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Introduction

Phenotype extraction from unstructured clinical text is shown 
to be useful for various clinical applications1 such as predict-
ing intensive care unit (ICU) in-hospital mortality, predicting 
length of stay of patients, and identifying patients with hard-
to-diagnose diseases. In this study, the word “phenotype” 
refers to deviations from normal morphology, physiology, 
or behavior, such as skin rash, hypoxemia, and neoplasm.2 
Please note the difference in the phenotypic information 
from the diagnosis information expressed in International 
Classification of Disease (ICD) codes,3 as the former contrib-
utes to the latter. One challenge in extracting phenotypes is 

numerical reasoning (NR), as many of the phenotypes rely 
on bedside measurements such as temperature, heart rate, 
breathing rate, blood pressure, serum creatinine, hematocrit, 
and glucose levels, which we refer to as numeric entities. As 
these phenotypes require reasoning with the numbers based 
on clinical knowledge, they are often missed or incorrectly 
extracted by the existing phenotyping methods that are not 
designed to consider NR.4–10

Current phenotyping methods based on state-of-the-art 
(SOTA) machine learning (ML) and natural language pro-
cessing (NLP) techniques mostly exploit non-contextualized 
word embeddings. For example, neural concept recognizer 
(NCR)8 utilizes convolutional neural networks (CNNs) to 

Phenotyping in clinical text with unsupervised numerical 
reasoning for patient stratification

Ashwani Tanwar* , Jingqing Zhang*, Julia Ive, Vibhor Gupta and Yike Guo
Pangaea Data Limited, London SE1 7LY, UK
*These authors contributed equally to this paper.
Corresponding author: Yike Guo. Email: yguo@pangaeadata.ai

Abstract
Phenotypic information of patients, as expressed in clinical text, is important in 
many clinical applications such as identifying patients at risk of hard-to-diagnose 
conditions. Extracting and inferring some phenotypes from clinical text requires 
numerical reasoning, for example, a temperature of 102°F suggests the phenotype 
Fever. However, while current state-of-the-art phenotyping models using natural 
language processing (NLP) are in general very efficient in extracting phenotypes, 
they struggle to extract phenotypes that require numerical reasoning. In this 
article, we propose a novel unsupervised method that leverages external clinical 
knowledge and contextualized word embeddings by ClinicalBERT for numerical 
reasoning in different phenotypic contexts. Experiments show that the proposed 
method achieves significant improvement against unsupervised baseline methods 
with absolute increase in generalized Recall and F1 scores of up to 79% and 71%, 
respectively. Also, the proposed method outperforms supervised baseline methods 
with absolute increase in generalized Recall and F1 scores of up to 70% and 44%, 
respectively. In addition, we validate the methodology on clinical use cases where 
the detected phenotypes significantly contribute to patient stratification systems for 
a set of diseases, namely, HIV and myocardial infarction (heart attack). Moreover, 
we find that these phenotypes from clinical text can be used to impute the missing 
values in structured data, which enrich and improve data quality.

Keywords: Numerical reasoning, phenotyping, contextualized word embeddings, patient stratification, unsupervised learning, 
natural language processing, deep learning

1118092 EBM Experimental Biology and MedicineTanwar et al.

Brief Communication

Impact Statement

Profiling a patient using the phenotypes from clini-
cal text has various applications in the healthcare 
domain, including patient stratification for hard-to-
diagnose diseases. One of the key challenges in 
phenotyping is numerical reasoning which involves 
determining a phenotype based on numerical 
measurements. This is an open problem, and cur-
rent state-of-the-art generic phenotyping methods 
perform poorly. Our study addresses this issue by 
presenting a novel unsupervised methodology that 
substantially outperforms the generic phenotyp-
ing methods. Our methodology is helpful for our 
research community as it requires no supervision, 
saving a lot of cost and time, as well as it can be 
generalized to other biomedical tasks requiring 
numerical reasoning. We demonstrate the impact of 
the work by building patient stratification systems for 
several diseases by using these phenotypes which 
can improve accuracy and substantially lessen 
the manual effort and time involved in screening 
of patients. In addition, the work provides a new 
solution to improve clinical data quality by imputing 
missing values into structured data.
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build non-contextualized embeddings for biomedical con-
cepts defined by ontologies such as human phenotype 
ontology (HPO).11 These methods are limited to detect con-
textual synonyms of phenotypes, as clinicians may describe 
the same phenotype in a variety of ways in clinical text. For 
example, previous SOTA phenotyping models such as NCR 
and NCBO6 fail to capture the phenotype Fever from the sen-
tence “patient is reported to have high temperature.” The 
recent study12 extended the above works to use contextu-
alized embeddings (Bidirectional Encoder Representations 
from Transformers [BERT]-based13) to capture phenotypes 
from different contexts.

However, none of these methods mentioned above can 
reason with numbers in clinical text, for example, “tem-
perature 102°F” suggesting Fever. Recent works in NR 
publish new datasets14 and develop NR capabilities with 
deep learning15–18 in the respective domains rather than the 
clinical domain. For instance, Geva et al.19 show better per-
formance on tasks involving numeracy, such as math word 
problems, and reading comprehension by using artificially 
created data. Other works20–22 introduce extra NR modules 
into deep learning, which are very specific to the numer-
acy tasks such as a calculator for arithmetic operations and 
thus cannot be generalized to reason in the clinical context. 
Overall, although these models show benefits in their respec-
tive domains, they did not incorporate clinical knowledge to 
address challenges in clinical applications.23

In practice, NR for clinical context has the following chal-
lenges. First, there can be accumulation of multiple numeric 
examples in a condensed context, such as “Physical exami-
nation: temperature 97.5, blood pressure 124/55, pulse 79, 
respirations 18, O2 saturation 99% on room air.” Second, the 
contexts of numeric examples can be different, such as “tem-
perature of 102°F,” “temperature is 102°F,” “temperature 
is recorded as 102°F,” “temperature is found to be 102°F,” 
which require more robust models to identify the (numeric 

entity, number) pair, namely, temperature, 102°F in this case. 
Third, not all numbers in clinical text are connected with 
phenotypes. For instance, the number in “patient required 
4 days of hospitalization” is not related with any phenotype. 
We aim to address all the three challenges using our novel 
NR methodology.

To the best of our knowledge, previous studies have not 
addressed these challenges and this article proposes a novel 
deep learning-based (BERT-based) unsupervised method to 
accurately extract phenotypes with NR from various clinical 
contexts by leveraging clinical external knowledge. In sum-
mary, our main contributions are as follows:

1. We propose a novel unsupervised method to accu-
rately extract phenotypes that require NR by using 
NLP and deep learning techniques. The proposed 
method can extract phenotypes from various contexts 
with contextualized word embeddings.

2. Intrinsic evaluation shows significant superior accu-
racy of the proposed method against alternative 
phenotyping methods in both unsupervised and 
supervised settings.

3. Extrinsic evaluation shows the contributions of the 
phenotypes extracted by the proposed method to 
support better patient stratification. Also, these phe-
notypes are shown to impute and enrich the miss-
ing structured data, which improves data quality for 
potential downstream applications.

Materials and methods

Figure 1 presents the proposed unsupervised method for 
NR to extract specific phenotypes (defined as HPO24) from 
clinical notes. The proposed method consists of four steps, 
which will be elaborated upon in this section: (1) an external 
one-time knowledge base is created which connects numeric 

Figure 1. The proposed method of numerical reasoning (NR) model to extract specific phenotypes from clinical text without supervision.
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entities and phenotypes, (2) numbers and lexical candidates 
for numeric entities are then extracted from input text, (3) 
contextualized embeddings for numeric entities and lexical 
candidates are computed, respectively, and (4) the output 
phenotype is determined based on embedding similarity 
between lexical candidates and numeric entities.

External knowledge

Specific phenotypes can often be inferred from clinical text 
by numbers and numeric entities. For instance, in clinical 
notes, the numeric entity “temperature” and the numeri-
cal value “102 Fahrenheit” together suggest the phenotype 
Fever (HP:0001945) of a patient. Thus, prior to other steps, an 
external knowledge base is created to connect phenotypes, 
numeric entities, and numerical values.

To connect numeric entities and numerical values, as 
shown in Table 1, we manually collect the most frequent 
numeric entities such as temperature, heart rate, breathing 
rate, serum anion gap, and platelet and their normal ref-
erence ranges (values and units) from the National Health 
Service (NHS) of UK (Accessed in April 2022: https://www.
nhs.uk) and MIMIC-III.25 For example, we use the NHS web-
site to search for “temperature” and then specifically look for 
the numeric entities, normal (healthy) reference ranges, and 
the corresponding unit. We find the lower bound of normal 
temperature is 97.5°F (or 36.4°C) while the upper bound is 

99.1°F (or 37.3°C), which are then validated by three expert 
clinicians with consensus.

Second, Table 2 connects numeric entities and numeri-
cal values with phenotypes (i.e. HPO concepts). A numeric 
entity is typically connected with three phenotypes repre-
senting when a measurement reading is lower than, higher 
than, or within the normal reference range of numerical 
values. For example, when a temperature reading is lower 
or higher than the normal range, a patient is affirmed to 
have the phenotype hypothermia (HP:0002045) or fever 
(HP:0001945), respectively. Otherwise, a patient is negated 
to have abnormality of temperature regulation (HP:0004370), 
which is the parent phenotype of hypothermia (HP:0002045) 
or fever (HP:0001945). Both Tables 1 and 2 are validated by 
three expert clinicians with consensus for authenticity.

Number and lexical candidate extraction

Given clinical text, numbers and lexical candidates which 
are likely to be numeric entities are extracted, as shown in 
Figure 2. More specifically, regular expression is first used 
to extract numbers in alphanumeric format like “pyrexia 
increased to 102°F” and “heart rate in 90s,” while dates or 
numbers in clinical concepts like “vitamin B12” and “O2 sat-
uration” are excluded with a predefined dictionary.26 Then, 
syntactic analysis is used to extract the lexical candidates 
(with focus on nouns, adjectives, and verbs) that are linked 

Table 1. Numeric entities with normal reference range.

ID Numeric entity Abbreviation Unit Normal reference range

Lower bound Upper bound

0 Temperature Temp Celsius 36.4 37.3
0 Temperature Temp Fahrenheit 97.5 99.1
1 Heart rate Heart rate Beats per minute (bpm) 60 80
2 Breathing rate Breathing rate Breaths per minute 12 20
3 Serum creatinine Serum creatinine mg/dL 0.6 1.2
3 Serum creatinine Serum creatinine micromoles/L 53 106.1
4 Hematocrit Hct % 41 48
5 Blood oxygen O2 % 95 100

Examples of numeric entities with their corresponding normal reference range and units. A complete table of all numeric entities considered by this study is provided 
in Table 14.

Table 2. Numeric entities and corresponding phenotypes.

ID Numeric entity Number lower than the lower  
bound (affirmed)

Number higher than the upper  
bound (affirmed)

Number inside normal range (negated)

HPO ID HPO Name HPO ID HPO Name HPO ID HPO name

0 Temperature HP:0002045 Hypothermia HP:0001945 Fever HP:0004370 Abnormality of temperature regulation
1 Heart rate HP:0001662 Bradycardia HP:0001649 Tachycardia HP:0011675 Arrhythmia
2 Breathing rate HP:0046507 Bradypnea HP:0002789 Tachypnea HP:0002793 Abnormal pattern of respiration
3 Serum creatinine HP:0012101 Decreased

serum creatinine
HP:0003259 Elevated

serum creatinine
HP:0012100 Abnormal circulating creatinine 

concentration
4 Hematocrit HP:0031851 Reduced hematocrit HP:0001899 Increased hematocrit HP:0031850 Abnormal hematocrit
5 Blood oxygen HP:0012418 Hypoxemia HP:0012419 Hyperoxemia HP:0500165 Abnormal blood oxygen level

HPO: human phenotype ontology.
Examples of numeric entities and their corresponding phenotype labels (formalized by HPO ID and HPO name). The ID column links with Table 1. A complete table of 
all numeric entities considered by this study is provided in Table 15.

https://www.nhs.uk
https://www.nhs.uk
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with these numbers. For instance, Figure 2 shows that the 
words “pyrexia,” “increased,” and “begun” are considered 
as lexical candidates because they are linked to the num-
ber “102°F” within two hops, which suggest they are likely 
to be numeric entities. The extraction of lexical candidates 
encourages more extractions so that no important candidate 
is missed, but not all of the lexical candidates will eventually 
be considered as a numeric entity in later steps.

Contextualized embeddings for numeric entities 
and lexical candidates

To decide whether a lexical candidate is a numeric entity, 
we first create contextualized embeddings for numeric enti-
ties and lexical candidates by fine-tuning ClinicalBERT27 
and then measure their similarity. To create contextualized 
embeddings of numeric entities, the objective is to create 
a semantic embedding space in which the embeddings 
of all possible expressions (names and synonyms) of the 
same numeric entity are clustered closer, while those with 
different numeric entities are differentiated. Therefore, 
ClinicalBERT is fine-tuned with semantic textual similarity 
(STS) as in the equation below, which aims to maximize the 
cosine similarity between expressions of the same numeric 
entity while it minimizes the similarity between different 
numeric entities
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where hei
 is the contextualized embedding of the ith  

numeric entity ei  in  . Similarly, hsj
 is the contextualized 

embedding for the jth  synonym sj  in  . To collect the 
training data for STS, the numeric entities  = …{ , , , }e e e1 2  
are listed in Table 2 and their corresponding synonyms 
 = …{ , , , }s s sS1 2  are collected from HPO and the unified 
medical language system (UMLS).28 During inference, the 
contextualized embeddings of lexical candidates are com-
puted by feeding the lexical candidates into the same fine-
tuned ClinicalBERT model on-the-fly.

Embedding similarity and deterministic HPO 
assignment

After the creation and computation of contextualized embed-
dings of numeric entities and lexical candidates, embedding 
pairs by Cartesian product between lexical candidates and 

numeric entities are created and then cosine similarity is 
calculated between all the pairs. The pair with the maximum 
cosine similarity above a predefined threshold connects the 
lexical candidate with its corresponding numeric entity.

Once the numeric entity is decided, the phenotype is 
assigned deterministically based on whether the corre-
sponding number is lower than, higher than, or within the 
normal range. For example, Figure 1 shows that the lexi-
cal candidate “pyrexia” is extracted and then connected 
with the numeric entity “temperature” by contextualized 
embeddings. As the number “102°F” is higher than the 
upper bound of temperature “99.1,” the phenotype Fever 
(HP:0001945) is assigned.

Implementation details

First, the syntactic analysis to extract lexical candidates is 
built by using Stanford Stanza.29,30 The extraction focuses on 
nouns, adjectives, and verbs for lexical candidates, which are 
defined as “NOUN,” “PROPN,” “ADJ,” and “VERB” by the 
part-of-speech (POS) tagger and the extraction is optimized 
to capture multiword phrases like “heart rate” by the com-
pound relation. Second, the STS model is built by Sentence 
Transformers31 to fine-tune ClinicalBERT up to 4 epochs 
using the default hyperparameters (Accessed in April 2022: 
https://www.sbert.net/docs/training/overview.html) with 
batch size 16 and evaluation step 1000. We use mean pooling 
to obtain embeddings of multi-word synonyms. The thresh-
old for embedding similarity is set as 0.9 empirically. Some 
other third-party libraries including PyTorch,32 Pandas,33,34 
and spaCy are also used in the implementation.

Baselines and evaluation methods

The proposed NR model is compared with previous SOTA 
phenotyping methods. In the unsupervised setting, we con-
sider unsupervised baseline methods including NCBO,6 
NCR,8 and the unsupervised model by Zhang et al.12 In the 
supervised setting, we consider ClinicalBERT27 (which is 
fine-tuned in separate for phenotyping) and the supervised 
model by Zhang et al.12 The NCBO, NCR, and fine-tuned 
ClinicalBERT are selected as they show overall better per-
formance than other baseline phenotyping methods in cor-
responding settings, as demonstrated by Zhang et al.12

We decide not to use recent NR models,15–18 as baseline 
methods because none of them considers clinical knowl-
edge and it is costly to adapt them to the clinical domain.

For intrinsic evaluation to assess the accuracy of extract-
ing phenotypes, we compare the proposed NR model 
against the baseline phenotyping methods by micro-aver-
aged Precision, Recall, and F1-score at the document level. 

Figure 2. An example to extract lexical candidates of numbers by syntactic analysis. In this example, the words “pyrexia,” “increased,” “begun” are extracted as the 
lexical candidates of the number “102°F” by using part-of-speech (POS) tagging and dependency parsing.

https://www.sbert.net/docs/training/overview.html
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We follow35 and compute the metrics by two strategies.  
(1) Exact Matches: only the exact same HPO annotations 
against the gold standard annotations are considered as 
correct; (2) Generalized Matches: the gold standard annota-
tions as well as predicted HPO annotations are extended 
to include all ancestor HPO concepts until the root concept 
Phenotypic Abnormality (HP:0000118) (exclusive) in the HPO 
hierarchy. All the extended HPO annotations are de-dupli-
cated and added to the list of gold standard and predicted 
HPO annotations, respectively, for evaluation. By general-
ized matches, the prediction of HPO concepts which are 
children, neighbors, or ancestors of the target HPO concepts 
will also receive credits. For extrinsic evaluation on patient 
stratification, we report Area Under the Receiver Operating 
Characteristic curve (AUC-ROC), Sensitivity, and Specificity 
of the proposed NR model for particular diseases, namely, 
HIV and myocardial infarction (heart attack), based on the 
extracted phenotypes of the patients.

Before the deployment of the proposed method in the 
actual clinical setting, the method is subject to systematic 
debugging, extensive simulation, testing, and validation 
under the supervision of expert clinicians following related 
regulatory guidelines.

Results and discussion

This section introduces the dataset for intrinsic evaluation 
and demonstrates quantitative analysis, qualitative analysis, 
and ablation studies against baseline methods. The section 
then discusses the contributions of the extracted phenotypes 
to stratify patients and discusses using the extracted pheno-
types from clinical text to impute missing values in struc-
tured data.

Datasets

Our work is based on the clinical textual notes from the 
MIMIC-III database which is publicly available.25 For the 

unsupervised setting, we use 705 textual notes, which have 
20,926 gold phenotype annotations as mentioned in Table 3. 
Three expert clinicians created the gold phenotype annota-
tions with consensus focusing on contextual synonyms of 
phenotypes such as “high temperature” and “temperature 
of 102°F” for Fever (HP:0001945). We narrow down these 
phenotypes to the ones which need NR using the two condi-
tions: (1) phenotypes belong to the list of HPO IDs in Table 2,  
which require NR and (2) there is a number in the textual 
spans of the phenotypes. We identify 1121 such phenotype 
annotations, which we refer to as NR-specific phenotypes. 
The proposed NR model is compared with the previous 
unsupervised baseline methods using the test set created in 
the unsupervised setting.

For the supervised setting, we fine-tune the baseline meth-
ods (like ClinicalBERT) using randomly selected 535 out of 
705 manually annotated EHRs. Then, we use the remaining 
170 EHRs to compare the NR model with these supervised 
baselines. So, the test set created for the supervised setting is 
a subset of the test set created for the unsupervised setting. 
Note that our proposed NR model is strictly unsupervised 
in nature, but still we rigorously validate its performance by 
comparing it with the supervised baseline methods.

The datasets for extrinsic evaluation are also created 
based on MIMIC-III database. The research has been carried 
out in accordance with the relevant guidelines and regula-
tions for the MIMIC-III data.

Quantitative analysis

For the unsupervised setting, our quantitative results are 
reported in Table 4, where we compare the NR model with 
three baselines: NCBO, NCR, and the unsupervised model 
by Zhang et al.12 As the baselines are not designed to reason 
with numbers, they have poor performance on the unsu-
pervised test set, with all of them getting straight 0 on all 
the metrics. The NR model significantly outperforms all the 
baselines with 69% Recall and 59% F1 scores using exact 

Table 3. Test set statistics (counts) for the unsupervised and supervised setting.

Test set (unsupervised setting) Test set (supervised setting)

EHRs All phenotypes NR-specific phenotypes EHRs All phenotypes NR-specific phenotypes

705 20926 1121 170 5047 322

EHR: electronic health record; NR: numerical reasoning.
The unsupervised setting test set refers to all the manually annotated EHRs. On the contrary, supervised setting test set is a subset of the unsupervised setting test 
set as some of the EHRs from the latter are utilized to fine-tune the baseline models. For the intrinsic evaluation, note that we use only the NR-specific phenotypes, as 
the other phenotypes typically do not have relations with numbers in clinical narratives.

Table 4. Quantitative evaluation in unsupervised setting.

Model Exact Generalized

Precision Recall F1 Precision Recall F1

NCBO/NCR/(unsupervised)12 0 0 0 0 0 0
NR 0.5176 0.6879 0.5907 0.6479 0.7907 0.7122

NCBO: national center for bomedical ontology; NCR: neural concept recognizer; NR: numerical reasoning.
In the unsupervised setting, NR model significantly outperforms the baselines NCBO, NCR, and (unsupervised).12 However, interestingly but not surprisingly, the 
baselines have zero accuracy as they do not reason with numbers in the clinical narratives.
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metrics, while 79% Recall and 71% F1 scores using gener-
alized metrics. We focus on Recall over Precision so as to 
extract more phenotypes motivated by the downstream 
patient stratification system. Extracting more phenotypes 
help in identifying patients missed by the baselines. Clearly, 
the NR model demonstrates the superior performance in 
the unsupervised setting without any costly annotated data.

We further validate the unsupervised NR model by 
comparing it with the previous SOTA supervised baseline 
methods. The unsupervised NR model is compared with the 
supervised model by Zhang et al.12 which was built by fine-
tuning with annotated data. Table 5 shows the comparison 
on the supervised test set. Although the supervised model by 
Zhang et al.12 performs better than its unsupervised variant, 
our unsupervised NR model still outperforms the super-
vised baseline with gains of 12.5% and 5.7% on exact and 
generalized recall, respectively. However, we observe com-
parable F1 scores due to precision loss, which is an outcome 
of our preference toward Recall. Moreover, both the models 
combined reach the best performance improving score by 
21.5% and 14.3% on exact and generalized recall, respec-
tively, and 4.3% and 0.7% gains on exact and generalized 
F1 scores, respectively. Furthermore, we compare the NR 
model with the fine-tuned ClinicalBERT27 whose objective 
is to detect phenotypes. Again, the NR model and super-
vised model by Zhang et al.12 combined outperforms this 
baseline, improving scores by 66.4% and 69.7% on exact and 
generalized recall, respectively and 40% and 44.2% gains on 
exact and generalized F1 scores, respectively, as mentioned 
in Table 5. Overall, it demonstrates the impact of the NR 
model which performs significantly better than the super-
vised models, which eliminates the requirement of human 
annotation of phenotypes which is costly, time-consuming, 
error-prone, and requires huge manual efforts.

Qualitative analysis

We also evaluate the example sentences having a variety of 
contexts to compare the NR capabilities of the proposed NR 
model against the baseline methods. In the sentence “patient 
has a temperature of 103°F,” the unsupervised baselines – 
NCR, NCBO, and (unsupervised)12 – fail to detect any pheno-
type. But with the addition of the word high, that is, “patient 
has a high temperature of 102°F,” (unsupervised)12 is able to 
detect the phenotype Fever (HP:0001945) correctly but with the 

incomplete textual span “high temperature” completely ignor-
ing the number 102°F. It clearly conveys that it relies solely on 
the context without reasoning with the number, while NCR 
and NCBO still miss the phenotype. When we simplify the 
sentence by replacing the word “temperature” with “fever,” 
that is, “patient has a high fever of 102°F,” all the three unsuper-
vised baseline methods now correctly determine the pheno-
type Fever (HP:0001945). However, the number is still missing 
from the predicted textual span. Overall, we conclude that all 
the unsupervised baselines just rely on the textual content of 
the clinical narratives and completely disregard the numbers.

In contrast, our NR model accurately extracts the pheno-
types along with correct textual spans including numbers 
for all the three variants of the original sentence. It correctly 
identifies the target textual spans, that is, “temperature of 
102°F,” “temperature of 102°F,” and “fever of 102°F,” for the 
phenotype Fever (HP:0001945) for the three sentences above, 
respectively. Similarly, it correctly detects the textual spans 
from the sentence “patient has a breathing rate of 27” with 
the phenotype Tachypnea (HP:0002789) as well as “patient has 
a serum creatinine of 1.7” with the phenotype Elevated serum 
creatinine (HP:0003259), while the baselines fail to detect the 
phenotypes as they do not reason with numbers. Overall, the 
results indicate that the NR model accurately reasons with 
the numbers in a variety of contexts without needing any 
explicit supervision. Note that this efficiently addresses one 
of the key challenges in NR of handling different contexts as 
we have identified earlier.

In addition, the (supervised) model12 achieves reason-
able accuracy compared with the unsupervised baselines 
which get straight 0 scores. However, it still lacks the NR 
capabilities. For example, given the sentence “patient has a 
temperature of 102°F,” even though it correctly predicts the 
phenotype Fever (HP:0001945) but if the number is changed 
from 102°F to 91°F which changes the target phenotype to 
Hypothermia (HP:0002045), the (supervised) model12 still pre-
dicts the phenotype as Fever incorrectly. Similarly, we observe 
wrong predictions when we change the target phenotype 
from Tachypnea (HP:0002789) to Bradypnea (HP:0046507) 
and from Elevated serum creatinine (HP:0003259) to Decreased 
serum creatinine (HP:0012101). We analyzed the phenotype 
frequencies in the MIMIC data using the NR model predic-
tions and found that there is a strong imbalance in the fre-
quency of the phenotypes corresponding to a numeric entity. 
For example, we find 8387 cases with the phenotype Fever, 

Table 5. Quantitative evaluation in supervised setting.

Model Exact Generalized

Precision Recall F1 Precision Recall F1

Fine-tuned ClinicalBERT 0.8235 0.181 0.2968 1.000 0.2229 0.3646
(Supervised)12 0.6791 0.6293 0.6532 0.8245 0.7762 0.7996
NR 0.5952 0.7543 0.6654 0.7290 0.8339 0.7780
(Supervised)12 + NR 0.5921 0.8448 0.6963 0.7175 0.9201 0.8062

NR: numerical reasoning; BERT: Bidirectional Encoder Representations from Transformers.
Comparison of our NR model with the supervised baselines in the supervised setting: It shows that the NR model significantly improves recall by extracting more 
phenotypes even without explicit supervision. Please note that we refer to a subset of unsupervised setting test set as supervised setting, which we create to compare 
the unsupervised NR model against the supervised baselines.
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which is far more common than the phenotype Hypothermia 
with 5275 cases in the data. Thus, we conclude that the 
model is fine-tuned with a strong bias toward the highly 
frequent phenotypes. Therefore, scores in Table 5 are inflated 
for (supervised)12 due to overestimation of its NR capabili-
ties. This analysis concludes that the supervision itself is not 
sufficient for a model without additional tailored learning 
objectives to achieve the NR capabilities.

Finally, our model also addresses the other two challenges 
we identified earlier. First, our syntactic analysis handles 
the accumulation of multiple numeric examples in a condensed 
context. For example, given the sentence, “temperature 
99.5, blood pressure 140/90, pulse 85,” the NR model cor-
rectly identifies Low-grade fever (HP:0011134), Hypertension 
(HP:0000822), and Tachycardia (HP:0001649). Second, as not 
all the numbers in clinical text relate to phenotypes, our syntactic 
analysis and contextualized embeddings can discard such 
cases. For example, in the sentence “patient required 4 days 
of hospitalization,” the NR model finds that 4 is not con-
nected to any numeric entity, so no phenotype is predicted.

Finally, we observe some cases where the NR model does 
not detect the phenotype accurately. For example, given the 
text sample, “Pt still with scant bibasilar crackles. Sat @ 97% 
on 2L NG, continuing with oral HTN meds and Dig.,” the 
model detects the phenotype Abnormal blood oxygen level 
(HP:0500165) (used for negation) from the textual span “Sat 
@ 97%” as 97% falls within the normal reference range for 
blood oxygen, that is 95–100%. But the correct phenotype is 
Hypoxemia (HP:0012418) as the patient temporarily reaches 
the normal range due to external oxygen supply, which is 
evident from the text “2L NG.”

Ablation studies

In order to probe the benefit of contextualized embeddings 
and the learning objective for fine-tuning in equation (1), we 
conduct two ablation studies. We assess the need for con-
textualized embeddings with cosine similarity that is used 
to connect lexical candidates with numeric entities. Rather, 
we connect lexical candidates with numeric entities using 
keyword-based shallow matching. This drops the perfor-
mance substantially, as reported in Table 6, where the exact 
Recall drops from 68.8% to 26.4% and F1 drops from 59.1% to 
38.1% on the unsupervised test set. Therefore, we need con-
textualized embeddings to capture the semantics of lexical 
candidates (corresponding to numeric entities), which may 
be written in a variety of contexts.

Then, we compare the pretrained contextualized embed-
dings with the fine-tuned contextualized embeddings as 
reported in Table 6. As discussed before, the pretrained 
embeddings are created using the pretrained ClinicalBERT 
model without any fine-tuning, while the fine-tuned ones 
are created after fine-tuning the ClinicalBERT using STS 
equation (1). It is evident from Table 6 that the pretrained 
embeddings have poor performance with a drop on exact 
Recall from 68.8% to 37.6% and F1 from 59.1% to 43.1% on 
the unsupervised test set. We can interpret these results 
better with Figure 3, which shows the visualization of the 
pretrained and fine-tuned embeddings of numeric entities 
and their corresponding UMLS synonyms using uniform 
manifold approximation and projection (UMAP) dimen-
sionality reduction method.36 Most of the numeric entities 
are scattered unevenly in the semantic space created using 
the pretrained embeddings. For example, there is no clear 
segregation between the data points for (general) choles-
terol, low-density lipoprotein cholesterol, and high-density 
lipoprotein cholesterol. Contrary, the fine-tuned embeddings 
form well-segregated data clusters which makes it much 
easier to predict a corresponding numeric entity of lexical 
candidates (connected with a number) using cosine similar-
ity without collisions. Overall, the analysis confirms that the 
proposed learning objective for fine-tuning in equation (1) is 
needed to connect lexical candidates with numeric entities 
effectively, as the pretrained contextualized embeddings are 
not sufficient.

Contribution of NR phenotypes to patient 
stratification systems

We validate the impact of the NR model with patient strati-
fication systems where we predict whether patients are 
diagnosed or at risk of particular diseases, namely, HIV and 
myocardial infarction (heart attack). We use the MIMIC-III 
data and extract these patients using ICD codes, as men-
tioned in Table 7. We divide the data (number of admissions) 
into train and test splits as per Table 8. Later, we use the 
train set to train a random forest classifier37 for each disease 
with the phenotypes extracted from all the MIMIC-III dis-
charge summaries using the best model from Table 5, that 
is, (supervised)12 + NR. We also compare our model with a 
couple of previous SOTA baselines – NCR and fine-tuned 
ClinicalBERT. The classifiers are evaluated on the test set 
using the metrics – AUC-ROC, Sensitivity, and Specificity as 
shown in Table 9.

Table 6. Ablation studies on the unsupervised test set.

NR model with Exact Generalized

Precision Recall F1 Precision Recall F1

Keyword-based shallow matching 0.6854 0.2641 0.3813 0.7745 0.3449 0.4773
Pretrained contextualized embeddings 0.5065 0.3758 0.4314 0.6006 0.465 0.5241
Fine-tuned contextualized embeddings (used by the final NR model) 0.5176 0.6879 0.5907 0.6479 0.7907 0.7122

NR: numerical reasoning.
We compare the NR model variants (1) keyword-based shallow matching of lexical candidates with numeric entities, (2) pretrained contextualized embeddings, and (3) 
fine-tuned contextualized embeddings. The fine-tuned contextualized embeddings perform much better than the other two variants, thus is used in the final NR model.
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Figure 3. Visualizing pretrained and fine-tuned contextualized embeddings of numeric entities along with their UMLS synonyms obtained by pretrained and fine-
tuned ClinicalBERT, respectively, using UMAP plots. We observe that fine-tuned embeddings result in better differentiation of numeric entities in the semantic space. 
Our NR model exploits this differentiation to identify the phenotypes more accurately.

Table 7. Extrinsic evaluation: diseases statistics using MIMIC-III database.

Disease ICD-9 codes Number of admissions

Positive Negative

HIV 042 and 079.53 538 58438
Myocardial infarction (heart attack) All subcodes of 410 5430 53546

ICD: International Classification of Diseases; MIMIC: medical information mart for intensive care.
Positive admissions are extracted from MIMIC-III database using ICD-9 codes, while the rest of the admissions are marked as negative.

Table 8. Extrinsic evaluation: train and test split for patient stratification systems.

Disease Train Test

All Positive Negative All Positive Negative

HIV 29,637  307 29,330 29,339  231 29,108
Myocardial infarction (heart attack) 29,637 2767 26,870 29,339 2663 26,676

Number of admissions divided into train and test split for patient stratification systems.

Table 9. Extrinsic evaluation: quantitative evaluation for patient stratification systems.

Disease Model AUC-ROC Sensitivity Specificity

HIV NCR 0.701 0.415 0.986
Fine-tuned ClinicalBERT 0.901 0.818 0.983
(Supervised)12 + NR 0.966 0.952 0.980

Myocardial infarction (heart attack) NCR 0.831 0.822 0.840
Fine-tuned ClinicalBERT 0.839 0.862 0.817
(Supervised)12 + NR 0.870 0.888 0.853

AUC-ROC: area under the receiver operating characteristic curve; NCR: neural concept recognizer; NR: numerical reasoning; BERT: Bidirectional Encoder 
Representations from Transformers.
Evaluating the benefit of the proposed NR model on the downstream use case to stratify patients at risk of particular diseases using the best model from Table 5, that 
is, (supervised)12 + NR comparing against the baselines – NCR and Fine-tuned ClinicalBERT.
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For HIV, our model significantly outperforms all the base-
lines on AUC-ROC and Sensitivity metrics by obtaining the 
scores of 96.6% and 95.2%, respectively. All the models have 
similar Specificity. In the case of myocardial infarction, our 
model outperforms all the baselines on all the metrics by 
obtaining an AUC-ROC of 87.0%, Sensitivity of 88.8%, and 
Specificity of 85.3%. Overall, it demonstrates the capability 
of our model to precisely extract the positive patients from a 
large pool of candidates.

In order to analyze the impact of the NR model on the pre-
diction performance, we analyze the top phenotype features 
that the classifiers rely on to identify the patients. We use 
Shapley (SHAP)38 analysis as shown in Figures 4 and 5 for 
HIV and myocardial infarction, respectively. We validated 
the clinical importance of these phenotypes for each disease 
using the clinician scores (refer Table 10) as shown in Tables 
11 and 12 for HIV and myocardial infarction, respectively. 
These scores are assigned to the phenotypes by three expert 
clinicians where a score of 1 means that a phenotype is irrel-
evant to a disease, while a score of 5 means that the pheno-
type is the most important clinical indicator for a disease.

In the case of HIV, the phenotype “HP:0032218/Decreased 
proportion of CD4-positive T cells” extracted by NR model 
is among the top features used by the patient stratification 
system as is evident from its SHAP plot. This phenotype  
is further verified by the clinicians who marked it as one 
of the most important clinical indicators for HIV with a  
clinician score of 5. Similarly, for myocardial infarction, the 

phenotypes “HP:0410174/Increased troponin T level in 
blood” and “HP:0012666/Severely reduced ejection frac-
tion” extracted by NR model are among the top features 
which are further verified by the clinicians marking them as 
one of the most important clinical indicators for myocardial 
infarction using the clinician scores of 5 and 4, respectively. 
We hypothesize that the phenotypes captured by the NR 
model contain important bedside measurements written in 
clinical textual notes, which help the classifiers for better 
patient stratification.

Imputation of missing structured data using  
NR phenotypes

We conducted an analysis to impute the missing struc-
tured data from the MIMIC-III dataset with the numeric 
values present in the phenotypes extracted from the tex-
tual notes by the NR model. We aggregate all the structured 
data recorded at different timesteps for an intensive care 
unit (ICU) admission and mark all the empty or negative 
aggregated values as missing data. Then, we extract the 
phenotypes from the corresponding discharge summaries 
and impute the missing data with the numeric values from 
the phenotypic text. For example, if temperature is missing 
from the structured data for an admission and if we detect 
a phenotype “Fever” in its discharge summary with the 
phenotypic text “temperature of 99 F,” then we impute the 
missing value with the number “99.”

Figure 4. HIV patient stratification system: Technical evaluation using Shapley scores using top phenotypes sorted in the descending order of importance. Here, 
the red color indicates the presence of a phenotype, while blue indicates the absence. On the SHAP axis, dots on the right-hand side refer to patients with high 
probability of HIV, while the left-hand side dots refer to low probability. Density of dots indicate the number of patients. This clearly demonstrates that the phenotype 
“HP:0032218/Decreased proportion of CD4-positive T cells,” which requires numerical reasoning, is among the top indicators to detect a patient with HIV.
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We impute the structured data for several features includ-
ing breathing rate, calcium, hematocrit, and so on, as shown 
in Table 13 where the imputation can fill at least 25% of the 
missing values. It drastically improves the quality of the 
structured data, as the imputed values are the actual meas-
urements instead of estimated averages or median values of 
all the available values. Structured data is useful for several 
downstream biomedical applications such as ICU in-hospital 
mortality and length of stay prediction,39 which can benefit 
the most with the improved data quality.

Generalizability

We have shown the significance of the proposed NR model 
for the phenotype annotation, and it can be potentially gen-
eralized to other healthcare or general NLP tasks. For exam-
ple, in the biomedical domain, the model can be adopted to 
extract drug doses from clinical text by (1) extracting numeric 
dosage and drug names, (2) matching drug names with enti-
ties in a predefined external drug database by contextualized 
embeddings, and (3) reasoning what the dosage indicates. 
Similarly, the model can also be applied in other NLP tasks 
such as summarization (with numbers in documents and 
summaries) and question answering (understanding num-
bers in questions, context, and answers).

Limitations

The major limitation is the discrepancy due to the boundary 
cases. For example, 99.1°F is the upper normal temperature 
limit, so strictly speaking 99.2°F is Fever. However, it is not 
always true in real-world practice as sometimes the lower 
and upper bounds are defined vaguely and may vary place 
to place. The lower and upper bounds also vary with age 
and gender, which means the external knowledge may be 
dynamic. Therefore, in the future we plan to address those 

Figure 5. Myocardial infarction (heart attack) patient stratification system: Technical evaluation using Shapley scores using top phenotypes sorted in the descending 
order of importance. Here, the red color indicates the presence of a phenotype, while blue indicates the absence. On the SHAP axis, the right-hand side dots refer to 
patients with high probability of myocardial infarction, while the left-hand side dots refer to low probability. Density of dots indicate the number of patients. This clearly 
demonstrates that the phenotypes “HP:0410174/Increased troponin T level in blood” and “HP:0012666/Severely reduced ejection fraction,” which require numerical 
reasoning, are among the top indicators to detect a patient with myocardial infarction.

Table 10. Extrinsic evaluation: clinician score to validate patient 
stratification systems.

Clinicians’ score Phenotype importance

1 Irrelevant
2 Low
3 Moderate
4 High
5 Very high

Clinicians’ scores to validate phenotype features for patient stratification systems: 
A score of 1 means that a phenotype is irrelevant to a disease, while a score of 
5 means that the phenotype is the most important clinical indicator for a disease.
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Table 11. Extrinsic evaluation: clinical validation for HIV patient stratification system.

Phenotype Clinician Score (1–5) Is a comorbidity?

HP:0002721/Immunodeficiency 5 No
HP:0032218/Decreased proportion of CD4-positive T cells 5 No
HP:0005407/Decreased proportion of CD4-positive helper T cells 5 No
HP:0012115/Hepatitis 3 Yes
HP:0020102/Pneumocystis jirovecii pneumonia 5 Yes
HP:0009098/Chronic oral candidiasis 5 Yes
HP:0032101/Unusual infection 3 No
HP:0032262/Pulmonary tuberculosis 4 Yes
HP:0006562/Viral hepatitis 3 Yes
HP:0002665/Lymphoma 3 Yes
HP:0000112/Nephropathy 4 No
HP:0031692/Severe cytomegalovirus infection 5 Yes
HP:0020172/Adverse drug response 1 No

Clinical evaluation by three expert clinicians using Clinician scores (1–5) (refer Table 10) are used to mark the importance of the top phenotypes as clinical indicators 
for the HIV. Comorbidity status of these phenotypes with respect to HIV is also marked. All the phenotypes extracted by numerical reasoning model are bold. This 
clearly demonstrates that the phenotype “HP:0032218/Decreased proportion of CD4-positive T cells” which requires numerical reasoning is among the top indicators 
to detect a patient with HIV, which is further verified by clinicians marking it as one of the most important clinical indicators for HIV.

Table 13. Extrinsic evaluation: imputation of missing structured data in the MIMIC-III corpus to enrich data quality.

Structured data Total missing admissions % of missing admissions imputed by NR phenotypes

Breathing rate 57,947 39.774%
Calcium 53591 38.159%
Carbon dioxide 31,520 26.396%
Heart rate 6677 31.631%
Hematocrit 8454 31.595%
International normalized ratio 22,663 26.479%
Phosphate 43,688 30.331%
Platelet 9869 26.376%
Serum creatinine 58,976 65.001%
Systolic blood pressure 10,400 45.385%
White blood count 16,140 45.273%

MIMIC: medical information mart for intensive care; NR: numerical reasoning.
Imputation of missing structured data in the MIMIC-III corpus having a total of 58,976 admissions using phenotypes extracted by NR model: Imputing missing values 
using numbers from textual notes is critical to improve the structured data quality, which is useful for several downstream biomedical applications such as ICU in-
hospital mortality and length of stay prediction.

Table 12. Extrinsic evaluation: clinical validation for myocardial infarction (heart attack) patient stratification system.

Phenotype Clinician score (1–5) Is a comorbidity?

HP:0001658/myocardial infarction 5 Yes
HP:0001677/Coronary artery atherosclerosis 3 Yes
HP:0003236/Elevated serum creatine kinase 1 No
HP:0012251/ST segment elevation 5 Yes
HP:0005145/Coronary artery stenosis 5 Yes
HP:0410174/Increased troponin T level in blood 5 Yes
HP:0003115/Abnormal EKG 4 Yes
HP:0410173/Increased troponin I level in blood 5 Yes
HP:0100749/Chest pain 3 Yes
HP:0500020/Abnormal cardiac biomarker test 5 Yes
HP:0012666/Severely reduced ejection fraction 4 Yes

EKG: electrocardiogram.
Clinical evaluation by three expert clinicians using Clinician scores (1–5) (refer Table 10) are used to mark the importance of the top phenotypes as clinical indicators 
for myocardial infarction. Comorbidity status of these phenotypes with respect to myocardial infarction is also marked. All the phenotypes extracted by numerical 
reasoning model are given in bold. This clearly demonstrates that the phenotypes “HP:0410174/Increased troponin T level in blood” and “HP:0012666/Severely 
reduced ejection fraction,” which require numerical reasoning are among the top indicators to detect a patient with myocardial infarction, which are further verified by 
clinicians marking them as one of the most important clinical indicators for myocardial infarction.
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cases by fine-tuning a dynamic precision level to optimize 
prediction performance. Other than the boundary cases, we 
have restricted our method to work at the sentence-level 
context. Extending to the document level and contextual rea-
soning on longer context along with NR will further improve 
the model. For instance, if the temperature is recorded as 
98°F (normal temperature) at the beginning of a clinical note, 
but the note mentions toward the end that it increases by 
3°F, then ideally a model should be able to capture fever by 
document level reasoning as the temperature 101°F means 

fever. The proposed model also relies on pre-extracted exter-
nal knowledge that is manually curated. Ways to extract this 
knowledge automatically could be explored further.

Future works

The proposed model can be potentially generalized to other 
biomedical NLP tasks that require NR from text. The model 
can be further extended to consider document-level context 
and dynamic external knowledge base.

Table 14. Numeric entities with normal reference range (complete table).

ID Numeric entity Abbreviation Unit Normal reference range

Lower bound Upper bound

0 Temperature Temp Celsius 36.4 37.3
0 Temperature Temp Fahrenheit 97.5 99.1
1 Heart rate Heart rate Beats per minute (bpm) 60 80
2 Breathing rate Breathing rate Breaths per minute 12 20
3 Serum creatinine Serum creatinine mg/dL 0.6 1.2
3 Serum creatinine Serum creatinine micromoles/L 53 106.1
4 Hematocrit Hct % 41 48
5 Blood oxygen O2 % 95 100
6 Ejection fraction EF % 50 100
7 Carbon dioxide CO2 mEq/L 23 29
8 White blood count WBC *1000 4.5 11
8 White blood count WBC *1 4500 11,000
9 International normalized ratio INR *1 0.8 1.1
10 Troponin T Trop t ng/ml 0 0.04
11 Glucose Glucose mmol/L 3.9 5.6
11 Glucose Glucose mg/dL 70 100
12 Serum anion gap AG mEq/L 3 10
13 Systolic blood pressure SBP mmHG 90 139
14 CD4T cells CD4 Cells/mm3 500 1500
15 Low-density lipoprotein cholesterol Ldl mmol/L 0 2.6
15 Low-density lipoprotein cholesterol Ldl mg/dL 70 100
16 High-density lipoprotein cholesterol Hdl mmol/L 1.5 5
16 High-density lipoprotein cholesterol Hdl mg/dL 60 1000
17 Hemoglobin a1c Hba1c % 0 5.6
18 Thyroid stimulating hormone Tsh mIU/L 0.5 5
19 Serum lactate Lactate mmol/L 0.5 2.2
20 Serum bicarbonate Hco3 mEq/L 23 30
21 Potassium k mmol/L 3.5 5.5
22 Neutrophil Anc 109/L 2 7.5
22 Neutrophil Anc Cells per microliter 2000 7500
23 Bilirubin Bilirubin mg/dL 0.3 1.2
24 Platelet Platelet *1000 150 450
24 Platelet Platelet *1 150,000 450,000
25 Calcium Ca mmol/L 2 2.5
25 Calcium Ca mg/dL 8 10
26 Sodium Na mmol/L 136 145
27 Phosphate Phosphate mmol/L 0.97 1.45
27 Phosphate Phosphate mg/dL 3 4.5
28 Blood urea nitrogen Bun mmol/L 2.5 7.1
28 Blood urea nitrogen Bun mg/dL 7 20
29 Serum ferritin Serum ferritin ng/mL 20 150
30 Triglycerides Tg mmol/L 0 1.7
30 Triglycerides Tg mg/dL 50 150
31 Cholesterol Chol mmol/L 0 5
31 Cholesterol Chol mg/dL 50 200
32 Kinase Ck U/L 25 200

A complete table of numeric entities that are used in the study with normal reference range and units. The ID column corresponds to that in Table 15.
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