling malignant slides is key for obvious reasons 
– and for this class, our model performs well.

Classification accuracy is the most used metric for evalu-
ating classification models. It can also be still a useful metric 
when the class distributions are slightly skewed. When the 
skew in the class distributions are severe, accuracy cannot be 
a reliable metric for measuring the performance.

Area under the receiving operating characteristic curve 
(AUC) is a useful tool for evaluating the quality of class sepa-
ration for soft classifiers. In the multiclass setting, we can 
visualize the performance of multiclass models according to 
their one-versus-all precision-recall curves. AUC is also gen-
eralizable to multiclass problems. Table 4 in section “Results” 
shows that the AUC of both validation and test sets is higher 
than accuracies. This means that our model has been able to 
discern well when each class is measured against the others 
(AUC), but not as well when the prediction probabilities are 

an output of the softmax function, and therefore spread out 
for the three classes.

Interpretability

In this section, we will consider the interpretability methods 
described in section “Materials and methods” and discuss 
them with the support of expert pathologists to better under-
stand what our model has learned during training, and so 
gain insight into how to perform this classification task.

It is important to note that saliency-based segmentation 
maps are different in kind to attention heatmaps, although 
they may look similar. Attention heatmaps are generated 
at the patch level and show the amount of attention given to 
each patch by the attention backbone in order to produce the 
final, overall classification for that slide. In contrast, saliency-
based segmentation maps work at the pixel level and show 
how salient each element of the original input image was for 
each class, in a completely model-agnostic fashion – we do 
not access the attention scores at all, and we calculate sali-
ency with respect only to the relationship between the input 
image and each class logit.

In consultation with expert pathologists, we are able to 
make a number of observations from these detailed sali-
ency maps and feature visualizations (examples shown in 
Figures 6 and 7). In both malignant and benign slides, the 
saliency maps show that the model finds epithelial structure 
(both glandular and surface) highly salient for the malig-
nant class – whether the tissue is malignant or not. This is 
so pronounced that it could be mistaken for an epithelium 
segmentation model, particularly in benign slides where 
epithelial tissue is the only thing shown in red (see Figure 8).  

Figure 7.  Input images optimized to maximize output logits for each class. (A color version of this figure is available in the online journal.)

Figure 8.  Tissue and saliency segmentations cropped from two benign slides – malignant saliency shown in red and benign in blue. Note the highly accurate 
epithelium segmentation associated with the malignant class: although the model correctly classified both slides as benign, it has learned that epithelium is highly 
salient for endometrial malignancy. (A color version of this figure is available in the online journal.)
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Endometrial cancer is an epithelial tumor and is typi-
fied by glandular abundance and complexity – so we 
are reassured by the fact that our model appears to have 
learned this. Note that while the model sees both benign 
and malignant epithelium as salient for malignancy at the 
pixel level, which may seem counter-intuitive, it is also 
very accurate in its slide-level classifications. This suggests 
that while the model uses the existence of epithelium in 
the slide as evidence of malignancy, it is also well able to 
distinguish between a normal arrangement of epithelium 
and an abnormal one. Pathologists do this by looking at 
the proportion of epithelium to stroma, and the architec-
ture and complexity of glands present in the tissue – and 
based on the emphasis on epithelium and glands shown 
by the saliency maps, it seems possible that our model has 
learned to do something similar. This primacy of epithe-
lium is supported by the malignant feature visualization 
shown in Figure 5. Our pathologists note that the patterns 
visible in this optimized input bear a strong resemblance to 
epithelial cells, which are round-ish, contain round nuclei, 
and are separated from each other by well-defined cell 
membranes. In any case, we now know that the model is 
highly unlikely to be making classifications based on some 
spurious correlation in the data, such as the amount of tis-
sue or differences in staining.

The attention heatmaps and saliency segmentation maps 
generated show a high similarity between the prediction at 
patch level and pixel level with the ground truth segmenta-
tion provided by the pathologists.
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