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Introduction

The respiratory system is one of the major components of the 
human body, with the primary and very important function 
of gas exchange to supply oxygen to the blood.1 It consists of 
two respiratory tracts: (1) the upper tract including the nose, 
nasal cavities, sinuses, pharynx and the part of the larynx 
above the vocal folds and (2) the lower tract including the 
lower part of the larynx, the trachea, bronchi, bronchioles 
and the lung.2 The upper track also works for pronuncia-
tion: generating sounds and speech. Inflammation, bacterial 
infection, or viral infection of the respiratory tracts can lead 
to respiratory diseases.3,4 Illnesses caused by inflammation 
include chronic conditions such as asthma, cystic fibrosis, 
and chronic obstructive pulmonary disease (COPD). Acute 
conditions, caused by either bacterial or viral infection, 
can affect either the upper or lower respiratory tract like 
pneumonia, influenza, and the COVID-19. As reported, the 
respiratory disease affects one in five people, and it is the 
third biggest cause of death in England.5 Early detection of 
respiratory tract infections can lead to timely diagnosis and 
treatment, which can result in better outcomes and reduce 
the likelihood of severe complications.

Notable penetration of smart devices brings new oppor-
tunities to enable individual health sensing regardless of the 
existing location, time, and other constrains.6,7 The advance 
of artificial intelligence (AI) further enhances the prom-
ise of automatic disease detection from the collected bio-
signals.8,9 Particularly, because of the nature and location 
of the underlying inflammation due to various diseases in 
the respiratory system, audible changes can be identified 
as diagnostic signals. Herein, AI-powered auscultation via 
respiratory sounds collected by electronic stethoscopes and 
smartphones has received massive attention for its high flex-
ibility and scalability.10 Traditional auscultation is usually 
done by respiratory physicians while training those experts 
to be qualified is costly in both time and money. Moreover, to 
be diagnosed, individuals need to go to the hospital or clini-
cal venues, which increases clinical expenses and the risk 
of virus exposure. On the contrary, automatic auscultation 
can reduce the burden on medical resources and expedite 
respiratory condition screening outside hospitals. Examples 
include the recently developed COVID-19 screening applica-
tions where acoustic models are studied for remote COVID-
19 testing.11 Another representative example is ResApp, an 
app founded in 2014 in Australia, which is able to detect 

Exploring machine learning for audio-based respiratory 
condition screening: A concise review of databases, methods, 
and open issues

Tong Xia , Jing Han  and Cecilia Mascolo
Department of Computer Science and Technology, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
Corresponding author: Tong Xia. Email: tx229@cam.ac.uk

Abstract
Auscultation plays an important role in the clinic, and the research community has 
been exploring machine learning (ML) to enable remote and automatic auscultation 
for respiratory condition screening via sounds. To give the big picture of what is 
going on in this field, in this narrative review, we describe publicly available audio 
databases that can be used for experiments, illustrate the developed ML methods 
proposed to date, and flag some under-considered issues which still need attention. 
Compared to existing surveys on the topic, we cover the latest literature, especially 
those audio-based COVID-19 detection studies which have gained extensive 
attention in the last two years. This work can help to facilitate the application of 
artificial intelligence in the respiratory auscultation field.

Keywords: Respiratory abnormity, respiratory sound, artificial intelligence, machine learning, auscultation, automatic disease 
diagnosis

1115428 EBM Experimental Biology and MedicineXia et al.

Minireview

Impact Statement

With the rapid progress of artificial intelligence for 
auscultation, comes the pressing need to com-
pile a compendium of existing works and present 
recent advances. This concise review aims to guide 
researchers who are new to either artificial intel-
ligence or respiratory pathology, and shed light on 
the application of machine learning in remote res-
piratory condition screening. This review also seeks 
to inspire more work emerging from the intersection 
of artificial intelligence and respiratory health.

Experimental Biology and Medicine 2022; 247: 2053–2061. DOI: 10.1177/15353702221115428

mailto:tx229@cam.ac.uk


2054  Experimental Biology and Medicine  Volume 247  November 2022

sleep apnoea using overnight breathing and snoring sounds 
recorded on a smartphone placed on the bedside table.12

Behind those applications, audio signal processing tech-
niques and machine learning (ML) algorithms hold the key 
to an accurate diagnosis. The widely adapted ML approaches 
mainly encompass two types: hand-crafted feature-based ML 
and end-to-end deep learning. For feature-based ML models, 
temporal especially prosodic features including pitch, dura-
tion, intensity, the harmonics-to-noise ratio (HNR), jitter, and 
shimmer are widely used to detect unhealthy sounds.13 In 
addition, spectral features from the log Mel spectrogram 
are devised and show promising performance in a series 
of relevant applications.14–17 Those features are used as the 
inputs of subsequent classifiers for diagnosis. For end-to-end 
deep learning methods, audio waves or corresponding spec-
trogram are directly fed into deep neural networks which 
output the predictions.18,19

Feature-based ML models are often explainable, but the 
performance is hardly satisfactory due to the difficulty in 
identifying distinguishable hand-crafted acoustic features 
for a specific respiratory condition. Compared to feature-
based ML models, deep learning models do not depend on 
explicit feature engineering, so they usually present more 
powerful capability of modeling audio-disease relations with 
the premise of massive training data. The latest state-of-the-
art audio-based respiratory condition screening methods are 
mainly deep learning based, covering convolutional neural 
networks (CNNs),32,61 recurrent neural networks (RNNs),59,60 
and Transformer neural networks.41,79 Those models have 
demonstrated favorable performance in detecting COPD, 
asthma, and other respiratory conditions.

In this article, we plan to compile a list of existing publicly 
available respiratory sound databases and illustrate some 

representative ML and deep learning methods. We hope this 
can provide a general view for both model developers and 
respiratory physicians to inspire more interdisciplinary stud-
ies. Particularly, different from previous relevant reviews, we 
include the latest sound-based COVID-19 detection research. 
Moreover, we conclude some unsolved challenges with 
potential solutions as future works, which are under-looked 
at the current stage but are of critical importance to be inves-
tigated for the reliable deployment of automatic respiratory 
condition screening applications.

Data overview

ML is data-driven, with model training and evaluation 
depending on real-world data sets. However, clinical data 
collection is usually not trivial due to privacy concerns and 
annotation costs. To advance the model development for 
computer scientists and to facilitate more data collection 
from clinical trials, we present some main characteristics 
of publicly accessible respiratory sound databases, with a 
summary in Table 1.

Respiratory abnormality database

One of the easiest explorations of computerized respiratory 
sounds dates back to 2016,16 when researchers utilized cough 
sounds from YouTube to diagnose pertussis. This database is 
small, that is, 38 recordings with a duration between 10 and 
169 s. Those recordings were from 38 subjects: 20 patients with 
pertussis cough, 11 with croup and other types of cough, and 
7 with cough containing wheezing sounds corresponding to 
other diseases such as BRON (bronchiolitis) and asthma. Of 
the 38 subjects, 14 are infants aged 0–2 years, 18 are children 
aged 3–18 years, and 6 are adults aged over 19 years. Given 

Table 1. An overview of respiratory condition audio databases.

Data set Year #Sam. (#Sub.) Sounds Device Respiratory conditions Annotation

Pertussis16 2016 38 (38) Cough Microphone Pertussis, asthma, croup, BRON Self-report
ICBHI20 2017 6898 (126) Lung sounds, 

breathing
Stethoscope, 
microphone

Cycle-level: crackle, wheeze; subject-level: COPD, 
LRTI, URTI

Expert-label

Pfizer21 2018 6593 (unknown) Audio Microphone Presence of respiratory sickness BMAT
Stethoscope22 2021 336 (112) Lung sounds Stethoscope Cycle-level: inhalation, exhalation, crackle, wheeze; 

subject-level: asthma, COPD, BRON, heart failure, 
lung fibrosis

Expert-label

HF Lung V123 2021 9765 (279) Lung sounds Stethoscope Cycle-level: inhalation, exhalation, wheeze, stridor, 
rhonchus, DAS; subject-level: acute respiratory 
failure, COPD, pneumonia, and so on

Expert-label

Virufy24 2021 121 (16) Cough Microphone COVID-19, asthma, diabetes, symptoms, and so on COVID-19 PCR
Covid19-cough25 2021 1324 (unknown) Cough Microphone COVID-19 Self-report 

clinical verify
COUGHVID26 2021 27,550 (unknown) Cough Microphone COVID-19, with or without other respiratory 

conditions, with or without symptoms
Self-reported 
expert-label

Tos COVID-1927 2022 143,351 (unknown) Cough Microphone COVID-19 severity, symptoms Clinical verify
Coswara28 2022 2747 (unknown) Breathing, 

cough, voice
Microphone COVID-19, current health status, and the presence of 

comorbidity
Self-report

COVID-19 
Sounds29

2021 53,449 (36,116) Breathing, 
cough, voice

Microphone Sample-level: COVID-19, symptoms; subject-level: 
medical and smoking history

Self-report

BRON: bronchiolitis; COPD: chronic obstructive pulmonary disease; LRTI: lower respiratory tract infection; URTI: upper respiratory tract infection; PCR: polymerase 
chain reaction.
#Sam. (#Sub.) presents the reported data size with the number of unique subjects who contributed the data. We display the size of the data released in the labeled 
year; however, it needs to be noted that some data collection is still ongoing and data size might be increased later on. Lung sounds were acquired by stethoscopes 
from the chest wall, while other sounds were collected by varied devices with microphones. Self-reported or clinically validated respiratory conditions are concluded 
for various study purposes.
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the limited number of samples, despite its uniqueness, this 
database is not suitable for modern ML model development 
and validation. Yet, it is the only public database with per-
tussis labels. Larger pertussis-related data sets are still to be 
gathered and made public: this would greatly enhance the 
automatic detection of pertussis research.

Later on, two challenges provided relatively large-scale 
data sets, gaining massive attention from different research 
fields and greatly promoting the development of ML-based 
respiratory condition screening. The ICBHI 2017 Challenge 
released a database consisting of a total of 5.5 h of recordings 
containing 6898 respiratory cycles (i.e. from inspiratory to 
expiatory phase), of which 1864 contain crackles, 886 con-
tain wheezes, and 506 contain both crackles and wheezes, in 
920 annotated audio samples from 126 subjects. The record-
ings were collected using stethoscopes or microphones, and 
their duration ranged from 10 to 90 s. The chest locations 
from which the recordings were acquired are also provided. 
Participants were diagnosed with COPD (chronic obstruc-
tive pulmonary disease), LRTI (lower respiratory tract infec-
tion), or URTI (upper respiratory tract infection). Those 
cycles were annotated by respiratory experts. Therefore, 
this database can be used for either respiratory cycle-level 
sound classification or subject-level disease detection. In 
addition, Pfizer Digital Medicine Challenge created a respira-
tory disease database from other public audio databases. The 
open-source BMAT Annotation Tool was utilized to label 
whether an audio sample contains diseased sounds includ-
ing coughing and sneezing. Finally, 2545 sick samples and 
4048 non-sick samples were released for public use. Without 
specific respiratory abnormalities, Pfizer data can be used 
to train a cough or sneezing detector, which serves as a pre-
prepossessing tool for the following respiratory condition 
screening task.

Stethoscope and HF Lung V1 are additional lung sound 
databases. Lung sounds were acquired using multi-channel 
electronic stethoscopes placed on various vantage points of 
the chest wall. Subject ID with demographic information 
and recording location is provided. Respiratory cycles were 
manually annotated by specialists. Stethoscope consists of 
336 recordings with varying lengths from 112 subjects, while 
HF Lung V1 contains 9765 audio trunks with a length of 15 s 
from 279 subjects. These two recently released databases can 
be leveraged to validate the models developed via ICBHI, or 
ideally, those three databases can be jointly utilized to facili-
tate more promising ML algorithms for crackle and wheeze 
detection.

COVID-19-related respiratory database

Since the outbreak of Coronavirus, researchers’ attention 
has been extended from crackle and wheeze detection to 
COVID-19 prediction, as Coronavirus can cause respiratory 
tract infections and inflammations, which may lead to audi-
ble changes to respiratory sounds. In recent years, several 
COVID-19 audio databases have been gathered.

Most COVID-19 audio databases collected cough sounds 
via microphones. Among those, Virufy is on the small-
est scale with 121 recordings from 16 participants, but the 
COVID-19 status annotation is reliable as validated by clini-
cal PCR (polymerase chain reaction). Another two larger 

COVID-19 databases with part of sample validated clini-
cally are Covid19-cough and COUGHVID. The EPFL research 
team developed the COUGHVID database covering over 
25,000 crowd-sourced cough recordings representing a wide 
range of participant ages, genders, geographic locations, and 
self-reported COVID-19 statuses, as well as subjects’ other 
respiratory conditions and symptoms (presenting or not). It 
is the largest cough database for the COVID-19 study. They 
also hired four respiratory experts to manually check the 
quality of audio recordings and the reported health status, 
but the proportion is small with only 4000 recordings con-
firmed. Compared to the above databases, Tos COVID-19 is 
claimed as a fully clinically validated cough database. The 
acquisition of audio samples was done through WhatsApp 
from people who underwent a PCR or antigen swab test. 
In the released first version, 2821 individuals who were 
swabbed in the City of Buenos Aires between 11 August 
and 2 December 2020 were covered: 1409 tested positive for 
COVID-19 and 1412 tested negative. And a second data set 
containing 140,530 audio coughs was collected during the 
months of April to October 2021, with 18,271 audios from 
individuals who tested positive and 122,259 samples from 
negative individuals.

There are also two databases collecting cough as well as 
other sound types. In Coswara, for sound data, nine different 
categories, namely, breathing (two kinds; shallow and deep), 
cough (two kinds; shallow and heavy), sustained vowel pho-
nation (three kinds; /ey/ as in made, /i/ as in beet, /u:/ 
as in cool), and 1–20 digit counting (two kinds; normal and 
fast-paced) were recorded. They also collected some meta-
data information, including age, gender, location (country 
and state), current health status (healthy, exposed, cured, 
or infected), and the presence of comorbidity (pre-existing 
medical conditions). The data collection is still ongoing, and 
as of the time we write this article, this database consists of 
2747 samples with 681 represented as COVID-19 positive 
(can be asymptomatic, mild, or moderate). Similarly, COVID-
19 Sounds database contains induced breathing, cough, and 
voice audio recordings. As samples in this database were 
collected through the app, subjects were assigned unique 
IDs. When participants registered the app, medical history, 
smoking status, and other general demographic informa-
tion were collected. After that, participants could continually 
record their sounds and report their COVID-19 status. As a 
result, COVID-19 Sounds app is also able to collect longitudi-
nal data that captures audio dynamics as well as COVID-19 
status changes during a long period.30 In a nutshell, differ-
ent sound types included in those two large-scale databases 
enable a comparison of the effectiveness of breathing, cough, 
and voice in detecting COVID-19; yet, the used COVID-19 
statuses are self-reported without clinical validation.

Database summary

Overall, more than 10 respiratory sound databases are pub-
licly available for research. They are heterogeneous in terms 
of data acquiring protocol, associated respiratory conditions, 
and sound types. Some of them are crowd-sourced with self-
reported health status from data contributors, while several 
of them are verified by experts. Those databases cover vari-
ous sound types including lung sound, breathing, cough, 
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and voice, as well as different respiratory conditions like 
asthma, COPD, and COVID-19. Nevertheless, data for 
asthma, COPD, and pertussis are still very limited: more 
databases covering those conditions are desired. Although 
high-quality audio samples with verified respiratory con-
ditions are more reliable to use, considering the practical 
difficulty of collecting large-scale clinically validated data, 
jointly leveraging self-reported and physician-verified data 
can be efficient and effective. More collaborations among 
data scientists and respiratory experts can facilitate better 
data collection in the future.

Methodology overview

Audio-based respiratory condition screening can be for-
mulated as a classification task, with the input of respira-
tory sounds and output of a categorical prediction for the 
trained respiratory conditions. Real-world collected audio 
signals can contain a variety of noises, and thus pre-process-
ing before feeding them into ML models is needed. Audio 
signals are time series, characterized by not only temporal 
features but also spectral features in the transferred spec-
trograms. These features can be either explicitly utilized by 
traditional classifiers or implicitly explored by deep learning 
models. A typical automatic audio-based respiratory condi-
tion screening system development pipeline is illustrated 
in Figure 1. We have introduced existing databases in the 
previous section; in this section, we will introduce the com-
monly used pre-processing methods and compare the most 
representative models. It can be noted that features extracted 
from audio is known as physio-markers. Other diagnostic 
features like social-marker (e.g. subject demographics) and 
bio-marker (e.g. symptoms) are also informative,31 but we 
will mainly focus on the methods for physio-markers from 
sounds in this article.

Pre-processing

Real-world collected audio samples are usually of low SNR 
(signal-to-noise ratio). For model development, proper de-
noising is generally the first step before further processing. 
For lung sounds associated with crackle and wheeze, as sug-
gested by the previous studies, re-sampling audio recordings 
to 4 KHz and deploying a fifth-order Butterworth band-pass 

filter having 100–200 Hz cut-off frequencies can effectively 
eliminate the environmental noise such as heartbeat, motion 
artifacts, and audio sounds.32,33 After that, respiratory 
cycles (inspiratory–expiatory periods) could be identified 
to further increase the SNR. Microphone-acquired audio 
data usually needs a sound-type check to avoid including 
improper sound modality, which can be performed manu-
ally or automatically.34 For instance, researchers developed 
a cough detector to select high-quality cough recordings for 
experiments.26,28,29 Some studies proposed to extract single 
cough clips from audio recordings as model inputs,35 as they 
think this further increases the SNR, while most researchers 
used the complete recordings because they hypothesize that 
silence frames between multiple coughs are also informa-
tive.36,37 Subsequently, temporal features can be extracted 
directly, and usually, audio segments will be transferred into 
spectrograms via short-time Fourier transforms. In addition, 
for microphone-recorded sounds, Mel scaling is commonly 
adopted for its unique capacity in modeling human listening 
characters.

Another important pre-processing step before model 
training is data augmentation for two purposes: first, most 
respiratory audio data sets are small and insufficient to train 
deep neural networks. Data augmentation can increase the 
data size for training. Widely used audio data augmentation 
methods include time stretch, pitch shift, perturbation, and 
noise injection on raw signals38,39 and masking or mix-up 
augmentation on spectrograms.24,40,41 Besides, the collected 
audio databases are class-imbalanced with a skewed distri-
bution of the associated respiratory conditions. For example, 
COVID-19 databases have fewer COVID-19 positive samples 
than negative in Table 1. Such data imbalance makes it dif-
ficult to train a reliable classification model. To overcome 
this, data augmentation can be applied to additionally gen-
erate some samples for the minority classes to re-balance 
the data distribution. Up-sampling approaches like SMOTE 
are also widely used in addition to the above-mentioned 
methods.42,43

Traditional ML models

Traditional ML-based auscultation models generally consist 
of two stages: (1) extracting acoustic features from audio 
signals and (2) training a classifier to predict the associated 

Figure 1. Automatic respiratory conditional screening system development pipeline. A typical system usually starts with audio data collection, followed by data pre-
processing. Hand-crafted feature with traditional machine learning classification models or end-to-end deep learning models can be constructed. Before deployment to 
the public, the performance of the developed model needed to be validated on real-world clinical data. (A color version of this figure is available in the online journal.)
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respiratory condition. We first introduce the developments 
of those two stages separately as below, and then we com-
pare some reported performance on real-world repository 
data from the recent related literature.

Frequently explored respiratory acoustic features include 
temporal features such as onset, tempo, period, cross-zero-
rate (CZR), beat-loudness, as well as spectral features like 
HNR, jitter, shimmer, Mel-frequency cepstral coefficients 
(MFCCs), spectral centroid, and roll-off frequency.44,45 There 
are many existing libraries that can be leveraged to automati-
cally extract those features from raw signals, among which 
Librosa is a well-known Python-based programming tool.46 
However, differences in audio signals associated with dif-
ferent respiratory conditions can be complex, subtle, and 
in-explicit, and thus, the above-mentioned features could be 
insufficient to distinguish various conditions. To this end, 
a number of statistical functionals have been proposed to 
extract massive high-order descriptors, such as the mean, 
delta, peak, and percentiles of those features across all 
frames of audio, showing favorable performance in many 
relevant tasks.36 openSMILE,47 MIRToolbox,48 and others are 
open-sourced tools for such feature set extraction, speeding 
up the processing procedure.

With such feature representation, a classifier – for exam-
ple, DT (decision tree), RF (random forest), SVM (support 
vector machine), or MLP (multiple layer perceptron) – can be 
fitted for sound classification and respiratory disease predic-
tion.36,49 DT is a classifier with tree-structured conditions to 
map features into several categories, and RF is the ensem-
ble of DTs built with the bootstrapping of the training data 
to improve the resilience to errors.17 SVM is an algorithm 
that employs kernels to represent complex data in a low-
dimensional and representative space, where it is desired 
to separate data belonging to every two clusters.76 For its 
flexible kernel selection and stable performance, SVM is the 
most widely marused method in the sound classification 
literature. MLP is an artificial neural network where features 
are fed into multiple layers with connection weights and 
activation functions. Weights are learnt via backpropagation, 
and thus, the model can well capture the relation between 
input features and the associated class.76

With the aforementioned features including MFCC, CZR, 
crest factor, energy level, and other 10 spectral features, and 
the SVM classifier, Pramono et al.16 achieved an accuracy of 
100% in distinguishing 10 pertusses from 11 non-pertussis 
subjects. Similarly, the SVM classifier also showed an accu-
racy of around 99% in distinguishing COPD, pneumonia, 
and health subjects based on the International Conference on 
Biomedical and Health Informatics (ICBHI) 2017 database.50 
In 2022, researchers further verified the promise that ML 
can be used to identify COPD subjects from healthy con-
trols in a private but clinically validated voice data set, and 
according to their study, Compare2016 feature set developed 
by openSMILE toolkit presented better accuracy than other 
features.77 Based on the public ICBHI data base, Monaco 
et al.76 compared the performance of RF, MLP, and SVM by 
exploring 33 acoustic features with their statistics, although 
MLP yielded the highest accuracy of 85%, the performance 
difference from other models is marginal: their accuracy 
ranged from 81% to 85%. Overall, because of the light model 

with few parameters to fit, such hand-crafted feature-based 
traditional ML classifiers can usually achieve favorable per-
formance and explainable classification, particularly when 
the audio database is not large.

Deep learning models

With more audio data collected, deep learning, as part of a 
broader family of ML methods, has witnessed great progress 
in acoustic modeling.19 Because deep neural networks can 
significantly enhance the sound representation by capturing 
the complex relationship between the input audios and the 
output labels compared to the aforementioned hand-crafted 
features, deep learning usually yield better performance in 
various audio applications with a great promise shown in 
the respiratory condition screening domain.49,51

One typical acoustic deep learning model is the CNN 
based on spectrograms. Alike biological processes, the 
core mechanism of CNNs is that the connectivity pattern 
between neurons resembles the organization of the animal 
visual cortex. Individual neurons only respond to a small 
region the visual field, but multiple neurons can collectively 
cover the whole field. Inspired by the massive successes 
of CNNs in image classification tasks,78 exploring CNNs 
with spectrograms of audio signal as inputs for respiratory 
condition prediction has gained extensive attention as well 
as shown great potential. The promise of leveraging CNNs 
attributes to the power of CNN neurons which can capture 
complex spatial–temporal correlations in the spectrogram 
and to transfer the contextual information into distinguish-
able physio-markers for respiratory condition screening. 
The advance of CNNs has also been validated by experi-
ments. Shi et al.52 devised CNN models to classify multi-
ple lung sounds including wheeze, squawk, stridor, and 
crackle, reaching an accuracy over 95%.53 Variants of CNNs 
like VGGish44,54 and ResNet32,55 also have shown great 
performance in crackle detection, COPD prediction, and 
COVID-19 detection. An example of applying ResNet for 
crackle and wheeze classification is illustrated in Figure 2,32 
where the ResNet layers can learn the characteristic of lung 
sounds through time and frequency domain, and the non-
local layer between two ResNet layers can break the local 
time and frequency limit from the CNN. This model yielded 
an accuracy of 52.26% based on the official ICBHI 2017 chal-
lenge scoring standards, which is improved by 2.1%∼12.7% 
compared to the other models.

Another widely used deep learning technique for res-
piratory sound classification is RNN and its variants.56–58 
Different from CNNs which equally treat frequency 
dimension and time dimension by two-dimensional (2D) 
conventional kernel neurons, RNNs utilize recurrent gate 
mechanisms to capture sequential pattern from the tempo-
ral context of audio signals. RNN can also overcome the 
restricted visual field of CNNs, leading to better cross-time 
and long-distance correlation modeling. Tiwari et al.59 devel-
oped a bi-directional RNN model via ICBHI 2017 database, 
yielding an accuracy of over 80% in detecting abnormal res-
piratory cycles. RNN can also be jointly applied with CNN 
model to better capture spatial–temporal features for respira-
tory sound classification.60,61
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Similar to RNN, another sequential modeling architec-
ture is Transformer, which has been explored recently for 
cough-based COVID-19 detection.37,41,56,62,79 Transformer 
treats audio spectrograms as token sequences with per spec-
trogram segment as one token. Benefiting from the attention 
mechanism, Transformer can learn a weighted combination 
of the features from different spectrogram segments: either 
close or far away, and thus, it is more capable of captur-
ing the bio-markers that are embedded in the long audio 
signals. Experiments on the COVID-19 Sounds data base 
for the INTERSPEECH 2021 Computational Paralinguistics 
ChallengE (ComParE) have shown that the proposed 
Transformer-based model outperforms all other deep learn-
ing methods.79

Although most studies focus on sample-level condition 
prediction, there is some research jointly utilizing CNN and 
RNN on longitudinal audio data to model the respiratory 
abnormality progression.30 Dang et al. recently validated 
that the features captured by CNN from respiratory sound 
spectrograms showed a close correlation with the subject’s 
COVID-19 recovery process, and leveraging RNN based on 
those features can predict the COVID-19 status timely and 
accurately. Such investigation can further extend the value of 
digital respiratory health for early diagnosis and treatment.

Method summary

Various model architectures have been explored on respira-
tory audio data, which show promising performance for 
automatic respiratory condition screening. However, the 
transparency of implementation details is lacking, and some 
models are developed based on private databases with no 
codes published. For real-world deployment, further vali-
dation of the model performance on clinically verified data 
is necessary to avoid over-fitting on experimental data. 
Data scientists are expert in modeling while respiratory 

physicians have their domain knowledge in feature design-
ing and performance valuation, and thus, more in-depth 
cooperation beyond data collection is desired and crucial for 
high-performance respiratory condition screening systems.

Open issues

In spite of the massive efforts that have greatly advanced the 
development of automatic respiratory condition screening, 
there are still a plethora of challenges unsolved, and those 
open issues are worth exploring.

Lack of data

Reliable and large-scale databases are a bottleneck for 
ML-based applications. As we summarize in the data over-
view section, many respiratory conditions are not covered 
by existing publicly available audio databases. Even for 
the widely studied COVID-19 disease, some databases are 
crowd-sourced without clinical verification. Considering the 
sensitivity of health screening, models developed by such 
data need careful validation before deployment. Combining 
different databases to extend the data for model training 
might be a potential solution for the limited data; however, 
given the high heterogeneity of those public databases, it is 
very challenging. In addition to putting efforts to collect more 
data, for model developers, small-data learning techniques 
including semi-supervised learning,63 self-supervised learn-
ing,64 and transfer learning65 can be explored. For example, 
warming up the model training by leveraging non-respira-
tory audio data or non-labeled respiratory audio data and 
then transferring the model to the target auscultation task 
can be helpful.41,69,80 When new respiratory audio data con-
tinuously become accessible, incremental learning,66 meta 
learning,67 and active learning approaches68 can be applied 
to subsequently improve existing models.

Figure 2. The proposed LungRN + NL neural network architecture for lung sounds classification used ICBHI 2017 database.32 This architecture consists of several 
ResNet and one non-local blocks. (A color version of this figure is available in the online journal.)



Xia et al.  A review for automatic respiratory auscultation  2059

Better interpretability

ML particularly deep learning models are known as black 
boxes, lacking proper interpretation of how the prediction 
is made. Yet, for clinical use, a well understanding of what 
kind of physio-markers are leveraged is of great importance 
to avoid decision bias for diagnosis. For example, spoken 
language should not be used as a feature for respiratory con-
dition screening, but this information is easy to be captured 
by the model and sometimes could be explicitly misused in 
experiments with biased data distribution.69 Post hoc inter-
pretation with a holistic evaluation of the developed models 
is requested but under-looked in the current literature. For 
ML methods, acoustic feature importance should be derived 
to seek the meaning and explanation with the associated 
respiratory condition in the real world.81 On the other side, 
attention mechanism could be a plausible option to be incor-
porated in deep neural networks so that the significance of 
different spectrogram segments can be traced.41,79

Risk management

Another important issue for ML, particularly deep learn-
ing, based health applications is risk management. Although 
they show promising results in the laboratory-collected 
data, commonly used deep learning models can be poorly 
calibrated,70 yielding overconfident predictive probabilities 
which cannot reflect the true diagnostic confidence of diag-
nosis in the wild. Deep learning also behaves unpredict-
ably on unfamiliar data, for example, unseen sound-type, 
new respiratory conditions, noising audio signal inputs, 
which has profound effects in the clinical context.71 Those 
misdiagnosis risks should be well managed, and when ML 
cannot handle them, physicians can be involved in time. A 
potential solution is to quantify the prediction uncertainty 
of the acoustic models, which can raise a warning for unfa-
miliar audio inputs and unconfident respiratory condition 
predictions.72–74

Privacy preservation

Health data are always sensitive. When collecting health 
data for diagnostic system development, user privacy has 
been a persistent concern. Privacy-preserving deep modeling 
attempts to bridge the gap between personal data protection 
and data usage for clinical routine and research, thus being 
a promising solution. The privacy-preserving mechanisms 
can be applied to the whole deep modeling chain, from data 
acquisition, through model training, to model inference.75 
Federated learning, which can train models collectively with 
the data remained on the contributors’ side, is widely adapted 
in various health applications.82,83 Although little work has 
been done in this respective for automatic auscultation, les-
sons can be learnt from related tasks including acoustic event 
classification, audio recognition, and so on.84–86

Conclusions

In this concise review, we present the advance and prom-
ise of exploring ML for respiratory condition screening. 
AI-powered auscultation via respiratory sounds collected by 

electronic stethoscopes and microphones has great flexibility 
and scalability: the screening can be done remotely, and the 
results can be delivered to users by smartphones, expedit-
ing medical diagnosis outside the hospital. To facilitate the 
development of automatic respiratory condition screening 
systems, we summarize more than 10 publicly available 
audio databases covering various respiratory conditions and 
discuss several representative features as well as architec-
ture designing approaches for respiratory sound modeling. 
Those latest techniques have shown favorable performance 
in some contexts; however, there are still many open issues 
that are needed to be solved before deploying the developed 
models to the public. Specially, we point out that small-data 
learning, interpretable features, uncertainty-aware models, 
and privacy-preservation prediction are worth exploring in 
future work to handle the unsolved challenges.
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