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Introduction

Predicting premium resource requirements for critically 
ill patients is one of the most important tasks of hospital 
resource management. Facilities like intensive care units 
(ICUs) or operation theaters (OTs) are equipped with vari-
ous expensive monitoring machines, mechanical ventila-
tors, dialysis machines, and so on. Every hospital has only a 
limited number of these critical resources,1 and hence, these 
are known as premium resources. It is also important that 
such facilities are available to any acutely ill or critically 
injured patient who may need the highest level of patient 
care and life support at a given point in time.2 Patients are 
referred to ICU if there is a life-threatening deterioration in 
the patient’s condition, or immediately after surgery if the 
surgery is very invasive and the patient is at high risk of 
complications. Non-availability of such facilities may lead 

to fatality.3 Hence, hospital management needs to do careful 
planning to ensure that the resources are well-utilized. In 
this scenario, early prediction of medical events such as clini-
cal procedures, susceptibility to adverse reactions, duration 
of critical care needs, severity, and so on can help in better 
management of critical resources, and thereby save patients’ 
lives. Such predictive models can be built using data from 
Electronic Health Records (EHRs)4 of past patients. EHR 
information includes both structured parameters like demo-
graphic details, laboratory test results, ward details, and so 
on and unstructured information like clinical notes which 
may contain patient history, imaging reports, nursing notes, 
discharge summaries, and so on. Among these, nursing 
notes can play a crucial role in data-driven decision-making. 
Since these time-stamped notes contain the entire history 
of a patient during hospitalization including assessment of 
condition, treatment plan, and actions taken. Very few data 
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Prediction of medical events – such as clinical pro-
cedures, susceptibility to adverse reactions, dura-
tion of critical care needs, and many others – is 
essential for providing quality care to patients dur-
ing their hospital stay. While such predictive models 
have made use of quantitative variables like patient 
health data earlier, the present work shows that 
using qualitative text features from caregiver notes 
can increase the quality of prediction substantially. 
The proposed models are multimodal in nature that 
take into account both quantitative and qualitative 
variables and generate explainable models. Such 
models can substantially improve hospital resource 
management as well as patient care.
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sets with detailed EHRs are available for research activities. 
Most researchers in this area prefer to work with the pub-
licly available Medical Information Mart for Intensive Care 
(MIMIC)5 data set.

Early prediction of medical events including predicting 
the duration of ICU stay has received attention from sev-
eral research groups in recent times. Barring a few, most 
of these models were built using only structured informa-
tion about patients. In 2019, Harutyunyan et al.6 proposed 
a channel-wise long short-term memory (LSTM) model for 
predicting in-hospital mortality, physiologic decompensa-
tion, phenotype classification, and forecasting the remaining 
time to be spent in ICU at each hour of stay. The prediction 
model used 17 vital clinical measurements like capillary refill 
rate, blood pressure, heart rate, fraction inspired oxygen, 
Glasgow Coma Scale (GCS), and so on gathered from 4148 
ICU stays from the MIMIC database. Subsequently, in 2021, 
Rocheteau et al.7 revisited the problem and developed a deep 
learning architecture based on the combination of temporal 
convolution and pointwise convolution for predicting the 
remaining ICU length of stay and in-hospital mortality. Their 
model also utilized only structured time series features like 
laboratory values, vital signs, and so on from the electronic 
intensive care unit (eICU) critical care8 and MIMIC data-
base. Also in 2021, Su et al.9 proposed a model to predict 
three clinical outcomes such as mortality, severity, and long 
or short ICU stay for a set of 2224 sepsis patients based on 
patients’ clinical parameters such as age, oxygenation index, 
white blood cell (WBC) count, oxygen concentration, blood 
pressure and temperature recorded during the first 6 h in 
ICU. In a recent work, Alghatani et al.10 reported prediction 

of ICU length of stay and mortality using several machine 
learning models from patients’ first day’s vital signs like 
heart rate, blood pressure, temperature, respiratory rate, and 
four demographic features age, gender, height, and weight 
from the MIMIC data set.

While the clinical parameters are important, the per-
formance of the above-mentioned models suffered as they 
missed out on valuable information that is contained in EHR 
texts like patients’ medical history, radiology reports, nurs-
ing notes, physician notes, and so on. These notes contain 
more detailed information about a patient’s physical and 
psychological conditions, and treatments prescribed along 
with observations about a patient’s response to treatment. 
Thus, it can enrich a predictive model by providing addi-
tional information about the severity of illness (SOI), signals 
about observed improvement or deterioration, and details 
about the treatment plans. For example, linguistic expres-
sions found in these notes like “Lungs are diminished,” 
“patient unresponsive & tremorous,” and “unable to deter-
mine if ectopy is atrial or ventricular” provide augmented 
information about the severity of a patient’s condition based 
on expert assessment, that cannot be captured by structured 
data. Figure 1 shows a sample nursing note with different 
portions of text color-coded, to highlight the different cat-
egories of information that a note may contain.

Neural language models are the default choice for build-
ing predictive models that exploit text.11–15 An end-to-end 
deep dynamic neural framework was proposed by Pham 
et al.11 to predict future medical outcomes such as the next 
diagnosis, current interventions from the current diagnoses, 
and future risks like unplanned readmission within a certain 

Figure 1.  Example of a nursing note for an ICU patient excerpted from our data set. The entities have been highlighted. Conditions are in red, yellow indicates 
patient’s demography, blue indicates test results, treatments/medications are in orange, green indicates health improvement, violet indicates health deterioration, and 
dark orange indicates treatment planning. (A color version of this figure is available in the online journal.)
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period. In 2021, Van Aken et al.12 proposed a transformer-
based model for predicting multiple clinical outcomes 
such as the International Statistical Classification of Diseases 
and Related Health Problems–Ninth Edition (ICD-9) diagnosis, 
ICD-9 procedures, in-hospital mortality, and length of ICU 
stay, using the discharge summary from the MIMIC data 
set. Several preprocessing steps were applied to obtain the 
relevant data. Chrusciel et al.13 proposed the use of random 
forest along with a word-embedding algorithm based on 
the Unified Medical Language System (UMLS) terminol-
ogy, to predict hospital length of stay from unstructured 
EHRs. Huang et al.14 also investigated the use of physicians 
and nursing notes generated within the first 48 h of admis-
sions, in predicting ICU length of stay and mortality. They 
have also utilized the MIMIC database in their study. Very 
recently, in 2022, Mahbub et al.15 developed a framework for 
predicting short-, mid-, and long-term mortality based on 
clinical notes such as ECG, Echocardiogram, and Radiology 
reports as well as Nursing and Physician notes generated 
within the first 24 h of admission. Their model also uses data 
about 37,923 adult ICU patients from the MIMIC database.

A limited number of studies have also explored the use of 
both structured as well as unstructured data for ICU event 
predictions. In 2017, Suresh et al.16 proposed a deep neu-
ral network model for predicting the onset and weaning 
of five clinical interventions such as invasive ventilation, 
non-invasive ventilation, vasopressors, colloid boluses, and 
crystalloid boluses. These predictions were done every 6 h 
based on the patient’s age, gender, laboratory test values, 
and clinical notes from the MIMIC database. A convolution-
based multimodal architecture was proposed by Bardak and 
Tan17 for predicting mortality and length of stay. Medical 
entities extracted from MIMIC-III clinical notes were used 
as additional features besides time series ICU signals for the 
predictions.

Before going into the description of the model proposed in 
this article, we would like to share some observations about 
the clinical notes, based on this study. While analyzing the 
clinical notes for critically ill patients, it is noticed that quite 
often the first day’s nursing notes contain critical inspec-
tions about the state of a patient, and do not always hold an 
accurate estimate of the critical resource requirements for 
that patient. This study reveals that as critical surgical inter-
ventions such as “Bypass,” “Stent,” and “Tracheotomy” are 
planned during the course of a treatment, the time involved 
in preparation and implementation of these interventions, 
led to a longer ICU stay. This obviously points to the impor-
tance of a joint prediction mechanism18,19 that can effectively 
predict the duration of ICU stay along with the need for 
critical interventions as early as possible. Motivated by the 
above-mentioned facts, in this article, we propose a multi-
modal, multiobjective framework that does a joint prediction 
of ICU stay duration and needs for critical interventions. This 
is a key difference from the earlier models that have mostly 
considered the problem of predicting multiple outcomes as 
independent predictive tasks. In the current work, the ICU 
stay is predicted as “long” or “short” based on whether it is 
more or less than the average number of ICU length of stay 
observed for past patients. The predictive model uses the 
nursing notes and the patient’s health parameters recorded 

during the first 24 h of ICU admission. Prediction of critical 
interventions can help in determining treatment trajectories 
early on, effective planning for critical resources, and eventu-
ally provide better clinical outcomes.

The proposed model uses both structured data and 
unstructured text. To represent the nursing notes, we use a 
transformer-based language model, Bidirectional Encoder 
Representations from Transformers for clinical texts, 
BlueBERT20,21 that is specially trained to model clinical 
texts. Since transformers can typically encode short texts 
only, the model also uses an additional Bidirectional Long 
Short-Term Memory (BiLSTM) network22 for learning con-
textualized embeddings of complete nursing notes. We 
also suggest the use of Term Frequency–Inverse Document 
Frequency (TF-IDF) feature representations23 to exploit the 
presence of medical entities. Along with the text from nurs-
ing notes, the model also uses four SOI scores24–31 that are 
computed from clinical parameters. These are explained in 
detail later. In addition, we have utilized a framework called 
Local Interpretable Model-agnostic Explanations (LIME),32 
which provides human-interpretable insights, in the form of 
text components like words and phrases, that have contrib-
uted most significantly toward the prediction results. This 
is a key distinguishing aspect of the proposed model, as it 
makes the model explainable. The model has been evalu-
ated through some detailed experimentation on the MIMIC-
III v1.45 data set.

The rest of this article is organized as follows. In the next 
section, we provide a detailed description of the MIMIC-
III data set, problem definition, and deep learning models 
used in this study. Following that, we report the results of 
our experiments. Finally, we discuss our findings with the 
interpretability of the predictions and draw a conclusion 
from our analysis.

Materials and methods

Data source

As our primary data source, we have used MIMIC-III v1.45 
database, which contains the details of over 40,000 patients 
who stayed in critical care units of the Beth Israel Deaconess 
Medical Center (BIDMC) between 2001 and 2012. This 
database has pre-existing Institutional Review Board (IRB) 
approval, and researchers can access the data by completing 
the training course “Data or Specimens Only Research” pro-
vided by the Collaborative Institutional Training Initiative 
(CITI).

The MIMIC-III database contains details of 46,520 dis-
tinct patients with 58,976 hospital admissions. This database 
includes both structured and unstructured clinical events 
documented for patients during hospital admissions. The 
database is anonymized, and exact dates and times of events 
have been obfuscated.

Data extraction and preprocessing

In this study, we have included patients of age 18 years and 
older only, who were admitted to the ICU at BIDMC from 
2001 to 2012. Patients in the younger age group usually did 
not need unplanned critical interventions. During a single 
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hospital admission, a patient could have undergone multiple 
ICU admissions. In this work, we consider only those admis-
sions which have a single ICU stay with a duration of more 
than 24 h. We have excluded the admissions which have no 
nursing notes available in the first 24 h. After applying all 
the criteria discussed above, we are left with 28,659 unique 
hospital admissions in our data set.

For each admission, we have extracted all the nursing 
notes that were recorded within the first 24 h of ICU admis-
sion and concatenated them to obtain a single note. All notes 
have been converted to lowercase, and non-alphanumeric 
characters have been discarded. In addition to the textual fea-
tures, we have selected 20 vital signs and lab measurements 
available in the first 24 h of ICU stay, which are presented 
in Table 1. For features that have multiple values recorded 
within the first 24 h, only the worst value is considered. Like 
all such data sets, these data also suffer from missing values. 
For the proposed model, the missing values are filled up by 
carrying forward the last observation, when available; if no 
previous observation is available, the value is imputed with 
a physiologically normal value. Instead of directly utilizing 
these structured features, we have used four different scores 
that are computed from the clinical parameters and are indic-
ative of the SOI. These are as follows: (1) Acute Physiology 
and Chronic Health Evaluation (APACHE-II) score,24–26 (2) 
Simplified Acute Physiology Score (SAPS-II),26,27 (3) Sepsis-
related Organ Failure Assessment (SOFA) score,28,29 and (4) 
Oxford Acute Severity of Illness Score (OASIS).30,31 These 
scores reflect the degree of illness, complexity of the dis-
ease, and degree of organ system derangement for the ICU 
patients.33–35

The APACHE-II score is calculated based on age, chronic 
health status, and 12 physiological variables that include 
mean arterial pressure, temperature, heart rate, respiratory 
rate, oxygenation, GCS, pH, sodium, potassium, creatinine, 
hematocrit, and WBC level in the blood. SAPS score uses 
logistic regression techniques to predict the SOI using 12 
physiological variables, age, type of admission such as surgi-
cal or medical, and three variables related to acquired immu-
nodeficiency syndrome, metastatic cancer, and hematologic 
malignancy. The SOFA score is used to measure a person’s 
organ function or rate of failure during the stay in an ICU. 
This score is based on six different values coming from the 
assessment of the respiratory, cardiovascular, hepatic, coagu-
lation, renal, and neurological systems. The OASIS score is 
computed from 10 variables: elective surgery, age, pre-ICU 
length of stay, and seven physiological measurements. For 
our model, all four scores are calculated using data collected 
in the first 24 h of ICU stay only. Finally, the processed nurs-
ing note and the SOI scores serve as inputs for our prediction 
model.

Data labeling

As we have discussed above, in this work, we mainly 
focus on two vital clinical prediction tasks, length of stay, 
and requirements of critical interventions in the ICU. The 
explanation of these tasks and the class distributions are as 
follows.

Length-of-stay prediction.  Rather than predicting the exact 
number of days in ICU, which can vary due to operational 
reasons, our model predicts whether the length would be 
short or long, depending on whether it is less or more than 
a threshold. The threshold is decided as the median of past 
stays observed in a hospital. This way the model can be eas-
ily adapted for different types of hospitals and regions very 
easily. As shown in Figure 2, the median ICU length of stays 
is 3 in our data set, so we have defined a threshold of 
three days. All admissions in the data set were labeled with 
a categorical value which is “Short” if the ICU length of stay 
<3 days and “Long” if the ICU length of stay ⩾3 days.

Intervention prediction.  Interventions are either a proce-
dure or treatment applied to a patient to prevent the 
patient’s condition from deteriorating. Although the pro-
posed architecture is generic enough to predict any critical 
intervention requirement for critically ill patients along 
with the duration of the ICU stay. In this study, we have 
worked on predicting whether any of the following four 
surgical interventions—coronary artery bypass surgery, 
stenting, tracheotomy, and cholecystectomy will be required 
for a patient or not. These interventions were picked up as 
they were the most commonly occurring surgical interven-
tions in our data set.

Table 1.  List of all the clinical records used in the experiment.

Unstructured Nursing notes

Structured Age, pre-ICU length of stay, mean arterial blood pressure, systolic blood pressure, temperature, heart rate, respiratory rate, sodium, 
potassium, hematocrit, WBC, creatinine, GCS platelet, PaO2, oxygenation, pH, urea, bicarbonate, bilirubin, urine output

ICU: intensive care unit; WBC: white blood cell; GCS: Glasgow Coma Scale.

Figure 2.  Histogram showing the ICU length-of-stay distribution of 28,659 hospital 
admissions. (A color version of this figure is available in the online journal.)
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Coronary artery bypass surgery is performed to treat 
a blockage or narrowing of one or more of the coronary 
arteries and restore the blood supply to the heart muscle.36 
Stents are also often used to treat narrowed coronary arter-
ies that provide the heart with oxygen-rich blood. Doctors 
usually recommend bypass surgery over stent implantation 
for patients who have severe coronary artery disease and 
multiple blockages.37 Stenting is minimally invasive, so the 
recovery is usually easier than it is with bypass. Other than 
coronary artery disease, stents are also used to treat blocked 
airways, aortic aneurysms, biliary paths, and so on. It was 
also observed that tracheotomy is often needed for ICU 
patients, whenever the usual route for breathing is somehow 
blocked for a patient.38 Tracheotomy provides an air passage 
by creating a hole at the front of the neck so a tube can be 
inserted into the trachea which helps patients in breathing. 
A cholecystectomy is a common surgical intervention to treat 
gallstones and the complications they cause.39

Our first task was to generate correctly labeled data to 
build the predictive model. Every record in the data set that 
is to be used for training or testing needs five labels. The first 
one is categorical and takes value short or long to denote the 
length of ICU stay. The remaining four are binary in nature 
– 1 indicating the presence of an intervention, and 0 denoting 
its absence. In the MIMIC-III database, there is no specially 
assigned label for these interventions. To overcome this bar-
rier, we have designed a language processing task to assign 
these labels to the admission records. It was observed that 
the discharge summaries contained very detailed informa-
tion about a patient, the illness, and the treatment under 
different heads like “past medical history,” “Present history 
of illness,” “brief hospital course,” ‘treatments provided,” 
“list of all medications,” and so on. It is also observed that 
if an intervention has been implemented for a patient, it is 
almost invariably mentioned in the discharge note. We used 
language tools called Named Entity Recognizers (NERs) that 
can detect different types of entities from text documents. 
Our intent was to identify the names of interventions from 
the discharge summary.

The detection and classification of intervention entities 
from the discharge summary were done using Named Entity 
Recognition (NER) architecture as proposed by Devlin et al.40 
while introducing transformer-based language models for 
language processing tasks. We have fine-tuned this model 
with the EBM-NLP corpus,41 which contains 5000 annotated 
abstracts of medical articles with names of Patient popula-
tion enrolled, Interventions, and the Outcomes measured 
(PICO) marked. The articles contain details of patients’ 
demography, health conditions, lifestyle along with men-
tions of seven types of interventions such as surgical, physi-
cal, pharmacological, psychological, educational, control, 
and others. We have also replaced the underlying BERT 
model with BlueBERT-Base-uncased.20 For fine-tuning, we 
have used the Adam optimizer with a learning rate of 5e−5 
and a batch size of 32. The task of the model is to learn a 
label for each word in a sentence. The label denotes whether 
a word is part of an intervention name or not and if it is then 
the right intervention category. Figure 3 shows the proposed 
architecture along with the labels assigned to the words from 
a sample sentence.

Later, this fine-tuned model is run on discharge summa-
ries to extract the names of all interventions contained in 
them. For each admission, if any of the above-mentioned 
surgical interventions are present in the discharge summary, 
we have considered the label of this surgical intervention as 
“1” otherwise “0.”

Table 2 represents the detailed description of the data 
set thus created, and lists the sample size of each class. In 
Figure 4, we have shared the data for the clinical interven-
tions mentioned in the first day’s nursing notes versus 
their mentions in the later day’s notes. It can be seen that 
for around half of the patients who underwent bypass sur-
gery or stenting, these interventions were not mentioned in 
the first day’s nursing notes, indicating that these were not 
planned. For “Tracheotomy” and “Cholecystectomy,” this 
percentage is even lower, which shows that most of these 
interventions were unplanned. We have also observed in our 
data set, that in several cases, multiple interventions were 
performed for a single patient. Figure 5 presents detailed 
data about all such cases of multiple interventions in the 
form of co-occurrence networks. This further justifies the 
advantage of designing the proposed predictive model as 
a multiobjective one, since clearly the interventions are not 
mutually exclusive. For our experiment, we have split the 
data set randomly into 80-10-10, with 80% data serving as 
the training set (22,928 admissions), 10% as the validation set 
(2866 admissions), and 10% as the test set (2866 admissions).

Model development

In this section, we present the details of the architecture of 
our proposed multimodal multiobjective method. Figure 6 
presents the architecture. The model consumes three differ-
ent types of inputs. The nursing notes are converted into 
contextualized vector representations using BlueBERT. A 
TF-IDF vector is computed using the important features 
from nursing notes. The SOI scores are generated using pub-
licly available tools.

Input preparation

Transformer-based representation of nursing notes.  BERT40  
is a pretrained language representation based on the trans-
former encoder architecture, that has exhibited outstanding 
performance in various NLP tasks like question-answering, 
summarization, inferencing, and so on. The representation 
being contextual, the language model outperforms earlier 
methods that used Word2Vec embeddings or GloVe rep-
resentations.42 It is also known that fine-tuning BERT on 
appropriate literature further improves the performance 
of downstream tasks. BlueBERT20 is one such model that 
is pretrained over a corpus of biomedical research arti-
cles sourced from PubMed abstracts and MIMIC-III clini-
cal notes. Therefore, we have used BlueBERT for creating 
the contextual representation of the nursing notes. The 
pretrained model has 12 layers of transformer blocks, 768 
hidden units, and 12 self-attention heads. The input of the 
BlueBERT model is represented as token embedding, a 
learned segment embedding for identifying the sequence 
of the token, and position embedding corresponding to the 
token’s position in the input sequence. A classification token 
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(CLS) is inserted in the front for classification tasks and an 
(SEP) token at the end of the sequence of input tokens.

The limitation of the BlueBERT model is that it cannot 
handle texts which are longer than 512 tokens. In our data 
set, the average number of tokens per nursing note is 2000. 
To obtain a representation for the entire note, it was split 
into multiple chunks of 400 tokens each, with 50 overlapped 
tokens between two consecutive chunks. Each chunk is 
fed to the BlueBERT model, and the output from the last 

transformer layer is retained to be used by the next layer to 
create a note-level representation. For capturing the long-
term relationships among the chunks of a single note, we 
have added a BiLSTM layer clubbed with an attention layer 
over the BlueBERT representation,22 as shown in Figure 6. 
The output vector of each chunk from the BlueBERT model 
is fed as input to the BiLSTM layer with 100 units. The atten-
tion layer on top of it helps to learn class-word correlations. 
Using this architecture, it is possible to use notes of arbitrary 

Figure 3.  The architecture of the proposed BlueBERT model for Named Entity Recognition. (A color version of this figure is available in the online journal.)
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Table 2.  Summary of the data set used for ICU stay classification and intervention prediction task.

Total number of admissions 28,659
Maximum number of tokens in a note    5331
Average number of tokens in a note    2000
Classes for ICU length-of-stay prediction 2 (“Short,” ICU length <3 days and “Long,” ICU length ⩾3 days)
Classes for intervention prediction 4 (“Bypass,” “Stent,” “Tracheotomy,” “Cholecystectomy”)
Sample size of the class “Short” 16,321
Sample size of the class “Long” 12,338
Sample size of the class “Bypass”    6343
Sample size of the class “Stent”    4078
Sample size of the class “Tracheotomy”    1537
Sample size of the class “Cholecystectomy”    1065

ICU: intensive care unit.

Figure 4.  Percentage of occurrences of four interventions in the first day’s nursing note versus notes recorded on other days. (A color version of this figure is available 
in the online journal.)

Figure 5.  Co-occurrence networks of four interventions in our data set. The nodes of these graphs are the interventions and the values in the yellow circle represent 
the number of admissions in which all these interventions happened together for the patients during their ICU stay. (A color version of this figure is available in the 
online journal.)
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length as inputs. Since the number of chunks needed to 
represent a single note is not fixed, we process the note in 
batches. Each batch accommodates 5 chunks of 400 tokens 
each. A note may come in a single batch or multiple batches, 
with padding for shorter sequences, whenever necessary. 
Finally, the output of the BiLSTM-attention network serves 
as an embedded representation of the nursing note.

Entity-class relationship captured using TF-IDF measure.  
Clinical Named Entities like names of drugs, diseases, treat-
ments, and so on present in a text can be quite indicative 
of its class. To make use of this additional aspect, we have 
utilized the frequency-based feature weighting mechanism 
that was quite popular for document classification tasks in 
the preneural era. One such measure is the TF-IDF23 value, 
that captures the relative frequency of a term in a single 
document versus its global presence in the repository. The 
TF-IDF score for each term is defined as follows

TF-IDF TF IDFt d t d t, ,( ) = ( )× ( )

where TF(t, d) is the number of times term “t” occurs in a 
note d, and IDF(t)=log n df t( / ( ( ) ))+1 , where n is the total 

number of notes and df(t) is the number of notes in which 
term t occurred.

We have added TF-IDF value for clinical named entities 
extracted from nursing notes like “chest pain,” “abdominal 
pain,” “respiratory distress,” “blood loss hemorrhage,” and 
many others, as an input feature for the prediction model. 
A comprehensive list of 2500 most frequent clinical entities 
present in the data set was obtained using two different NER 
tools. One is CliNER,43 which is an open-source natural lan-
guage processing system for extracting clinical concepts such 
as diseases/disorders, treatments/medications, and tests 
from a clinical text. The other one is the BlueBERT-based 
NER model fine-tuned with the EBM-NLP corpus that we 
have implemented, as described earlier. A 2500 dimensional 
feature vector was created for each note using the TF-IDF 
score of each entity computed for that note.

SOI scoring.  As described earlier, in our work, for each 
admission we computed four types of SOI scores: APACHE-
II, SAPS-II, SOFA, and OASIS based on data collected 
within 24 h of ICU admission. The ranges of these scores are 
all different. APACHE-II score lies between 0 and 71, SAPS-
II score ranges from 0 to 163 points, the range of SOFA score 

Figure 6.  Overview of proposed multimodal multitask framework for predicting the ICU length of stays and necessity of the interventions. Process the nursing 
notes in chunks by the BlueBERT model and add a BiLSTM-attention layer on the top. We also extract 2500 medical entities from these notes and make a TF-
IDF representation. Then, the note representations from the BlueBERT–BiLSTM-attention network, TF-IDF representation, and four severity of illness scores are 
concatenated, and two task-specific fully connected layers are applied to obtain the final predictions. (A color version of this figure is available in the online journal.)
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is 0–24, and then OASIS score ranges from 6 to 64. We have 
normalized all the scores by Min–Max normalization tech-
nique and ensured that all the scores lie between 0 and 1.

The final input representation is a 1 × 2704 dimensional 
vector generated by concatenating the outputs of the 
BlueBERT–BiLSTM-attention layer, the TF-IDF feature vec-
tor for clinical entities, and the SOI scores.

Prediction network.  The concatenated vector embedding 
is fed into two task-specific fully connected layers, one for 
predicting ICU length-of-stay and another for predicting 
the possibilities of each of the four surgical interventions—
bypass surgery, stenting, tracheotomy, and cholecystec-
tomy. For the length-of-stay classification, we have used 
softmax activation function with binary cross-entropy loss 
LLOS. For the intervention prediction tasks, since these are 
not mutually exclusive outcomes, we have trained the pre-
diction layer using sigmoid activation function with binary 
cross-entropy loss functions LIntervention. These two loss func-
tions are defined as follows

L
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i

N

i i i=
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+ −( ) −( )
=
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1

( )

where N defines the batch size, yi  is the actual label, and 
pi  is the softmax probability for ith data in length-of-stay 

classification task
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where N defines the batch size, yi
s  is the actual label, and pi

s  
is the probability for ith data for the surgical intervention s.

Finally, we have defined a joint loss function using a lin-
ear combination of the loss functions for the two tasks as

L L Ljoint LOS Intervention= + −( )λ λ* *1

where λ  controls the contribution of losses of the indi-
vidual tasks in the overall joint loss. We have minimized 
this joint loss function with the Adam optimizer with an 
initial learning rate of 0.001 for training. Our experiment was 

implemented in Pytorch. The batch size and the sequence 
length choices are guided by the available GPU memory.

Results

We now present results from our experiments to predict 
ICU length of stay and the possibilities of four interventions 
based on observations made during the first 24 h of ICU 
admission for a patient. We have used the ablation mecha-
nism, whereby the performance of the proposed model is 
compared with simpler models that either use fewer types 
of inputs or are not multiobjective in nature.

To measure the performance, we have used three differ-
ent evaluation metrics: accuracy, F1 score, and area under 
the receiver operating characteristics (AUROCs or AUCs). 
The accuracy score is computed as the percentage of correct 
predictions made for a test data set. Although accuracy is a 
standard measure for reporting classification performance, 
high accuracy scores can be misleading without information 
about how true positive and true negative distribute across 
the data set, which is an important evaluation for medical 
data analytics. Since the intervention prediction task suffers 
from a class imbalance problem, the accuracy score is not 
enough for evaluating model performance. F1 score is the 
metric that calculates the harmonic mean of precision and 
recall, where precision is the ratio of correctly predicted posi-
tive observations to the total predicted positive observations 
and recall is the ratio of correctly predicted positive observa-
tions to the actual positive observations. Therefore, this score 
takes both false positives and false negatives into account 
and provides a better assessment of model performance. 
The AUC is a popular robust metric for highly imbalanced 
data sets, and it computes the AUROC curve. The ROC curve 
shows the trade-off between true-positive rate (TPR) and 
false-positive rate (FPR) and provides the ability of a classi-
fier in distinguishing between classes. In particular, we have 
considered macro AUC for our intervention prediction task. 
The macro AUC is defined as the average of the per class 
AUCs.

Tables 3 and 4 summarize the overall performance of our 
experiments for the two prediction tasks. The first rows in 
each table show the performance of the proposed model, 
while the other rows present the performance of simpler 
models. Single objective BiLSTM–BlueBERT-attention with 
TF-IDF and SOI model developed for the two tasks indepen-
dently could attain an accuracy of 0.79 for ICU length-of-stay 
prediction and 0.80 for intervention predictions. We observe 
that the use of dependencies between two tasks significantly 

Table 3.  Results of our experiments for ICU length-of-stay classification task using different performance metrics.

Model Accuracy F1 score ‘Short’ F1 score ‘Long’ AUC

Multitask BiLSTM-blueBERT with tf_idf and SOI 0.84 0.86 0.82 0.89
Multitask BiLSTM-blueBERT with tf_idf 0.83 0.84 0.80 0.87
Multitask BiLSTM-blueBERT 0.79 0.79 0.78 0.85
BiLSTM-blueBERT with tf_idf and SOI 0.79 0.81 0.79 0.86
BiLSTM-blueBERT with tf_idf 0.79 0.80 0.78 0.84
BiLSTM-blueBERT 0.77 0.77 0.76 0.83

ICU: intensive care unit; AUC: area under the receiver operating characteristic; SOI: severity of illness.
We report accuracies, AUC scores of the model, and F1 scores of both the classes “Short” and “Long.” Bold values indicate the best performance of our experiments.
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improves the performance over other models. The length-
of-stay classification accuracy improved from 0.79 to 0.84 
(0.86–0.89 AUC), while the intervention prediction accura-
cies also improved from 0.80 to 0.82 (0.83–0.86 AUC). The 
advantage of using all the features is also obvious from the 
tables. Using the TF-IDF information along with the clinical 
notes improved the accuracy of the predictions from 0.79 
to 0.83 for ICU length-of-stay prediction, and from 0.80 to 
0.81 for intervention prediction tasks. Adding the SOI scores 
along with them further improves the prediction accuracies 
to 0.84 for ICU length-of-stay prediction and 0.82 for inter-
vention prediction. In addition, we have observed a signifi-
cantly high F1 scores were obtained for bypass surgery (0.89) 
and stenting (0.83), which were more prolific in the data set. 
Lower F1 scores for tracheotomy and cholecystectomy may 
be attributed to the smaller sample sizes as shown in Table 2.

Discussion

Our results indicate that all models performed better when 
we utilized unstructured nursing notes in combination with 
structured clinical measurements. The best performance was 
obtained by jointly modeling the two prediction tasks. This 
is not very unexpected as analysis reveals that for 52% of 
bypass surgery patients and 94% of tracheotomy patients, 
the predicted ICU length of stay is long. Table 5 contains a 
detailed analysis of the model performance for the predic-
tion of the four interventions. It is important to note that for 
only 50% of the patients who underwent a bypass surgery, 
doctors had suggested it on the first day of ICU admission as 
reflected in the first day’s nursing note. The proposed model 
predicts this intervention for many more patients based on 
the first day’s nursing notes, from among which 98% turned 
out to be true positives. This establishes the power of predic-
tive models in treatment planning. Clearly, the predictive 
model that is built from large volumes of past data can link 
similarities across notes and predict the interventions even 
before the medical experts.

The TPRs for predicting “Stenting” and “Tracheotomy” 
are 75.3% and 71.3%, respectively. Interestingly, out of a total 
of 157 patients who underwent tracheotomy in the test set, 
doctors had predicted it on the first day for five patients 
only, which is 3% of the total number. The proposed model 
could correctly predict the need for “Tracheotomy” based 
on the first-day nursing notes for 112 patients (71.3%). The 
predictive power of the model comes from the ability to con-
nect phrases like “respiratory failure” or “pneumonia” to the 
intervention class tracheotomy, even before the attending 
doctors prescribe it.

Interestingly, although at first glance the performance of 
cholecystectomy prediction may not seem to be good, care-
ful analysis shows that out of 97 cholecystectomy cases that 
exist in the test data set, doctors had suggested this inter-
vention on the first day for 10 patients only. The proposed 
prediction model has correctly predicted this intervention 
for 40 cases from their first day’s nursing notes. Most of these 
nursing notes contained phrases like “abdominal pain,” 
“Gastrointestinal bleeding,” and “pancreatitis.”

We have also done an analysis of the false positives or 
the wrong predictions for different interventions. In 4.7% 
of cases, our model wrongly predicts “Bypass.” Analysis 
reveals that most of these nursing notes contained phrases 
like “Aortic Stenosis,” “Mitral Stenosis,” “Severe Chest Pain,” 
and “Heart Block.” This is not totally absurd. Doctors still 
consider it medically reasonable, because usually bypass is 
required for these patients. For 2% of the false-negative cases 
that the model missed recommending “Bypass” surgery, it 
was found that these people were admitted with diseases 
like “Fever,” “Hypotension,” “Dyspnea,” and “Unstable 
Angina,” and there was no sign of severity in day 1. Similarly, 
it was found that most of the false-positive predictions for 
stenting were for patients who were suffering from “chest 
pain” and “breathing difficulties.” Also, sometimes the stent 
was needed during an emergency procedure to open the 
blocked coronary artery, clearly for those cases, model could 
not predict a stent on the first day. In 4.3% of admissions, our 

Table 4.  Results of our experiments for intervention prediction using different performance metrics.

Model Accuracy F1 score 
“Bypass”

F1 score 
“Stent”

F1 score 
“Tracheotomy”

F1 score 
“Cholecystectomy”

AUC

Multitask BiLSTM-blueBERT with tf_idf and SOI 0.82 0.89 0.83 0.55 0.54 0.86
Multitask BiLSTM-blueBERT with tf_idf 0.81 0.86 0.81 0.53 0.51 0.85
Multitask BiLSTM-blueBERT 0.80 0.85 0.78 0.51 0.48 0.83
BiLSTM-blueBERT with tf_idf and SOI 0.80 0.85 0.79 0.49 0.49 0.83
BiLSTM-blueBERT with tf_idf 0.78 0.81 0.78 0.48 0.46 0.83
BiLSTM-blueBERT 0.77 0.81 0.79 0.47 0.46 0.81

AUC: area under the receiver operating characteristic; SOI: severity of illness.
We report accuracies, AUC scores of the model, and F1 scores of all four classes. Bold values indicate the best performance of our experiments.

Table 5.  Behavior of our best model on the test data set in four interventions prediction tasks.

Bypass Stent Tracheotomy Cholecystectomy

Total number of occurrences 615 401 157 97
Doctors recommend in first day’s note 308 (50.1%) 174 (43.4%)     5 (3.1%) 10 (10.3%)
Our model correctly recommend intervention from first day 603 (98%) 302 (75.3%) 112 (71.3%) 40 (41.2%)
Number of false negative cases   12 (2%)   99 (24.6%)   45 (28.6%) 57 (58.7%)
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prediction model wrongly predicted “Tracheotomy,” and for 
very few admissions such as 0.3%, model wrongly predicted 
“Cholecystectomy.”

The phrase-based explanations that we have presented 
here were obtained using an explanation generation frame-
work called LIME.35 Explainability plays a crucial role in 
the health-care domain as it helps the model gain trust of 
medical practitioners and other health-care professionals. 
While the classification performance of a model is impor-
tant, it is also crucial for them to understand its underlying 
decision-making process. Medical practitioners like to know 
the parameter values that led to a predictable outcome. Such 
insights also help in identifying any inherent incorrect bias 
that might inadvertently creep into the model due to the 
data used.

LIME is a local surrogate interpretable framework, which 
can be applied to any black box model to generate explana-
tions and insights. It conducts tests on single data elements 

by tweaking the feature values and observes the resulting 
impact on the output. We have applied “LimeTextExplainer” 
on randomly selected text from each class to generate local 
explanations for predictions and understand the prediction 
strategy of our model. For creating LIME output, we define 
the explanation as “explainer.explain_instance,” which 
shows the calculated prediction probability of classes and 
the six most influential features with their weights that have 
influenced the predictions. As we can see from the example 
in Figure 7, the LIME explainer emphasized the word “diet,” 
“stable,” “sleeping,” and so on, while predicting the class 
of “Short” stay for the note shown in the image. The LIME 
output of a note for “long” stay is presented in Figure 8, and 
the highest weighted features are found to be “intubated,” 
“paralyzed,” “vented,” and so on, which have been learnt 
as major indicators of long-stay during training. Figures 
9 to 12 depict the LIME outputs for nursing notes corre-
sponding to the intervention classes “Bypass,” “Stenting,” 

Figure 7.  Example of an LIME explanation for prediction probabilities of our model for ICU length-of-stay prediction task where actual: “Short” and predicted: “Short.” 
The bars’ length highlights the specific contribution of each word of the nursing note: the blue ones push the model toward “Short” prediction, whereas the orange 
ones to “Long.” (A color version of this figure is available in the online journal.)

Figure 8.  Example of an LIME explanation for prediction probabilities of our model for ICU length-of-stay prediction task where actual: “Long” and predicted: “Long.” 
The bars’ length highlights the specific contribution of each word of the nursing note: the blue ones push the model toward “Short” prediction, whereas the orange 
ones to “Long.” (A color version of this figure is available in the online journal.)
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Figure 9.  Example of an LIME explanation for prediction probabilities of our model for intervention prediction task where actual: “Bypass” and predicted: “Bypass.” The 
bars’ length highlights the specific contribution of each word of the nursing note: the orange ones push the model toward “Bypass” prediction, whereas the other colors 
for other interventions. (A color version of this figure is available in the online journal.)

Figure 10.  Example of an LIME explanation for prediction probabilities of our model for intervention prediction task where actual: “Stent” and predicted: “Stent.” The 
bars’ length highlights the specific contribution of each word of the nursing note: the orange ones push the model toward “Stent” prediction, whereas the other colors 
for other interventions. (A color version of this figure is available in the online journal.)

Figure 11.  Example of an LIME explanation for prediction probabilities of our model for intervention prediction task where actual: “Tracheotomy” and predicted: 
“Tracheotomy.” The bars’ length highlights the specific contribution of each word of the nursing note: the orange ones push the model toward “Tracheotomy” prediction, 
whereas the other colors for other interventions. (A color version of this figure is available in the online journal.)



2000   Experimental Biology and Medicine   Volume 247   November 2022

“Tracheotomy,” and “Cholecystectomy,” respectively. Each 
of them depicts feature probability graphs that give insight 
into the extent of influence of the features on the outcome. 
In the prediction of “Bypass,” LIME explainer emphasized 
the presence of features like “cardiac arrest,” “CPAP,” and 
“vent,” while for the class “Stenting,” the explainer gives 
importance to features like “PTCA” and “occlusion.” For 
prediction of “Tracheotomy,” the explainer gives higher 
weightage on the features “tracheal sectioning” and “intu-
bated,” while for “Cholecystectomy,” the higher weighted 
features are “pancreatitis,” “abdominal,” and “pain.”

In this study, we focused on using only the nursing notes 
generated within the first 24 h of ICU admission for the pre-
diction of ICU length of stay and a few interventions. While 
analyzing the performance of the model, we found that there 
exist many cases in the data set, for which the nursing notes 
do not contain sufficient information. Besides, these notes 
also contain non-standard abbreviations, medical syntax, 
and so on. The proposed architecture had difficulty in pars-
ing these abbreviations and jargons, because of which per-
formance suffered. To overcome this in the future, we plan 
to perform some domain-based preprocessing of the text to 
be used and also use more input resources from EHR clinical 
documentation like physician’s notes, ECG reports, radiol-
ogy reports, and so on for the predictions.

Conclusions

Predictive analytics is an important aspect of health-care 
informatics. Predicting the length of ICU stay and interven-
tions have both been considered as fundamental problems in 
the domain of health-care informatics. Early predictions for 
ICU usage help in better management of hospital facilities. 
Predicting critical interventions for patients well in advance 
not only helps in efficient hospital resource management but 
also plays a significant role in saving patients’ lives and con-
tributes toward better expectation management for patients’ 
families.

In this article, we have presented an explainable trans-
former-based multitask neural network architecture that pre-
dicts the length of stay of a patient in ICU and requirements 

for critical interventions based on the nursing notes recorded 
during the first 24 h of admission. The model has been built 
using the publicly available MIMIC-III data set, which con-
tains anonymized EHRs. Initial analysis of the data revealed 
that nursing notes, which are a part of the EHRs, contained a 
detailed description of a patient’s condition, treatment plans, 
observations about the response to treatment, and many other 
relevant details in unstructured form. We built a multiobjec-
tive prediction model using this wealth of information from 
the nursing notes along with the clinical parameters. Our 
results demonstrate that the proposed model performs better 
than earlier models proposed for similar tasks. Although we 
have currently used the model for predicting one or more of 
four critical interventions, it can be easily adapted for pre-
dicting other interventions such as aortic valve replacement, 
pacemaker implant, and so on. We have utilized the LIME 
framework for generating explanations for the decisions. The 
LIME model can find the key features responsible for a par-
ticular prediction, and therefore serve as an important tool to 
provide explanations to the end-users. Explainability helps 
in gaining trust in the model. In the future study, we plan 
to utilize more textual information associated with patients’ 
radiology reports, electroencephalogram (EEG) reports, phy-
sician notes, and so on, and also build multimodal models 
that can utilize image and sensor signals.
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