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Introduction

DNA barcodes serve as biological identifiers much as 11-digit 
product codes serve as identifiers at the retail market. The 
DNA sequence that constitutes a barcode can derive from 
an internal sequence within a gene or be designed and syn-
thesized in vitro and inserted into predetermined chromo-
somal locations in vivo. Considering that the four existing 
nucleotides can be arranged in any order to design a barcode, 
there are theoretically 4n potential barcodes, where n is the 
number of bases. Thus, 15 base pairs could yield over billion 
codes, which are enough to identify all planetary species.1–3 
Established technology to amplify barcode sequences and 
quantify relative numbers of barcode sequences by deep 
sequencing has enabled investigators to profile genomes and 
trace lineages after exposure to myriad stress conditions. 
Barcode technology has rapidly accelerated progress of bio-
logical queries. In this review, we discuss barcode applica-
tions in identifying organisms, cells, and genes. While the 
technology has made impressive advances, each applica-
tion presents limitations. Current efforts to overcome these 
limitations include novel techniques to increase barcode 

diversity, bioinformatic tools and pipelines to minimize false 
discoveries, and novel sequence platforms to accelerate data 
acquisition. In this review, we discuss barcode applications 
in taxonomy and species identification, signature-tagged 
mutagenesis, cancer lineage studies, in-cell developmental 
studies, and viral genome sequencing (Table 1). Finally, we 
discuss novel applications and future directions. The fol-
lowing links give a general overview of barcoding, includ-
ing applications and methods (https://www.youtube.
com/watch?v=wKt0sAV51Xs; https://www.youtube.com/
watch?v=bMgkMroXD5U).

Species identification

Hebert et al.4 first envisioned DNA barcoding for distin-
guishing species. They reasoned that identifying over 10 
million species by conventional taxonomy would expend 
an exorbitant amount of time and labor; however, micro-
genic characterization could be possible using available tools 
of polymerase chain reaction (PCR) and DNA sequences. 
For microgenic barcoding to succeed, the DNA sequence 
differences between species must be more than that within 
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Minireview

Impact Statement

The work that we are submitting is important to the 
field by highlighting the contributions of DNA bar-
coding technology in taxonomy, functional toxicol-
ogy, cancer biology, and cell lineages. The work 
advances the field by showing how conventional 
methods in barcoding can be developed or adapted 
to expand horizons in functional toxicology and can-
cer therapeutics. While this article is a minireview, it 
highlights latest information that has been obtained 
by the advanced technology. This latest informa-
tion includes how profiling the yeast genome using 
novel “humanized” libraries has revealed informa-
tion concerning the function of DNA damage toler-
ance genes in conferring toxicant resistance.
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a species.4 Hebert et al.4 used the 650 bp from the 5′ end 
mitochondrial cytochrome C oxidase 1 (CO1) as a signa-
ture sequence that can distinguish 200 closely allied spe-
cies of lepidopterans and other specimens. The technique 
rapidly spread to the barcoding of other vertebrate and 
non-vertebrate species, resulting in approximately 4000 
published papers from 2003 to 2019.5 The basic technique 
utilizes standard methods in molecular biology, including 
DNA extraction, PCR amplification, and DNA sequencing. 
DNA sequences are then compared using GenBank data sets 
or barcode of life data set (BOLD).6,7

While CO1 barcoding has provided species-level specific-
ity for mammals, fish, and birds, retrieving full-length bar-
codes may be difficult.8 First, DNA may be degraded from 
stored samples or processed food. Second, distinct primer 
sets are required. To economize effort, other approaches have 
shown that shorter regions of CO1 (200 bp) are sufficient.8 
These mini-barcodes are effective in archival specimens 
and have been used for characterizing food products and 
pharmaceuticals.9,10

Taxonomic barcoding for bacteria, plants, and fungi 
requires different sequences. For plants, these have included 
ribulose biphosphate carboxylase (rbcL), maturase kinase 
(matK), transfer RNA-H and photosystem II D1-arabidopsis 
thaliana (trnH-psbA), and internal transcribed spacer at the 
rDNA (ITS).11,12 For bacterial strains, 16S ribosomal RNA 
(16S rRNA), elongation factor Tu (Tuf gene), and chaper-
onin have been used as signature sequences; many studies 
have relied on nine hypervariable regions (V1-V9) in the 16S 
rRNA sequence.12–14 For fungi, nuclear ITS at the rDNA has 
been used as a signature sequence.13 These barcodes are now 
complementing studies performed in taxonomic research, 
population genetics, and phylogenetics.15 Barcoding technol-
ogies have been especially beneficial in enhancing the speed 
and quality of diagnostics and identifying novel species, 
where normal identification of bacterial pathogens depends 
on culturing and phenotyping clinical isolates.

While 16S rRNA barcoding is extensively used in identi-
fying microorganisms, it has limitations in quantifying and 
identifying species within the microbiome. The 16S rRNA 
genes are variably repeated in bacterial species, and thus, 
species with low copy number may be undercounted.16,17 
In addition, hypervariable 16S rRNA sequences may be dif-
ficult to amplify by PCR due to high GC content, rendering 
a bias in reading the 16S rRNA regions.16,17 Currently, 90% 
and 86% of bacterial species can be recognized at the genus 
level and species level, respectively.18,19 Genus recognition 
can be enhanced by complete 16S rRNA sequencing using 
platforms, such as Oxford Nanopore Technologies (ONT) 
MinION.18,19

Signature-tagged mutagenesis

Signature-tagged mutagenesis studies20,21 have become cru-
cial in understanding the functions of genes uncovered by 
DNA sequencing. In the last 25 years alone, 3278 unique 
animal species across 24 phyla have been sequenced.3,22 
However, the sequence data alone often fail to provide 
insights into the phenotypes of many open reading frames 
(ORFs). Even in a well-established model organism, such as 
Escherichia coli, many ORF functions have yet to be defined.23 
The search for mutant phenotypes to discern gene function 
is laborious if each ORF is individually studied. An alterna-
tive strategy is to pool strains in which individual mutants 
are identified by a synthetic molecular barcode in a unique 
ORF. These synthetic barcodes can be positioned using sig-
nature-tagged mutagenesis (STM). Pertinent to the focus of 
this review is the use of barcoding to identify drug targets 
and xenobiotic resistance.

STM has been used for multiple microorganisms, includ-
ing E. coli,24 Saccharomyces cerevisiae (budding yeast),25,26 
Schizosaccharomyces pombe (fission yeast),27,28 Candida albi-
cans,29 and Candida glabrata.30 Techniques to mutagenize 
these strains include in vivo transposition (E. coli),24 gene 

Table 1. Barcode applications and limitations.

Barcode application Barcode sequence(s) Utility Limitations/requirements

Species differentiation
 Vertebrates and non-vertebrates Cytochrome Oxidase 1 Taxonomy, Evolution Sample quality

Separate sets of primers
 Plants rbcL, matK, trnH-psbA Taxonomy, Nutrition, Evolution Multiple barcodes

Separate sets of primers
 Fungi ITS Taxonomy, Diagnostics Separate sets of primers
 Bacteria 16S rRNA, tuf Taxonomy, Diagnostics, Evolution Separate sets of primers

Multiple barcodes
Genome profiling
 Saccharomyces cerevisiae 20-25 Dual Barcodes Pharmacology, Toxicology, Evolution Exact match with barcodes
 Schizosaccharomyces pombe 20 Dual barcodes Pharmacology, Toxicology, Evolution Exact match with barcodes
 VERO-E6 sgRNAs Virology, Toxicology Off-target effects
Cancer cell profiling
 Intratumor molecular heterogeneity sgRNAs Cancer Therapeutics, Oncogenesis Additional studies required to determine 

whether the edited mutation is 
homozygous or heterozygous

Developmental cell lineages
 Whole Mouse hgRNAs subjected to ongoing 

editing
Development Barcode diversity

ITS: internal transcribed spacer at the rDNA.
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replacement by homologous recombination (S. pombe,28 bud-
ding yeast),25 and non-homologous (illegitimate) recombi-
nation (S. pombe,27 C. glabrata).30 The limitations in tagging 
every ORF include zygosity, essential genes, and gene dupli-
cations. Stable haploid S. pombe and budding yeast strains 
have rendered it possible to construct both haploid and  
diploid deletion libraries of strains contain knockouts of non-
essential genes.23 While essential genes cannot be completely 
knocked out, knockdown alleles can be made in budding 
yeast using the decreased abundance by mRNA perturba-
tion (DAmP) approach.31 In addition, haploid insufficiency 
libraries are available that consist of diploid strains that are 
heterozygous for known knockdowns. In total, the yeast 
deletion collections contain over 21,000 mutant strains.32

These pooled collections can then be screened for genes 
that confer resistance or sensitivity to antibiotics, pharma-
ceuticals, toxicants, nutrients, temperature (heat or cold 
shock), hypoxia, oxidative species, and other environmental 
conditions.33–36 The advantage of using the model eukaryotes 
S. pombe and budding yeast are that many genes are ortholo-
gous to higher eukaryotic cells; indeed Kachroo et al.37 dem-
onstrated that many essential genes could be replaced by 
the corresponding human gene and restore function. These 
screens are even more important now considering that  

42 billion pounds of chemicals are produced or imported 
into the United States of America daily.38

The design of the barcode cassette is typically a conserved 
sequence (drug resistance) flanked by 20-25 bp unique 
sequences (Figure 1).25 In budding yeast, these unique 
sequences are referred to as uptag and downtag sequences.39 
These can then be amplified by PCR and sequences counted 
by high throughput sequencing platforms, including 
Illumina HiSeq and MiSeq platforms.40 Typically, PCR 
reads include indices that allow for highly multiplex pooled 
experiments.41 Relative numbers of barcodes obtained from 
cells with and without treatments can then be processed by 
various bioinformatics pipelines to identify genes that confer 
resistance or sensitivity to various DNA damaging agents.

A typical processing pipeline goes through several steps: 
quality assessment, demultiplexing (if necessary), read trim-
ming, quality filtering, barcode counting, and barcode count 
preparation and analysis. Multiplexing allows for multiple 
conditions to be tested individually and sequenced in one 
run, decreasing time and cost. Read trimming and quality fil-
tering accelerate the barcode counting processes by reducing 
the amount of data to run through the program. The counting 
program compares sequencing reads to a list of barcodes and 
matches them with their corresponding ORFs. A tolerance of 

Figure 1. Barcoding strategy for multiplexed high-throughput screens in yeast. The chromosome context your gene of interest (YGOI) is unfilled, and other sequences 
are colored blue, red, orange, and purple. (A) Open reading frame (ORF) of YGOI is bordered by the initiation codon (ATG) and termination codon (TAA). (B) 
Unique Uptag (BC 1) and downtag (BC2) are added by PCR and flank the KanMX cassette. (C) A second PCR reaction (PCR 2) includes homologous sequences 
both upstream and downstream of YGOI. (D) The PCR 2 product is used to knock out YGO1 by homologous recombination and selection for KanR isolates. (E) 
Construction of oligomers containing the sequencing primer sequence (Seq. Primer 1 and 2), flanked by experimental barcode (BC 3) on one side to denote treatment 
condition, and BC 1 or BC 2 flanking regions (FR) on the other side. (F) In PCR3, oligomers from E are used to generate PCR fragments that are then sequenced 
using the applicable sequence platform. The figure is an adaptation from Giaever et al.33 (A color version of this figure is available in the online journal.)
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0 or 1 mismatches is useful to minimize false positives.42 The 
counts are then prepared by aligning counts for each barcode 
from each replicate of a control and a treatment, followed by 
normalization and analysis using preferred programs.43 One 
way to do this is to treat the analysis as an RNASeq pipeline. 
An example process flow would include importing the data 
into R and using the TCC package44 to normalize data with 
a trimmed mean of m-values (TMM), followed by determin-
ing differential expression by negative binomial regression 
analysis with edgeR,45–47 allowing for a floor PDEG of 0.05 
and FDR < 0.1, and iterating three times.

One limitation of the library for drug analysis is that bud-
ding yeast does not have the metabolic capacity to activate 
many chemicals.48 This is particularly important since many 
prodrugs and xenobiotics require cytochrome P450 enzymes 
to bioactivate compounds. In the case of toxins, these bio-
activated compounds include reactive epoxide derivatives. 
One way to circumvent the bioactivation requirement is to 
use the fully activated compound.49 The disadvantage to this 
approach is that the activated compound may interact with 
external cellular constituents. Another way is to “human-
ize” the collection by introducing human cytochrome P450 
(CYP) genes into the deletion collection. Yeast vectors are 
available that over-express CYP1A2,50 CYP3A4,51 CYP1B1,52 
and CYP1A1.50 These expression vectors can be introduced 
by conventional lithium acetate-mediated DNA transforma-
tion.53 CYP-containing transformants also exhibit robust CYP 
activities. An alternative approach for introducing genes into 
pooled strains is selective ploidy ablation (SPA).54 As an exam-
ple, St John et al.55 introduced CYP1A2 into the non-essential 
yeast deletion collection. They then profiled the humanized 
yeast deletion and the original yeast deletion collection for 
aflatoxin B1 (AFB1) resistance. While only one gene from the 
original yeast deletion pool lacking CYP1A2 was identified 
as conferring resistance to AFB1, 86 genes were identified in 
the yeast deletion collection expressing CYP1A2.55

Currently, only a few of the 57 human CYP genes have 
been expressed in budding yeast.48 While the human CYP1 
family functions to bioactivate large molecular weight (MW) 
aromatic compounds, other CYPs, such as CYP2E1, function 
to activate small MW compounds, such as ethanol and aceta-
minophen.56 In addition, other xenobiotics require activation 
by multiple human enzymes; examples include polyaromatic 
compounds that require epoxide hydrolase and CYP1A1,57 
and heterocyclic aromatic amines that require CYP1A2 and 
n-acetyltransferases (NAT2).58 A potential limitation of this 
technique is that expression of the P450s in yeast is confers a 
slower growth phenotype, possibly due to oxidative stress.59 
Thus, the future challenge is to co-express multiple CYPs 
and human enzymes without compromising growth.

While budding yeast has been used extensively in func-
tional profiling studies, S. pombe also contains genes ortholo-
gous to human genes, such as NEIL1, which are not present 
in budding yeast.60 A S. pombe deletion library has been con-
structed.27,28 And both homozygous and heterozygous dele-
tion collections are available.29 These collections have been 
shown to be useful for identifying drug targets. For example, 
the anticancer drug sunitinib, a tyrosine kinase inhibitor, has 
a strong cardiotoxicity side effect. Screening a heterozygous 
deletion collection for sensitivity to sunitinib identified the 

mitochondrial DNA polymerase (POG1) as a target.61 A cor-
responding knockout of the POLG gene in human cell lines 
also conferred cytotoxicity, suggesting that the mitochondria 
was a key target in conferring the strong side effects.61

Libraries for screening for drug targets 
in pathogenic fungi and bacteria

The yeast C. albicans is pathogenic in humans, and antifungal 
drug resistance is an emerging problem, especially among 
immunocompromised patients. Determining drug targets, as 
performed using pooled libraries of budding yeast, is com-
plicated since diploid but not haploid strains can be cultured 
in the laboratory. Since the budding yeast and C. albicans 
genomes are similar,62 one approach is to perform screens in 
budding yeast and then knock-out the corresponding gene in 
C. albicans. For example, the budding yeast TORC1 pathway 
is required for sensitivity to the ergosterol-targeting fungicide 
amphotericin B (AmB) in both biofilm and planktonic cells.34 
Screening for resistance to AmB revealed that the two growth 
modes had significant overlap in AmB-persistent mutants, 
including mutants defective in sterol metabolism, ribosome 
biosynthesis, and TORC1. In C. albicans and C. glabrata, 
rapamycin-mediated inhibition of TORC1 also increased 
AmB resistance.63 Thus, budding yeast drug targets provide 
insights into possible targets in pathogenic Candida strains.63

A secondary approach is to use a partial knock-out col-
lection that is available in C. albicans and score for haploid 
insufficiency. In this approach, Xu et al.,64 used ~2700 hetero-
zygous deletion mutants for profiling the genome for flu-
conazole, voriconazole, caspofungin, 5-fluorocytosine, and 
AmB resistance. They identified targets in ergosterol, fatty 
acid and sphingolipid biosynthesis, microtubules, actin, 
secretion, rRNA processing, translation, glycosylation, and 
protein folding. This approach thus complements other stud-
ies to profile drug targets.

The same strategy to profile fungal genomes for anti-
fungal resistance can also be used for to screen for antibiotic 
resistance in bacterial strains where knockout collections 
are available. The advantage of E. coli is that it is a well-
established bacterial model and deletion collections are 
available.65,66 Liu et al.66 profiled the bacterial genome for 
resistance to 22 antibiotics, including spectinomycin, cephra-
dine, aztreonam, colistin, neomycin, enoxacin, tobramycin, 
and cefotoxin.65 They identified 283 resistant strains which 
could be grouped into strains that exhibit multiple drug 
resistances and those that exhibit resistance to single drugs 
or drugs of the same category.66

Use of CRISPR/CAS9 in constructing 
mammalian cell libraries for toxicogenomics

While the yeast and other fungal deletion collections are 
powerful tools for toxicogenomics, there is no equivalent 
deletion library for higher eukaryotic cells. An approach has 
been devised to use clustered regularly interspaced short 
palindromic repeat (CRISPR) technology that use single 
guide RNAs (sgRNAs) to knockdown (KO) mammalian 
genes.67,68 These sgRNAs can thus serve a dual purpose of 
interfering with a cell-specific function and introducing a 
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unique sequence barcode, which can be identified by short-
read sequencing.69–71

Useful higher eukaryotic cell lines for developing these 
screens include Chlorocebus aethiops sabaeus (green mon-
key) kidney epithelial cell line (VERO-E6). For example, 
the genome of the C. a. sabaeus has been determined and 
VERO-E6 sequenced.72 These resources were used to design 
genome-wide libraries to knockdown ~19,053 genes iden-
tified in this species.72,73 In brief, Grodzki et al.73 used a 
domain-targeted CRISPR KO approach in which sgRNAs 
are identified that target active sites or functional domains 
of each gene.74 About four sgRNAs for each of the ~19,053 
genes were synthesized. In total, ~76,212 sgRNAs and 500 
non-targeting control sgRNAs (Custom Array) were cloned 
into the LentiCRISPRv2 Puro (Addgene) vector to generate 
the AGM CRISPR KO library. sgRNA oligos are amplified 
from the plasmid pool by PCR and deep sequenced by next 
generation sequencing (NGS) to confirm adequate sgRNA 
representation. The library, also referred to as the Brunello 
library,75 is packaged into lentivirus by standard methods. 
This library is then transfected into VERO-E6 cells and a 
stepwise puromycin selection is performed to establish sta-
ble transfectants. The transfectants are then exposed to the 
toxicant or the vehicle alone for defined time periods, gener-
ally seven to fourteen days.

Like data acquisition for yeast barcode experiments, read 
quality checks are performed with FASTQC tools. To align 
the processed reads to a library of interest, the designed 
sgRNA sequences from the library are compressed by trans-
forming them into a Burrows-Wheeler index using the build-
index function in Bowtie.76 The Burrows–Wheeler index is 
a compressed version of the original sequence data that 
allows for accelerated alignment of short reads to a refer-
ence genome.76 After alignment, alignment efficiencies are 
checked and the number of uniquely aligned reads for each 
library sequence is calculated creating a table of raw counts. 
Using the edgeR45 and limma voom R packages,77 the count 
table is input for analysis. The raw counts are normalized 
with the upper-quartile normalization method in which 
the scale factors are calculated from the 75% quantile of the 
counts for each sample, after removing genes which are zero 
in all samples.44 Differentially expressed genes are identi-
fied, using the negative binomial approach implemented 
in edgeR, the corresponding continuous approximation in 
limma voom77 or the CRISPR analysis software MAGeCK.73 
Finally, a consolidated annotated summary table is created 
showing all candidate sgRNAs differentially represented at 
FDR < 0.05. One problem with using CRISPR/CAS9 for gene 
targeting is off-target effects. This is mitigated by using mul-
tiple sgRNAs. Additional validation can also be performed 
by measuring toxicant resistance after silencing a specific 
gene using a short hairpin RNA (shRNA).

Several successful genome-wide CRISPR screens have 
been performed to identify resistance to SARS-CoV-2 (coro-
navirus) in VERO-E6 cells and in HEK293 cells.73 These stud-
ies could be expanded for profiling genomes for resistance to 
other genotoxins. For example, studies have been performed 
to profile the human hematopoietic K562 cell line for for-
maldehyde resistance.78 Comparison with similar studies 
in yeast have revealed shared resistance genes.79 Ongoing 

studies are expanding these studies to additional toxicants. 
However, one caveat is that it is unknown whether VERO-E6 
cells and HEK293 cells are equally capable of bioactivation of 
prodrugs and toxicants. Further studies are thus needed in 
profiling the metabolic activities of these cell lines.45

Cancer cell barcoding

While the signature-based mutagenesis schemes in VERO-E6 
cells and microorganisms are valuable in studying drug targets 
and identifying genes that confer resistance and sensitivity to 
toxins, signature-based mutagenesis in cancer cells is aiding 
in the identification of driver mutations that confer resistance 
to chemotherapeutic drugs by promoting proliferation and 
metastasis. Cancer cells exhibit accelerated genetic instability, 
and it is unclear whether resulting mutations can drive growth 
or are merely spectators.80 These strategies are now being 
implemented to guide clinicians in treatment of advanced 
stage pancreatic cancer81 and head and neck cancers.82

The basic scheme to address the question is to use 
CRISPR/CAS9 to introduce both silent mutations and 
known mutations into the cancer cells and then trace which 
cells become more proliferative. This not only identifies the 
selected mutations but also the mutations that drop out and 
are therefore not important for the increased proliferation.

As an example, Guernet et al.80 devised modified cancer 
cell lines using CRISPR-Barcoding to investigate the resist-
ance to epidermal growth factor receptor (EGFR) inhibitors. 
To test their model, they used an EGFR-T790M mutation that 
confers resistance to gefitinib, an ATP-competitive EGFR 
inhibitor and an EGFR-T790T mutation, which served as a 
silent mutation. EGFR-T790M expressing cells were detected 
by quantitative PCR. They showed that EGFR inhibitor treat-
ment of a mixture of these cells preferentially enriched for 
EGFR-T790M, as expected. Considering that mutations in 
multiple genes could also confer EGFR resistance, the inves-
tigators also devised multiplex models for EGFR inhibitor 
resistance, including RAS mutations, EML4-ALK fusions, 
and EGFR T790M; all these cell lines were enriched. The 
results obtained in cell culture were also supported by results 
obtained when cell mixtures were implanted in nude mice 
and the relative proportion of cell genotypes were determined 
from the resulting tumor. The disadvantage of the system is 
that it was unknown whether the CRISPR-generated cell lines 
were heterozygotes or homozygotes for each mutated gene.80

One interesting extension of these studies is that muta-
tions in known oncogenic drivers can also be introduced in 
drug-resistant cell lines to determine whether these muta-
tions would decrease resistance or proliferations in advanced 
cancer cells. For example, Guernet et al.80 showed that knock-
ing down the APC gene was sufficient to reduce growth of 
advanced cancer cells.83 Thus, this technique has potential 
for identifying oncogenic drivers in advanced cancer, where 
drug resistance presents treatment challenges.

Whole organism barcoding to 
determine cell lineage

The advent of barcoding and CRISPR/CAS9 technologies 
with the versatility of high-throughput sequencing has also 
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incited interest in studying cell lineages. While cell lineage 
studies have been performed for model organisms such as 
Danio rerio (zebrafish)84 and Caenorhabditis elegans (C. ele-
gans),85 cell lineage studies for more advanced eukaryotic 
models have not been forthcoming. This presents a chal-
lenge in human cell lineage studies, considering that the 
adult human has 37 million cells, of multiple types, which 
are all descended from a single zygotic cell.86 Gaj and Perez-
Pinera87 and Kalhor et al.88 used a modification of the shRNA 
technique to create cell-lineage specific barcodes. They rea-
soned that the origin of cell lineages could be traced if the ter-
minal lineages were marked by diverse barcoded sequences 
that “evolved” from common incipient barcode sequences, 
analogous to a tree emanating branches, stems, and leaves. 
To generate the “evolved” barcode sequences, they used a 
molecular tool that was modeled on a self-targeting CRISPR/
CAS9 homing guide RNA (hgRNA). While similar to single 
guide RNAs, these hgRNA encode a protospacer adjacent 
motif (PAM) that enables Cas9 to target the expression of 
the cassette encoding the hgRNA.88 Kalhor et al.,88 created a 
transgenic mouse, designated MARC1 (mouse for actively 
recording cells) that had 41 different hgRNA expression cas-
settes that were integrated in the genome. These expression 
cassettes were localized to introns or intergenic regions of the 
genome and did not interfere with normal mouse develop-
ment. They then crossed this MARC1 mouse with a mouse 
that contained an expressed Cas9 transgene. The basic idea 
was that the Cas9 would self-target and introduce stochastic 
mutations by non-homologous end joining (NHEJ), referred 
to as in vivo barcoding. The technique could generate 1023 

barcodes using ten different hgRNAs, sufficient to barcode 
approximately 1010 cells in the mouse.88 By high-throughput 
sequencing, Kalhor et al.88 identified cells of common line-
ages by identifying similar mutation profiles (see Figure 2). 
They were able to generate a lineage tree for the early devel-
opmental stages in four embryos. The limitation of this study 
is that only a narrow spectrum of non-random mutations 
was generated.

To generate even more diverse barcodes to represent 
more sequences, Halperin et  al.89 converted Cas9 into a 
“nickase” that cleaves only one strand of the target DNA 
sequences fused to an error-prone and nick-translating  
E. coli DNA polymerase I. Similar to the previous study,87 this 
Cas9-derivative could be targeted to a particular sequence of 
interest. In contrast, it generates edited sequences in 350 bp, 
which enables better randomization and reduces the number 
of target sites. EvolvR has also been used in bacterial cells, 
and a variation of the technique has also been used in bud-
ding yeast.90 Thus, there are multiple potential applications 
in a variety of cells.

Mutation profiling of viral genomes

Severe acute respiratory syndrome coronavirus-2 (SARS 
CoV-2) is a relatively new pathogen that causes COVID-19 
and is responsible for over a million deaths in the United 
States of America.91 The SARS CoV-2 has rapidly evolved 
to evade the immune system and spread in the population. 
Thus, there is an urgent need to rapidly sequence variants 
to identify new emerging viral strains. One method involves 

Figure 2. The methodology for generating a mouse where cell lineages are barcoded. In panel A, a mouse containing homing CRISPR guide RNA (hgRNA) is 
crossed with a Cas9 mouse to produce a developmentally barcoded mouse. The hgRNA mouse has about 60 hgRNA loci in the genome, each capable of being 
targeted once by CRISPR. In panel B, each cell division allows for new mutations (colored ovals and rectangles) to be introduced into the hgRNA locus. Mutations are 
accumulated such that closely related cells share similar mutation profiles and each cell’s lineage can be traced back to the original cell. Cells i and ii can be identified 
as coming from daughter 1, while cells iii and iv can be traced to daughter 2. Figure is an adaptation from Kalhor et al.88 (A color version of this figure is available in 
the online journal.)
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sequencing 1.2 kb tiled amplicons using rapid barcoding 
kits.92,93 Two PCR reactions are performed for each patient 
sample; each reaction involves a set of primers that generate 
non-overlapping fragments. The two sets of PCR fragments 
form a tile array with minimum overlapping sequences, thus 
enhancing PCR efficiency.

Hypermutable regions of the viral genome can thus be 
identified by whole viral genome sequencing. Laha et al.94 
observed that frequent mutations appeared in the glycopro-
tein, nucleocapsid, ORF1ab, and ORF8. However, mutations 
in the envelop, membrane, ORF6, ORF7a, and ORF7b con-
served the amino acid composition. In all, they identified 20 
viral variants.94 Additional studies are currently being pur-
sued by epidemiologists. Identifying such mutations will aid 
clinicians and pharmacologists in designing drug therapies 
that target specific transmissible variants.

Future challenges and novel 
applications

Barcoding has had a significant impact on diverse fields, 
ranging from toxicology to viral genome characterization, 
cancer biology, microbiome, and developmental lineages. 
These applications are being accelerated by new sequencing 
platforms and modifications of existing libraries of barcoded 
cells. For example, advances in toxicogenomics are being 
accelerated by humanizing existing barcoded yeast strains 
by expressing CYP genes; the ability to express all 57 CYP 
genes in budding yeast, similar to that achieved in fission 
yeast,95 will potentiate the toxicological characterization of 
novel xenobiotics and pharmaceuticals.

The technology has now opened horizons for mapping 
the fate of individual cells within complex organisms for 
identifying which mutations are driving cancer prolifera-
tion in the context of highly heterogeneous mixture of cells. 
Future studies will demonstrate whether barcodes can iden-
tify all the cells of a mammalian organism, rendering it pos-
sible to address questions concerning development, aging, 
and cancer. Such studies may advance personal medicine by 
identifying genotypes of drug resistant cancer cells. While 
barcoding has rendered it conceivable to identify every cell 
in an organism, it is also advancing studies in how physiol-
ogy and the environment influence the microbiome. Such 
studies will be useful in understanding the impact of phar-
maceuticals, climate change, and space travel on complex 
microbiomes impacting human health.
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