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Biological theories of aging

In 2022, near 750 million people will reach the age of 65 years 
and above, and this population is expected to reach 1.6 bil-
lion by 2050. Increases in the elderly population will burden 
national health care systems at a great economic cost to soci-
ety. Thus, it is important to better understand the underlying 
factors that drive aging and age-related disease. Aging is 
characterized by a gradual decline in systems’ functions that 
result in progressive deterioration and loss of functionality 
at cellular, tissue, and organismal level.1 A wide range of 
diseases – including neurodegenerative diseases, metabolic 

disorders, sensory changes, and cardiovascular diseases – 
have been shown to be associated with the aging process.2,3 
Understanding and identifying the regulators of age-associ-
ated functional decline are key to improving both the lifespan 
and health-span of individuals through the potential rever-
sal of the aging hallmarks. Evolutionary theories attempt to 
explain the biological process of aging observed across many 
different species. Inspired from Charles Darwin’s ground-
breaking publication “On the Origin of Species” describing 
the evolution of natural selection, August Weismann pro-
posed a “theory of programmed death,” describing a specific 
death-mechanism designed by natural selection to eliminate 
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Abstract
Selenium is a naturally found trace element, which provides multiple benefits 
including antioxidant, anticancer, and antiaging, as well as boosting immunity. 
One unique feature of selenium is its incorporation as selenocysteine, a rare 21st 
amino acid, into selenoproteins. Twenty-five human selenoproteins have been 
discovered, and a majority of these serve as crucial antioxidant enzymes for redox 
homeostasis. Unlike other amino acids, incorporation of selenocysteine requires a 
distinctive UGA stop codon recoding mechanism. Although many studies correlating 
selenium, selenoproteins, aging, and senescence have been performed, it has 
not yet been explored if the upstream events regulating selenoprotein synthesis 
play a role in senescence-associated pathologies. The epitranscriptomic writer 
alkylation repair homolog 8 (ALKBH8) is critical for selenoprotein production, and 
its deficiency can significantly decrease levels of selenoproteins that are essential 
for reactive oxygen species (ROS) detoxification, and increase oxidative stress, 
one of the major drivers of cellular senescence. Here, we review the potential role 
of epitranscriptomic marks that govern selenocysteine utilization in regulating the 
senescence program.
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Minireview

Impact Statement

This article serves to shift current paradigms relat-
ing to our overall understanding of the control of 
senescence and to redefine the contribution of 
selenium, selenoproteins, and epitranscriptomic 
signals in senescence progression. Selenoproteins 
are important for the maintenance of normal 
organismal function, and we review their vital role 
in senescence programming. We identify epitran-
scriptomic defects key to selenocysteine utilization 
that also engage senescence and summarize the 
key role that selenoproteins have in degenerative 
disease progression. This serves to open an area of 
investigation linking defects in the epitranscriptome 
to senescence engagement. Thus, selenoproteins 
and epitranscriptomic writers may act as gatekeep-
ers in controlling the senescent microenvironment 
through reactive oxygen species (ROS) mitigation 
and limiting the senescence-associated secretory 
phenotype. This review will serve as a compendium 
for those seeking to modulate epitranscriptomic sys-
tems as therapeutic avenues for treatment of age-
related disease.
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the unfit, older generation to benefit the younger genera-
tion. He suggested that individual life span correlates with 
the limited number of cell divisions, which is determined 
at the embryonic stage. This idea was further developed as 
the theory of antagonistic pleiotropy theory, which explains 
that cell growth arrest is beneficial for organismal survival. 
In 1952, Peter Medawar proposed the theory of mutation 
accumulation, which posits that no known evolution mecha-
nism exists to eliminate the mutations that cause deleteri-
ous effects on aged species.4 This theory was later extended 
by George Williams’ “Theory of antagonistic pleiotropy,” 
explaining that although a pleiotropic gene can be beneficial 
for species survival early in life, that same gene can induce 
deleterious effects later in life.5 For example, p53 prevents 
cancer development in young people by halting damaged 
cells from reproducing, but p53 can also play a role in aging 
as it impairs the ability to renew deteriorating tissues.6 
Thomas Kirkwood put forth the theory of “disposable soma” 
as an extension antagonistic pleiotropy theory, explaining 
that species need to balance the maintenance or repair of 
the cell or soma, and reproduction.7 Mutations and cellular 
damage can accumulate over time as organisms focus their 
resources on reproductive maintenance because the body no 
longer has recourse to repair this damage. Genetic mutations 
that occur in egg or sperm cells will be passed onto future 
generations, whereas mutations occurring in other types of 
cells will only affect that individual cell and not be passed 
onto future generations. Most of these mutations are not fatal 
and are repaired and eliminated by repair mechanisms. The 
irreparable mutations will accumulate overtime, resulting in 
damage to cells and cell death. These mutations are the result 
of DNA damage that can be induced by oxygen contain-
ing free radicals, known as reactive oxygen species (ROS). 
Mitochondria are a major source of ROS and mutations in 
mitochondrial DNA can accumulate with age, resulting in 
further increases in ROS production and age-related func-
tional decline.8,9 In addition to DNA, ROS can also cause 
damage to proteins and lipids, commonly referred to as 
oxidative stress or oxidative damage, which contributes to 
many age-related diseases.10

Aging hallmarks and senescence

Cellular senescence is the biological process which limits 
the proliferation of cells in response to age-related damage. 
Cellular senescence was first described by L. Hayflick and 
P.S. Moorhead in 1961. Their observation showed that human 
cells in culture have a finite proliferative capacity, which 
describes “senescence” at the cellular level.11 Cellular senes-
cence, a process of irreversible cell cycle arrest, has proven to 
be a significant tumor restraining mechanism that terminates 
the proliferation of primary mammalian cells after limited 
number of population doublings, eliminating the poten-
tial detrimental effects of uncontrolled growth.12–16 Cellular 
senescence can be induced by multiple factors, including 
telomere shortening, oxidative stress, and oncogene activa-
tion.17–23 As cells senescence, they undergo a variety of bio-
logical changes creating a cellular microenvironment that is 
permissive to disease. Therefore, understanding the molecu-
lar triggers that control the senescent program will provide 
insight into limiting age-related disease onset.

Senescence stressors

Telomeres are specific DNA sequences composed of highly 
repetitive clusters of TTAGGG and the length is species-spe-
cific, varying from 4000 to 15,000 nucleotides. The length of 
telomeres shortens with each cellular replication due to the 
inability of DNA polymerase to work on single-stranded 
3’ ends, which led to the “theory of marginotomy” by 
Olovnikov in 1972, which was experimentally confirmed 
by Blackburn.24,25 Once telomeres reach critical threshold 
of shortening, the cells undergo cell cycle arrest, cellular 
senescence, and/or apoptosis.21 Thus, the length of telomere 
serves as biological clock for cells’ lifespan and a marker for 
cellular senescence. Whittemore et al.26 demonstrated a corre-
lation between telomere shortening rate and species-specific 
lifespan, indicating that those animals with slower telomere 
shortening rates display longer life span. Telomere shorten-
ing is accelerated when cells are exposed to cellular stress-
ors, such as oxidative stress, resulting in reduced replicative 
capacity and premature senescence.27–29 Scavenging ROS can 
slow down the rate of telomere shortening and extend the 
replicative capacity of a cells in vitro.30,31

Activation of DNA damage repair (DDR) and correspond-
ing DNA repair pathways is a primary response to double-
strand DNA breaks (DSBs), as well as telomere attrition due 
to persistent DNA damage, and can trigger activation of 
p53. The tumor suppressor gene, p53, plays a key role as a 
transcription factor in cell-cycle control, apoptosis, and cel-
lular stress responses. p53 is highly unstable and is degraded 
through ubiquitin-mediated degradation by MDM2 in the 
absence of DNA damage.32 DDR can block the progression 
of the cell cycle via stabilization of p53 through ATM or ATR 
kinases, leading to transcriptional activation of the cyclin-
dependent kinase (CDK) inhibitor p21.28 p53 has been recog-
nized as a key modulator of cellular senescence, aging, and 
tumor progression.33–35

Oncogene-induced premature senescence is triggered in 
response to activation of oncogenes or to the loss of tumor 
suppressors genes.18,36–39 Senescence can also be induced 
by cellular stresses, such as radiation, drugs, and oxidative 
stress, which is termed stress-induced senescence and can 
result in increased expression of the tumor suppressor and 
cyclin-dependent inhibitor p16INK4a.40–43

The free radical theory of aging posits that accumulation 
of macromolecular damage occurs after a lifetime of expo-
sure to oxidants.20 Although often refuted, several tenets 
of this theory stand true including the two critical tenets 
focusing on species-specific low mitochondrial ROS genera-
tion rates at Complex I of the electron transport chain (ETC) 
and lowered levels of fatty acid unsaturation on cellular 
and mitochondrial membranes in long-lived animals.44 The 
mechanistic control of senescence by ROS has also garnered 
significant focus.45 Figure 1 summarizes the many cellular 
stresses discussed above that can induce senescence.

Mitochondria and cellular senescence

Mitochondria, cellular powerhouses that generate energy 
from fuel, are crucial for cellular bioenergetics, and play 
major role in calcium signaling, redox homeostasis, and 
thermogenesis. Mitochondria also serve as a major source 
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of ROS production, which are generated during oxidative 
phosphorylation (OXPHOS) primarily as a result of elec-
tron leak and the 1 − e− reduction of molecular oxygen (O2) 
to superoxide (O2

•−).46 OXPHOS utilizes five protein com-
plexes, ubiquinone oxidoreductase (Complex I), succinate 
dehydrogenase (Complex II), ubiquinol-cytochrome c oxi-
doreductase (Complex III), cytochrome c oxidase (Complex 
IV) and adenosine triphosphate (ATP) synthase (Complex 
V), to provide chemical energy for cell survival.47 Most of 
the subunits of Complexes I, III, IV, and V are synthesized 
on cytosolic ribosomes, followed by transport and assembly 
into the mitochondrial membrane, and 13 subunits of these 
complexes are synthesized by mitoribosome and rapidly 
inserted into the mitochondrial inner membrane.48 During 
OXPHOS, ATP synthesis is achieved by generating proton 
motive force through series of electron transfer processes, 
in which the electron donors, nicotinamide adenine dinu-
cleotide (NADH) and succinate, are oxidized by Complexes 
I and II, respectively, followed by transfer of electrons to 
Complex IV through Complex III, where the electrons are 
reduced to molecular oxygen.48 The concentration of poten-
tial electron donors and the production rate of ATP can influ-
ence the flux of O2

•−49 that is generated from Complexes I 
and II in the mitochondrial matrix, and in both the matrix 
and intermembrane space by Complex III.50,51 O2

•− generated 
from Complex III can travel into the cytosol for signaling 
purposes52 or be enzymatically dismuted to H2O2 by super-
oxide dismutase proteins, SOD1 and SOD2.53,54 Deterioration 
in mitochondrial OXPHOS is primarily involved in early 
stages of cellular senescence, and increased ROS production 

from dysfunctional mitochondria can aggravate senescence 
by enhancing DNA damage and the DDR.55–62

During the coupled processes of electron transport and 
OXPHOS, an electrochemical gradient is created between the 
mitochondrial matrix and intermembrane space. The pro-
tons from the intermembrane space are transported into the 
matrix by ATP synthase, driving the conversion of adenosine 
diphosphate (ADP) into ATP. In addition to ATP synthase, 
protons can also leak into the matrix by action of special-
ized mitochondrial carriers termed uncoupling proteins 
(UCPs), generating heat at the expense of ATP production 
in a process termed thermogenesis.63 UCPs are located at 
the inner membrane and are involved in redox regulation 
and metabolic processes.64 Thermogenesis mainly occurs in 
brown adipose tissue (BAT) through uncoupling protein 1 
(UCP1).65,66 Unlike UCP1, which is mainly expressed in BAT, 
UCP2 and UCP3 are expressed in multiple tissues and their 
uncoupling activities have been linked to the pathogenesis 
of age-related metabolic disorders and cancers, rather than 
thermogenesis.67–72 Overexpression of UCP2 in macrophages 
can reduce ROS production and downregulation of UCP2 
can increase ROS production, indicating a role for UCP2 in 
modulating ROS production.73,74 Although studies correlat-
ing dysfunction of UCPs to age-related metabolic disorders 
exist, further research is necessary to determine if UCPs are 
potential targets for age-related molecular management.

Maintenance of mitochondrial dynamics is key to control-
ling mitochondrial homeostasis, and involves fusion, fis-
sion, and mitophagy.75,76 Fusion and fission events serve to 
control mitochondrial quality. During cell cycle progression, 

Figure 1. Common senescence-inducing stressors (see the text for details). (A color version of this figure is available in the online journal.)
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mitochondria elongate in the G1/S phase to increase the 
ATP supply, which is necessary for cell duplication, and 
fragment in the G2/M phase to partition damaged mate-
rial to daughter organelles, as well as to be equally divided 
to daughter cells.77–80 In mammalian cells, large dynamin-
related GTPases termed mitofusin 1 (MFN1), mitofusin 2 
(MFN2), and optic atrophy protein 1 (OPA1) primarily 
orchestrate mitochondrial fusion.81,82 MFN1 and MFN2 are 
outer mitochondrial membrane (OMM) proteins and medi-
ate the first step of mitochondrial fusion by dimerization of 
MFN1-MFN2 or MFN2-MFN2, whereas OPA1 is situated 
within the intermembrane space and mediates fusion of the 
inner mitochondrial membrane (IMM). The main players of 
mitochondrial fission are dynamin-related protein 1 (DRP1) 
and mitochondrial fission 1 protein (FIS1).83 Highly elon-
gated mitochondria and increased mitochondrial content 
are observed in stress-induced premature senescence.59 Lee 
et al.84 demonstrated that mitochondrial elongation is asso-
ciated with an increased ratio of fusion to fission proteins 
(MFN > DRP1 and/or MFN > FIS1). Blocking mitochon-
drial fission induces mitochondrial elongation engages the 
senescence phenotype and increases ROS production, while 
overexpression of FIS1 protein blocks mitochondrial elonga-
tion and partially reverses the senescence phenotype. These 
findings indicate that fusion/fission imbalance can trigger 
senescence-associated changes.84,85

Senescence-associated secretory 
phenotype

Upon senescent transformation, senescent cells maintain 
metabolic activity and undergo distinct secretome altera-
tions. Termed the senescence-associated secretory phenotype 
(SASP), the SASP involves the secretion of soluble factors, 
such as interleukins, chemokines, and growth factors, as well 
as degradative matrix metalloproteases (MMPs) and insolu-
ble extracellular matrix (ECMO) components which can alter 
the tissue microenvironment and affect cellular behavior.86,87 
Cellular senescence acts as a tumor constraining mechanism 
by guarding against the unrestricted growth of damaged 
cells.88 Senescence has also been shown to participate in 
embryonic development, tissue repair and wound heal-
ing.89–93 While senescence is beneficial as an innate tumor-
suppressive mechanism responsible for inducing permanent 
replicative arrest in cells at risk of malignant transformation, 
the accumulation of senescent cells with increasing age is 
deleterious in tissue microenvironments in vivo.94 Through 
its ability to evoke responses from cells in a paracrine fash-
ion, SASP has been linked to numerous age-associated dis-
ease pathologies including tumor invasion, cardiovascular 
dysfunction, neuroinflammation, osteoarthritis, and renal 
disease.86,95–97

Selenium and cellular senescence

Selenium was first discovered by the Swedish chemist Jons 
Jakob Berzelius, in 1817 while its potential health benefits 
were not realized until 1957, when Klaus Schwartz and 
Clavin Foltz determined that dietary selenium protected 
rats against liver necrosis.98 It is now well established that 

selenium is essential for several aspects of human health, 
including central nervous system, endocrine, cardiovascu-
lar, muscle, and immune function.99,100 Many studies have 
revealed correlations between selenium deficiencies and 
increased risks of developing many pathologies, including 
cancer, neurodegenerative diseases, cardiovascular disor-
ders, and infectious diseases.99–103 Selenomethionine is the 
predominant form of selenium ingested by humans and 
dietary selenium can be obtained through a wide variety of 
foods, including grains, vegetables, seafood, meat, and dairy 
products.104 Selenium is metabolized into various small 
molecular weight seleno compounds that can affect cellular 
processes such as DNA repair and epigenetics.105,106 Strong 
interplay between selenium, selenoproteins and replicative 
senescence has been demonstrated by a proteomic study 
that showed a 72% overlap between proteins induced by 
senescence and those by selenium deprivation.107 Selenium 
supplementation in cell culture medium can delay the onset 
of replicative senescence and prolong selenoprotein expres-
sion, while selenium depletion slows cell proliferation.108 
The Nove Italy study demonstrated that serum selenium and 
selenium-dependent glutathione peroxidase (GPx) activity 
decreases with age, especially in people over 60 years of 
age109 with similar observations reported by Lahcene and 
coworkers in Western Africa.110 An increasing number of 
studies have shown that selenium’s antioxidant activity 
is essential in combating aging and a weakened antioxi-
dant capacity promotes senescence, aging, and age-related 
disease.111

Selenoproteins

A unique feature of selenium is that it is incorporated as sele-
nocysteine (Sec) into 25 and 24 human and rodent selenopro-
teins, respectively. Selenocysteine offers a distinct advantage 
over cysteine alone as it can participate in reactions that are 
readily reversed with equilibrium constants of an order of 
magnitude higher than similar reactions involving sulfur. 
Sec is also used in enzymes because it resists inactivation 
by oxidation. We refer the reader to a review by Maroney 
and Mondal on the many beneficial chemical attributes of 
Sec.112 Many selenoproteins play a role in maintaining redox 
homeostasis, serving as antioxidant enzymes to protect 
against oxidative stress. Selenoproteins are key regulators 
of stress responses, metabolism, and immunity, and can be 
classified into six functional groups: peroxidase/reductase 
activity, redox signaling, hormone metabolism, protein fold-
ing, selenium transport, and Sec synthesis.113,114 Examples 
include selenoprotein K, S, H, N, GPx1–4, and TrxR1–3. 
Selenoprotein V, W, and GPx4 play vital roles in embryonic 
vitality and development. Selenophosphate synthase, seleno-
protein P (SEPP), and selenoprotein 15 (SEL 15) are involved 
in the synthesis and transportation of selenium. Recent work 
indicates that selenophosphate synthetase 1 (SEPHS1) loss is 
associated with chondrocyte senescence in both human and 
murine osteoarthritis.115 The deiodinase family (DIO1–3) of 
selenoproteins regulates thyroid hormone and thyroid func-
tion (see the comprehensive review by Leonardi et al.116 for 
detail). As redox signaling is essential in regulating many 
characteristics of cancer cells and selenoproteins maintain 
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redox homeostasis, selenoprotein links to cancer are exten-
sively reviewed as well.117–120 Among 25 human selenopro-
teins, GPx1 is one of the best-characterized selenoproteins, 
and can reduce H2O2 and lipid hydroperoxidases utilizing 
glutathione as an electron donor. GPx1 is expressed in almost 
all cell types and is critical to maintaining proper redox bal-
ance under stress, as GPx1121-deficient mice are susceptible 
to ROS-inducting agents such as H2O2 and lung inflamma-
tion and damage due to influenza infection and cigarette 

smoke.122–124 Thioredoxin is maintained in its reduced and 
active state by thioredoxin reductase (TrxR) and reduces 
disulfide bonds, which is required for maintaining a reduc-
ing environment.137 Knockout of both TrxR1 and TrxR2 in 
mice results in severe growth abnormality and embryonic 
death, demonstrating TrxRs are also important for develop-
ment.125–127 Table 1 provides a comprehensive assessment 
of all known selenoproteins and their age-related disease 
relevance.

Table 1. Selenoproteins and senescence.

Identity Name Function Putative role in cellular senescence or aging Functional group

Glutathione peroxidase 1 GPx1 Reduces H2O2 and lipid 
hydroperoxidases.165

GPx1 transgenics display protection from 
renal aging.166

Antioxidative capacity
Peroxidase/reductase 
activityGlutathione peroxidase 2 GPx2 Expressed primarily in gastrointestinal 

tract, where it reduces both inorganic and 
organic peroxides.167

Implicated in the modulation of cell fate 
decisions and the maintenance of mucosal 
homeostasis.167

Glutathione peroxidase 3 GPx3 Acts as an antioxidant defense enzyme.168 Age-related decreases are associated with 
increased risk of cardiovascular events.169

Glutathione peroxidase 4 GPx4 Thought to counteract mitochondrial lipid 
peroxidation in mammals.165

Implicates in neurodegeneration due to its 
role in limiting ferroptosis.170

Glutathione peroxidase 6 GPx6 Expression has been documented in 
embryos and olfactory epithelium.171

Shortens lifespan of Caenorhabditis 
elegans when mutant in combination with 
GPx-1, 2, and 7.172

Selenoprotein K SEL K Localized in the endoplasmic reticulum, 
where it is implicated in ER-associated 
degradation of misfolded proteins.173

Thought to contribute to the protection of 
cells from ER stress–induced apoptosis. 
Studies in mice demonstrated its importance 
in promoting Ca(2+) flux in immune cells 
and mounting effective immune response.173

Selenoprotein R (methionine 
sulforeductase B)

SEL R Catalyzes the reduction of methionine-
R-sulfoxides to methionine, thereby 
protecting cells from oxidative stress and 
protein repair.174

Downregulated during replicative 
senescence.175

Selenoprotein W SEL W Thioredoxin-like function.176 Regulated osteoclast differentiation and 
blocks osteoporosis.177

Iodothyronine deiodinase 1 DIO1 Regulates thyroid hormone.178 Plays an essential role in modulating 
thyroid function.178

Thyroid hormone 
metabolism

Iodothyronine deiodinase 2 DIO2 High expression in brain and thyroid, where 
it catalyzes the conversion of pro-hormone 
thyroxine to the bioactive thyroid hormone.179

Crucial in the regulation of thyroid hormone 
action and correlated with increases in 
thyroidal T3 production.180

Iodothyronine deiodinase 3 DIO3 Shown to catalyze the inactivation of 
thyroid hormone to inactive metabolites 
through inner-ring deiodination of thyroxine 
and triiodothyronine hormones.178

Strong potential to limit influence tissue 
dysfunction in human thyroid disorders.181

Thioredoxin reductase 1 TrxR1 Involved in the reduction of thioredoxins 
and other substrates.182

Critical in the regulation of the redox 
metabolism. Mounting studies suggest 
that TrxR1 inhibits multiple stages of tumor 
progression including protection against 
malignant transformation.182

Redox signaling

Thioredoxin reductase 2 TrxR2 Mitochondrial thioredoxin-disulfide 
reductase activity.183

Increased expression is associated with 
enhanced longevity.184,185

Thioredoxin reductase 3 TrxR3 Implicated in redox regulation in bacteria.182 Associated with amyloidosis.182

15kDA selenoprotein SEL15 Involved in the quality control of 
glycoprotein folding.186

Crucial function in glycoprotein folding and 
redox homeostasis; SEL15-deficient cells 
demonstrated improper folding of lens 
proteins.186

Protein folding

Selenoprotein M SEL M Exact function unknown, linked to onset of 
neurodegenerative diseases.187

Associated with the maintenance of oocyte 
maturation.188

Selenoprotein N SEL N Localized in the endoplasmic reticulum as 
calcium sensor.189

Protects cells again oxidative stress 
through its involvement in redox-related 
calcium homeostasis. Some mutations are 
linked to the premature development of 
muscle disorders.189

Selenoprotein S SEL S Expressed in the endoplasmic reticulum, 
where it modulates the protein folding 
process.190

Plays a role in regulating lipid accumulation 
and insulin actiong.191

 (Continued)
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Stop codon recoding and alkylation 
repair homolog 8

Production of the selenoproteins requires incorporation of a 
rare 21st amino acid, Sec via specialized translation known 
as UGA stop codon recoding. Epitranscriptomic marks on 
tRNASec – along with the elongation factor (EFSec), sele-
nocysteine insertion sequence (SECIS) in 3’ UTR, and 
SECIS-binding protein 2 (SBP2) – are essential for seleno-
protein synthesis. The epitranscriptomic marks are tRNA 
modifications found on the anticodon wobble uridine (U), 
which are catalyzed by multiple enzymes. The U is car-
boxymethylated to methyluridine (cm5U) by elongator 
protein complex (ELP),128,129 with cm5U then methylated 
to 5-methoxycarbonylmethylluridine (mcm5U) in tRNASec 
by the tRNA methyltransferase alkylation repair homolog 
8 (ALKBH8)130,131 (Figure 2). The nine ALKB homologs, 
ALKBH1–8 and the fat mass obesity–associated protein 
(FTO), are some of the most well-characterized 2-oxogluta-
rate and Fe(II)-dependent dioxygenase superfamily mem-
bers. Mammalian alkylation repair homolog 8 (ALKBH8) is 
the only ALKBH protein family with both a RNA binding 
motif and multifunctional methyltransferase domain and 
methyltransferase subunit, Trm112m, that functions as an 
epitranscritomic writer, which has been linked to wobble-
uridine modifications.121,162 In an ALKBH8 and selenium-
dependent manner, another isoform of tRNASec is created 
by adding 2’-O-ribose methylation to make 5-methoxycar-
bonylmethyl-2’-O-methyluridine (mcm5Um) using mcm5U 
as precursor.131–135 While the mcm5U isoform serves in the 
synthesis of housekeeping selenoproteins, the mcm5Um iso-
form is sensitive to selenium and ROS status and is involved 
in the translation of stress res ponse selenoproteins.133–137 The 
wobble-uridine modifications mcm5U and mcm5s2U are also 
found on tRNAArg and Gly and tRNALys, Glu, and Gln, respectively. 

While ALKBH8 is linked to the modification of six different 
tRNAs, defects have largely been attributed to hypo-mod-
ified tRNAsec leading to decreased selenoprotein synthesis 
and corrupted ROS detoxification.135 ALKBH8 deficiency 
leads to increased ROS and DNA damage and sensitizes 
tissues to toxicants that promote stress.135,138–140 Defects in 
ALKBH8 in humans have been linked to developmental 
disorders and intellectual disability, with overexpression 
linked to cancer proliferation.141,142 Decreased expression 
of selenoproteins was observed in transgenic mice encod-
ing an AUG mutation in the tRNASec gene at position 37.143 
Overexpression of the G37 tRNASec mutant led to changes in 
the distribution of the mcm5U and mcm5Um modifications 
and dysregulated-specific stress responsive selenoproteins, 
revealing that selenoproteins responsive to selenium status 
are involved in stress-related functions.137,144

Epitranscriptomic writer defects 
engage senescence

Mouse ALKBH8 deficiency promotes increased ROS and 
SASP markers140 and similarly sensitizes HEK293 cells to 
the agents that promote ROS.145 It has been established that 
cellular senescence increases steady-state H2O2 and that 
limiting senescence-associated increases in H2O2 extend  
cellular lifespan.146 The majority of mitochondrial H2O2  
consuming activity is largely reliant on the activities of the 
Sec containing mitochondrial TrxR and GPx enzymes.147 
Loss of ALKBH8 in mouse embryonic fibroblasts induced 
wobble-uridine modification of tRNAsec, as well as 
tRNAGlu(UUC) and tRNAArg(UCU), and disrupted recoding of 
the UGA stop codon to Sec, resulting in increased cellular 
oxidizing capacity and reduced synthesis of GPx and TrxR1 
selenoenzymes.121,162 This impairment in Sec utilization140 
arising from ALKBH8 deficiency induces cellular senescence, 

Identity Name Function Putative role in cellular senescence or aging Functional group

Selenophosphate 
synthetase 2

SPS2 Functions as a selenium donor during 
mammalian selenocysteine synthesis.192

Deficiency exacerbates osteoarthritis.115 Selenium synthesis

Selenoprotein P SEL P Acts as an extracellular antioxidant and 
transports selenium to extra-hepatic 
tissues via apolipoprotein E receptor-2 
(apoER2).193

Required for exercise-induced adult 
hippocampal neurogenesis.194

Selenium transport 
and storage

Selenoprotein H SEL H Demonstrates oxidoreductive activity. 
Implicated in the inhibition of apoptotic cell 
death pathways and neuron protection 
against UVB-induced damage.195

Involved in the suppression of cellular 
senescence through redox and genome 
regulation. Promotes mitochondrial function 
and biogenesis.195

No functional group 
assigned.

Selenoprotein I SEL I Crucial to the production of 
phosphatidylethanolamine by catalyzing the 
synthesis of phosphoethanolamine from 
CDP-ethanolamine to diacylglycerol.196

Essential for murine embryognesis.197

Selenoprotein O SEL O Shown to participate in bacterial protein 
ampylation.198

Implicated in maintenance of mitochondrial 
function in response to selenomethionine 
supplementation in murine AD models.199

Selenoprotein T SEL T Thioredoxin-like structure with 
oxidoreductase activity.200

Protects dopaminergic neurons against 
oxidative stress and premature cell death.201

Selenoprotein V SEL V Primary expression in testis with 
thioredoxin-like fold and potential redox 
function.202

Confers protection against reactive oxygen 
and nitrogen species.203

ER: endoplasmic reticulum; UVB: ultraviolet B; AD: Alzheimer’s disease.

Table 1. (Continued)
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providing an exciting link between the epitranscriptomic 
signals mcm5U and mcm5Um, the efficiency of UGA recod-
ing and senescence.135,140

Cellular senescence is accompanied by growth arrest, and 
ALKBH8-deficient MEFs display a significant proliferative 
defect and modulate many facets of the senescent program 
including increases in levels of p16Ink4a, heterochromatic 
foci, senescence-associated β-Gal, mitochondrial fusion, and 
many prominent SASP transcripts.140 The SASP is character-
ized by high levels of inflammatory cytokines, including 
interleukin (IL)-6 and IL-8, and studies have shown that they 
are under redox control.148,149 Limiting oxidant detoxifica-
tion by restricting Sec utilization in ALKBH8-deficient MEFs 
impacts SASP levels,140 and a similar response is observed 
in renal tissue from 24-month-old ALKBH8-deficient mice 
Figure 3.

A number of studies have demonstrated that senescence, 
in distinct cellular systems, is accompanied by increases in 
basal oxygen consumption rate (OCR).150,151 We have dem-
onstrated that the ALKBH8 deficiency is accompanied by 
a robust increase in basal OCR and glycolytic activity that 
is associated with increased expression of the uncoupling 
protein UCP2.140 UCP2 is ubiquitously expressed in most cell 
types and is thought to limit mitochondrial superoxide pro-
duction by relieving any impedance in electron flux through 
the respiratory chain.152 Stanniocalcin 1 (STC-1) is a homodi-
meric glycoprotein that is expressed in a wide variety of 
tissues with autocrine or paracrine functions and identified 
as one of four SASP factors that is commonly induced by 
distinct senescence activators.153 STC-1 has been implicated, 
as endogen with neuroprotective function with the ability to 
limit superoxide generation by inducing UCP in the mito-
chondria.154–156 It is exciting to speculate that selenoprotein 
loss resulting from ALBH8 deficiency induces senescence-
associated STC-1 to drive UCP2 expression to restrict mito-
chondrial ROS production as detailed in Figure 4. Overall, 
these observations indicate that the levels of many of the 

most prominent SASP markers are dramatically upregulated 
when Sec utilization is impaired by ALKBH8 deficiency both 
in vitro and in vivo.

During RNA maturation, over 170 different enzyme-cat-
alyzed modifications can be made to RNA molecules, and 
the nature and quantity of these modifications can differ 
drastically between species, cells, and organelles. Most of 
these modifications occur in ribosomal and transfer RNAs, 
but they also appear in small nucleolar RNAs, small nuclear 
RNAs, microRNAs, small interfering, and Piwi-interacting 
RNA.157 RNA modifications can influence the maturation, 
structure, function, and degradation of modified RNAs, and 
have a major influence on gene expression. RNA modifica-
tions play crucial regulatory roles in many cellular processes, 
including stem cell differentiation and self-renewal,158 neu-
ral function and development,159 and responses to toxins 
and environmental stresses.160 These modifications also play 
important roles in regulating various hallmarks of aging. 
TFB1M, a gene for a methyltransferase that modifies the 

Figure 2. Schematic of selenoprotein synthesis (see the text for details). (A color version of this figure is available in the online journal.)
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Figure 3. Global selenocysteine deficiency in 24-month-old selenoprotein-
deficient mice exacerbates SASP in vivo. RT-PCR from kidneys of WT and 
Alkbh8Def mice.139 Data are presented as mean ± SEM, n = 3. Unpaired Student’s 
t-test is used for statistical analysis. RT-PCR and primers utilized as described 
by Lee et al.140 (A color version of this figure is available in the online journal.)
*P < 0.05; ****P < 0.0001.



Lee et al.  Selenoproteins and the Senescent Epitranscriptome  2097

mitochondrial 12S rRNA, is essential for the 12S rRNA’s sta-
bility,161 and TFB1M+/− mice have impaired mitochondrial 
translation in pancreatic islet cells and an impaired insulin 
response.162 Genetic analyses in humans have shown TFB1M 
to be a risk gene for type 2 diabetes.163 In the context of stem 
cell exhaustion, depletion of the m6A reader YTHDF2 sig-
nificantly increased the quantity of hematopoietic stem cells 
in mice, while knocking down the YTHDF2 gene in ex vivo 
human hematopoietic stem cells led to a fivefold increase 
in their quantity, demonstrating YTHDF2’s importance to 
stem cell maintenance.164 Overall, these studies suggest that 
epitranscriptomic defects are linked to human disease and 
senescence onset and modulation of specific RNA writers, 
readers, and erasers may lead to therapeutic interventions 
to selectively modulate the senescence program.

Summary

Here, we connect selenium and the epitranscriptomic control 
of Sec utilization by ALKBH8 to the regulation of senescence. 
Selenium deficiency has been linked to many age-related dis-
ease pathologies; it is also highly likely that conditions that 
disrupt Sec utilization or interfere with ALKBH8 function 

drive senescence. This review fills a basic scientific knowl-
edge gap specific to the contribution of epitranscriptomic 
writers and marks in regulating senescence. We address how 
cellular stress-responses are controlled, in part, by dynamic 
enzyme catalyzed tRNA modifications, classified as epitran-
scriptomic marks, that regulate translation and mitigate ROS 
production.135 This article also provides insight into the role 
of epitranscriptomic marks in aging and disease, and similar 
to epigenetic marks, RNA modifications are attractive targets 
for new senescence-modifying therapeutics.
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