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Introduction

Spinal cord injury (SCI) is one of the most debilitating unre-
solved neurological pathologies that destroys the quality of 
life by temporal or permanent motor, sensory, and autonomic 
dysfunction and resulting in a two-to-five-fold increase in 
premature death.1 The World Health Organization estimates 
between 250,000 and 500,000 people worldwide are living 

with SCI, impacting primarily two age groups, 15–29 years 
old or 50 years and above.2 SCIs are complex in pathology 
and frequent injuries seen in the civilian population versus 
military may differ, with the latter including high-energy 
blast mechanisms that generate a broader range of injuries 
and poorer neurologic recovery.3 Broadly stated, SCIs are 
either complete, in which no significant spared motor or 
sensory function remains below the injury site or incomplete, 
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Abstract
Spinal cord injury (SCI) remains a life-altering event that devastates those injured 
and the families that support them. Numerous laboratories are engaged in 
preclinical and clinical trials to repair the injured spinal cord with stem cell–derived 
therapeutics. A new developmental paradigm reveals early bifurcation of brain or 
trunk neurons in mammals via neuromesodermal progenitors (NMPs) relevant 
to therapies requiring homotypic spinal cord neural populations. Human-induced 
pluripotent stem cell (hiPSC) NMP-derived spinal motor neurons generated  
ex vivo following this natural developmental route demonstrate robust survival in 
vivo when delivered as suspension grafts or as in vitro preformed encapsulated 
neuronal circuitry when transplanted into a rat C4-C5 hemicontusion injury site. 
Use of in vitro matured neurons avoids in vivo differentiation challenges of using 
pluripotent hiPSC or multipotent neural stem cell (NSC) or mesenchymal stem cell 
therapeutics. In this review, we provide an injury to therapeutics overview focusing 
on how stem cell and developmental fields are merging to generate exquisitely 
matched spinal motor neurons for SCI therapeutic studies. The complexity of the 
SCI microenvironment generated by trauma to neurons and vasculature, along 
with infiltrating inflammatory cells and scarring, underlies the challenging cytokine 
microenvironment that therapeutic cells encounter. An overview of evolving but 
limited stem cell–based SCI therapies that have progressed from preclinical to 
clinical trials illustrates the challenges and need for additional stem cell–based 
therapeutic approaches. The focus here on neurons describes how NMP-based 
neurotechnologies are advancing parallel strategies such as transplantation of 
preformed neuronal circuitry as well as human in vitro gastruloid multicellular 
models of trunk central and peripheral nervous system integration with organs. 

NMP-derived neurons are expected to be powerful drivers of the next generation of SCI therapeutics and integrate well with 
combination therapies that may utilize alternate biomimetic scaffolds for bridging injuries or flexible biodegradable electronics for 
electrostimulation.
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Minireview

Impact Statement

The ability to generate stem cell–derived neurons 
for spinal cord injury (SCI) therapeutics, which sur-
vive and functionally integrate when transplanted, 
brings neuronal circuitry restoration strategies to 
the forefront. Challenges persist with the current 
use of multipotent progenitor cells for complete and 
sufficient differentiation to neurons, exacerbated by 
a cytokine complex SCI microenvironment. A new 
developmental paradigm bifurcates distinct brain 
or spinal neuron populations and is being imple-
mented with hiPSCs to generate spinal motor neu-
rons as well as gastruloid models of human central 
nervous system (CNS)–peripheral nervous system 
(PNS) development in the trunk and spine. These 
insights are coupled with detailed molecular signa-
tures of neurons to ensure anatomical and regional 
matching of therapeutic cells for SCI. The next 
generation of SCI cell therapies will apply the right 
spinal motor neuron subtype and advanced delivery 
in innovative platforms, including preformed trans-
plantable neuronal circuitry, that can be combined 
with electrostimulation to accelerate functional 
recovery outcomes for SCI patients.
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in which partial severing retains some level of signaling 
through the injury SCI.4 The heterogeneous nature of SCI, 
inability of intrinsic neural regeneration alone to provide 
recovery, and rapid progression from an acute to a chronic 
and more refractive injury microenvironment are driving 
a range of innovative-targeted therapeutic strategies. Of 
significant interest are efforts to engineer replacement cell 
therapies using stem cell neurotechnology. Here, we describe 
advances with the generation and transplantation of ana-
tomical region–specific spinal motor neurons and support 
cells as preformed neuronal circuitry, currently being done 
in animal models of SCI. We highlight the next generation–
associated technologies that will broaden the ability to treat 
a larger variety of SCIs, including more complex injuries, 
and discuss the importance of standardization of treatments 
to allow consensus.

Complexity of the SCI microenvironment  
in defining treatments

Insight into the pathophysiology of SCI

Along with initial physical trauma that results in the primary 
mechanical damage to the spine are compounding secondary 
changes, including vascular injury and biochemical changes 
that can lead to scarring in chronic stages. Changes to ana-
tomical integrity and continuity of the spinal cord drive the 
biphasic response that results from the primary injury as 
well as force type and direction. This includes (1) impacts 
with persistent compression seen with burst fractures, frac-
ture-dislocations, and acute disk ruptures; (2) transient com-
pression injuries, such as hyperextension; (3) distraction by 
forcible stretching of spinal column in the axial plane; and 
(4) laceration/transection injuries such as due to missiles, 
sharp bone fragment dislocation, or severe distraction.5 Loss 
of function occurs upon direct damage to ascending and 
descending neurons in neural circuitry pathways as well as 
neuronal death accelerated by microvascular disruption of 
blood vessels and the blood–brain barrier (BBB) generating 
edema, ionic imbalance, and changes to energy metabolism 
mechanisms for neurons. The narrowing of spared blood 
vessels, as vasospasm, along with local swelling, edema, 
both lead to ischemia. These events contribute to initial loss 
of sensation and motor paralysis in spinal shock as well as 
systemic pendulum effects in blood pressure, including sys-
temic hypotension.6 Demyelination of neuronal axons dur-
ing mechanical compression, neuronal apoptosis, and the 
continued breakdown of myelin, and astrocytic responses 
further engage inflammatory responses during SCI.7

Loss of neurons and support cells in acute stages of cell 
death triggers the release of cell- and blood-derived damage-
associated molecular pattern, DAMP, molecules that include 
at least 35 factors related to extracellular matrix (ECM) and 
membrane proteins as well as intracellular molecules of 
nucleic acids, histones, mitochondrial DNA and reactive 
oxygen species, heat shock proteins, and more. DAMPs are 
part of the innate immune response and activate purinergic 
receptors to induce microglial chemotaxis to the damage site. 
Additional contributing roles of oxidative stress, derange-
ments in ionic homeostasis, neurotransmitter accumulation, 

plasma membrane compromise (increased permeability), 
lipid peroxidation, and necrotic cell death exacerbate the 
injury. Progression from acute into the subacute phase is 
evident by the Wallerian degeneration that triggers glio-
sis and neuroinflammation, along with apoptosis, further 
demyelination of surviving axons, axonal dieback, and 
ECM remodeling. A reactive response to increasing levels 
of adenosine triphosphate (ATP) also occurs and results in 
increased levels of oligodendrocyte precursor cells (OPCs), 
oligodendrocytes, microglia, and astrocytes. The prolifera-
tion of reactive astrocytes during gliosis generates increased 
secretion of matrix chondroitin-sulfate proteoglycans, 
CSPGs, which remodel the injury microenvironment and 
interfere with neuronal plasticity.7,8 These temporal cas-
cades of events during secondary stages of injury drive the 
pathophysiological response that is acute, immediate over 
seconds to minutes, subacute that occurs over minutes to 
weeks, or chronic that evolves over months to years.9 The 
complexity of SCIs suggests that a balance of critical factors 
may be needed to switch reactionary responses away from 
neuroprotective barriers toward one primed to favor neural 
circuitry regeneration.

The SCI microenvironment and roles of astrocytes, 
inflammation, and scarring

Astrocytes play a critical role in neuronal metabolism10 
and synaptic function as part of a “tripartite synapse”11 in 
a non-injury environment, but within 1 h of focal mechani-
cal trauma, reactive astrogliosis occurs as an immediate 
response to injury.12 During this acute phase of SCI, astrocyte 
cell processes elongate, evident by an increase in glial fibril-
lary acidic protein (GFAP) intermediate filament protein and 
surround clusters of fibrotic and infiltrating inflammatory 
cells to allow tissue repair and functional improvement. 
As reactive astrocytes entangle with pericytes and tightly 
interweave, an inhibitory mesh-like scar array is created. 
Astrocytic glial scarring, while neuroprotective, interferes 
with axonal regeneration and contributes to a chronic state 
of SCI.13

In SCI, inflammation provides phagocytic clearance of 
cellular debris but may also contribute to peripheral damage 
that spreads to the surrounding tissue and interferes with 
neural regeneration. The inflammatory response is initiated 
by peripherally derived immune cells, that includes mac-
rophages, neutrophils, and T-cells along with activated glia, 
both astrocytes undergoing astrogliosis and microglia. The 
infiltration of leukocytes and activation of microglia and 
astrocytes can further contribute to tissue damage through 
released proteases, reactive oxygen intermediates, lysoso-
mal enzymes, proinflammatory cytokines such as tumor 
necrosis factor (TNF), interleukin (IL)-1, IL-6 and IL-10, and 
chemokines.14,15 This detrimental–beneficial duality is the 
result of the capacity of immune cells to be polarized with 
pro- or anti-inflammatory functions at different stages and 
distances from the injury.16 Microglia are highly dynamic 
and proliferate during the first week following SCI to form 
a dense cellular interface between reactive astrocytes and 
monocyte-derived macrophages.17 Upon SCI, inflammatory 
microglia transform into a reactive M1 type, that exacerbates 
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neuroinflammation, and M2 type that promotes tissue repair 
and exerts anti-inflammatory effects. The ratio of M1 or 
M2 types directs SCI response and shortly after injury, M1 
microglial predominates and M2 microglia does not persist 
as long.18 The microglial scar component regulates inflam-
mation versus functional recovery, but M1-type microglia 
are associated with chronic neuroinflammation follow-
ing SCI. The M1 microglia polarization induces astrocytes 
to increase CSPG secretion and local deposition.19 These 
growth-inhibitory ECM glycoproteins include neurocan, 
versican, brevican, phosphacan, and NG2. CSPGs become a 
chemo-physical barrier and contribute to the failure of SCI 
regeneration by attenuating axon growth cone activity and 
preventing oligodendrocyte progenitor cell maturation into 
functionally mature oligodendrocytes capable of remyelina-
tion.20 The CSPG inhibition of neurite outgrowth acts via the 
Rho/Rho-associated protein kinase (ROCK) signaling path-
way.21 The microglia enhancement of glial scars is hypoth-
esized to be related to a failed switch from M1 back to M2 
type.22 Resolving scar tissue barriers requires understand-
ing the intricate mixture of cell types that include astrocytic, 
fibrotic, and microglial cells.

Scarring separates healthy tissue from necrotic tissue and 
prevents non-CNS cells from invading the CNS parenchyma 
and includes astrocytic and microglia cell types along with 

changes to ECM as well as fibrotic scarring.23 The fibrotic 
scar provides the necessary initial support structure to allow 
the injured area to maintain tissue integrity and forms adja-
cent to the medial side of a forming astrocytic scar. However, 
the persistence of fibrotic cells interferes with a return to 
normal tissue structure and hinders axonal regeneration 
and functional recovery, including excess deposition of ECM 
molecules with inhibitive effects. The dense ECM that con-
stitutes the fibrotic scar is composed of fibronectin, collagen, 
and laminin. Microvascular CD13 positive endothelial cells, 
which aid in myelin debris engulfment, and platelet-derived 
growth factor receptor beta (PDGFRβ)-positive pericytes 
have been suggested to promote fibrotic scar formation.23,24 
The gradual proliferation and migration of fibroblasts also 
contributes to encapsulation of macrophages in the injured 
core.25

Therapeutic approaches to improve SCI recovery must 
target a diverse set of conditions and cell types over a tempo-
ral cascade (Figure 1) and will require combined strategies to 
bring flexibility needed to treat the complex range of SCIs26 
including providing neural cells to replace damaged or lost 
cells, targeting the injury microenvironment to remove barri-
ers to regeneration and encourage intrinsic regeneration, and 
integration with additional connectivity assisting strategies 
such as electrostimulation and exercise.

Figure 1. Complexity of cell types in the SCI microenvironment and injury impact. (A) Timeline of microenvironment pathological changes following SCI. A wave 
of inflammatory response is followed by decreased inflammation and long-term glial scar formation. Immediate therapeutic intervention into the post-traumatic 
inflammatory microenvironment is challenging regarding survival of grafted cells and the presence of complex cytokine regulators. Human clinical trials have shown 
transplantation of cell therapy as early as 10 days. (B) Diagram of the spinal column. Shown in increasing detail are the complexity of the SCI microenvironment, cell 
types involved, and functional impacts. Perturbations to vascular, neural circuitry and metabolism, and myelination functions are critical to survival and regeneration of 
neuronal circuits following SCI.
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Historical perspective on stem cell–
based SCI therapeutics

Transitioning stem cell technologies from models 
into clinical trials

Rodent models of neuropathologies and SCI have been at 
the forefront of innovative stem cell therapeutic strategies 
due to their ability to provide embryonic, developmental, 
and physiological functional studies that co-inform and set 
the stage for studies in larger animal models and human 
clinical trials. Although vastly different in scale, the ana-
tomical, physiological, and genetic similarities of rodents 
to humans, along with abundant genetic resources, have 
proven to be invaluable.27 Studies with mouse embryonic 
stem cells (mESCs) historically began in 1981, with in vitro 
cultures from inner cell mass blastocysts.28,29 Human embry-
onic stem cell (hESC) isolation and characterization came 
near two decades later30 following advances in in vitro fer-
tilization and the first human test tube baby in 1978. The 
breakthrough development of human-induced pluripotent 
stem cell (hiPSC) technology31 further extends the capabili-
ties of human stem cell technologies, including greater ethnic 
population diversity32 along with the ability to study neu-
rological disorders across developmental and adult stages.

The first clinical trial with pluripotent stem cell–based 
therapeutics, GRNOPC1 done by Geron, Inc. (Menlo Park, 
CA, USA) in 2010 evaluated hESC WA09 oligodendrocytes 
in five patients with SCI; however, financial challenges with 
frontier therapies halted the trial, revealing challenges to 
companies and patients.33,34 Previously, mesenchymal stem 
cells (MSCs) had been used, based on evidence of trans-
differentiation into neurons.35 MSCs for SCI derived from 
autologous bone marrow met safety considerations in SCI 
observational studies36–39 as did additional sourcing of MSCs 
from adipose tissue40,41 and umbilical cord.42 Although the 
results of these studies support the safe use of MSCs with-
out complications over the periods studied, no significant 
clinical therapeutic potential has yet been demonstrated. 
Numerous rodent studies with hiPSC-derived NSCs indicate 
the potential for therapeutic benefits, but concerns remain 
for reproducibility and incomplete differentiation in pre-
clinical trial studies.43 Meanwhile hiPSC-based therapeutics 
were first used in clinical trials in 2013 for macular degen-
eration, transplanting autologous retinal pigment epithelial 
cell sheets with improvement to vision.44 Over 81 clinical 
trial studies with hiPSC technology, mostly observational, 
have been conducted worldwide, but only a handful for 
therapeutic treatment of SCI. The first clinical trial using 
hiPSC-derived NSC neural progenitor cells for SCI initiated 
in 2018 to evaluate hiPSC-derived NSC neural progenitor 
cells in the treatment of subacute injury between the third/
fourth vertebrae and the tenth thoracic vertebrae, with an 
American Spinal Cord Injury Association Injury Scale (AIS) 
classification of A.45 The intent of the study is to evaluate 
post-transplant graft cell mortality, adverse events such as 
hyperproliferation of transplanted graft cells, efficacy of 
treatment on restoration of motor function, sensory func-
tion, reduced spasticity, and improved quality of life. The 
use of multipotent NSCs as a more directed approach to 
neurons, without transdifferentiation such as with MSCs, 

has advanced but still faces challenges complicated by their 
multipotency, primarily complete differentiation and matu-
ration of cells to avoid neurotomas, as well as the need for 
sufficient graft differentiation in vivo of spinal motor neu-
rons, myelinating oligodendrocytes, and support cells to 
promote functional neural circuitry recovery and regenera-
tion. This study that applies neural progenitors represents a 
new breakthrough in fine-tuning SCI treatments with more 
appropriate cell types.

Restoring neural circuitry – 
neuromesodermal progenitors

The importance of making the right neuron

The use of neurons as therapeutics was first demonstrated 
with fetal embryonic tissue.46,47 Until recently, success in 
using stem cell technologies to generate neurons has been 
historically unsuccessful and has remained understudied. 
Recently, induced reprogramming to generate autologous 
motor neurons in a bypass of developmental steps promoted 
recovery in a rat T9 compression injury.48 New studies in 
Parkinson’s disease demonstrate that pluripotent stem cell 
in vitro derived and matured CNS dopaminergic neurons 
survive in rodent and monkey models of Parkinson’s disease 
and generate significant therapeutic improvement when the 
appropriate neuron subtype is grafted.49,50 Pioneering stud-
ies in treating Parkinson’s disease advanced initially through 
allogeneic transplantation of human fetal dopamine cells 
for Parkinson’s disease.51–54 Analysis of several tissues and 
stem cell–derived cells based on anatomical classification of 
midbrain dopaminergic neurons, along with single-cell gene 
expression profiling in the mouse brain, revealed the exist-
ence of several molecularly distinct dopaminergic neuron 
subtypes.55 The shift in therapeutic cell focus to attention 
around the molecular diversity of substantia nigra dopamin-
ergic neurons and relevance for Parkinson’s disease has been 
instrumental in effecting advanced therapeutics. In addition, 
use of hiPSC-derived dopaminergic progenitors56,57 enables a 
pipeline for therapeutic cell generation, with near unlimited 
availability of cells, increased purity, standardized manufac-
turing, and the ability to better withstand cryopreservation 
before neuronal differentiation.58 Such significant findings 
with Parkinson’s disease have not escaped notice by the SCI 
field in regard to developmentally appropriate derivation of 
neurons including subtype specification to generate optimal 
therapeutic outcomes.

NMPs and homotypic spinal motor neurons

The earliest models of nervous system embryology arose 
from elegant studies on amphibian development,59,60 in 
which a single founding pool of NSC neural progenitors 
in the early epiblast gives rise to both brain and trunk lin-
eages. Transformation along the anterior–posterior body 
length then continues by caudalizing, or posteriorizing sig-
nals. A parallel strategy for vertebrate CNS development 
awaited verification but meanwhile a similar paradigm was 
assumed and has influenced SCI therapeutic studies with 
pluripotent stem cells and generation of NSCs. An impor-
tant study in mice61 followed by detailed molecular analysis 
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of transcriptomics by RNA-Seq in both mouse and human 
pluripotent stem cells62 demonstrated that developmental 
lineages of the vertebrate brain and spine arise from distinct 
populations of neural progenitors in vivo and in vitro.63 In an 
immediate bifurcation event during embryonic neurogenesis 
in vertebrates, NSCs in the anterior neural plate region gen-
erate cranial neurons in the brain and descending white mat-
ter tracts, while a separate pool of caudal axial progenitor 
cells, termed neuromesodermal progenitors (NMPs), present 
in the posterior plate generate and pattern the spinal cord 
as the common origin of the CNS spine and trunk musculo-
skeletal system, first described as axial stem cells.64,65 NMPs, 
therefore, represent the most natural route for in vivo and 
in vitro generation of therapeutic cells and recapitulation 
of cell phenotypes in vivo along the neuraxis to benefit SCI. 
Additional detail is also available now through transcrip-
tional RNA-Seq profiling of spinal interneurons66 and spinal 
motor neurons67 that provides a fine-grained map of the cel-
lular heterogeneity, individual subclasses of neurons, and 
circuit and physiological specializations. The ground-break-
ing revelations around vertebrate NMPs in development of 
the nervous system and transcriptional profiling of spinal 
neurons in rodent studies are expected to be synergistic to 

accelerate and transform SCI therapeutics in the next decade, 
allowing a renewed focus on neuronal circuitry restoration.

Transplantable preformed neural circuitry for SCI 
therapeutics

The leap in stem cell neurotechnologies and use of neurons 
as SCI cell therapeutics will accelerate progress in under-
standing, treatment, and recovery of CNS and PNS neural 
circuitry following SCI. Preformed transplantable neuronal 
circuitry incorporating in vitro NMP-derived and function-
ally matured human caudal spinal motor neurons, along with 
interneurons and OPCs encapsulated in alginate68 (Figure 2), 
have been demonstrated to functionally integrate in a rat 
hemicontusion model of SCI.69 These synaptically connected 
neuronal networks, termed neural ribbons (Figure 3), dem-
onstrated retention of high synaptic density, integration into 
the host parenchyma, and long-term viability. Preliminary 
eight-week duration functional recovery studies in the rat 
model (unpublished studies) indicate improvement in limb 
reaching function, consistent with host–graft integration 
seen at earlier timepoints.69 Next steps in optimization of 
neural ribbon technology include focus on spinal cell types 

Figure 2. hiPSC NMP-trunk specification and neural ribbons. (A) The anterior–posterior neuraxis in the human embryo is specified from NSCs that generate brain 
neurons or NMP-derived cells that form the trunk and spine, directing somites and neural crest cells (NCCs) for CNS–PNS integration. (B) Application of NMPs to 
achieve trunk regionally matched CNS, PNS, and mesodermal lineage cells is showing promise in transplantation circuitry. Grafted NMP-derived regionally matched 
spinal motor neurons and support cells in neural ribbons as preformed synaptically connected networks facilitates host–graft interactions and neural circuitry 
integration, as alginate-based encapsulation provides temporary support for networks before dissolution. Advantages of neural ribbon circuitry and prospective 
assisting technologies for improved clinical translation.
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and ratios, inclusion of ECM modulators such as chondroi-
tinase to counter refractory injury site CSPGs, and scaling to 
supply sufficient neural therapeutic cells. Worth noting in 
initial in vivo studies is the substantial reduction in number 
of neurons needed to achieve minimal recovery (~5000) and 
the robust survival and host integration of the transplanted 
matured neurons without ECM matrix modifiers, such as 
chondroitinase for modulation of refractive CSPGs. Spinal 
motor neuron networks delivered in neural ribbons also 
contained OPCs. To what degree co-transplantation with 
matured oligodendrocytes, capable of axonal myelination, 
would impact functional integration of grafted neurons and 
intrinsic host neuron regeneration also needs further explo-
ration. Both immature OPCs and mature oligodendrocytes 
may be important regarding providing critical signaling fac-
tors for transplanted neurons in addition to myelination and 
stabilization of neuronal axons. In comparison to a paral-
lel study using the same strategy for generating regionally 
matched NMP-derived human spinal motor neurons and 
OPCs but delivered as a suspension and in logarithmically 
larger numbers, 200,000 cells,70 also survive but appear to 
penetrate less deeply into the host parenchyma. Alginate 
neural ribbons appear to preferentially align along the host 
parenchyma rather than being retained in the cavity, which 
may promote integration and host–graft synaptic connectivity. 
Both studies are consistent with homotypic matching as a 
dominant factor in graft survival. Whether neural ribbons 
can be directed to be more productive in terms of generat-
ing circuitry recovery with the host in lieu of suspension 
cells that may also generate independent circuitry that will 
need to be reorganized is an important question in moving 
ahead with NMP-derived neuronal cell therapeutics. Neural 
ribbon technology constitutes an exciting next generation 
strategy for reproducible delivery, placement, and retention 
of transplantable neuronal circuitry in vivo. In addition, neu-
ral ribbons have been tested as shippable neurotechnology, 

allowing them to be generated in one location and shipped 
overnight for performing transplantation studies elsewhere. 
Ex vivo differentiation of spinal neural cells for transplanta-
tion also critically allows comprehensive analysis by RNA-
Seq and single-cell RNA-Seq transcriptomic profiling, in 
addition to analysis of biomarkers with cell phenotypes, 
functional assays, and electrophysiology analysis that will 
help to create greatest uniformity in treatments and enable 
rapid advancements in technology.

Scaffolds and electrostimulation in corticospinal 
connectivity

Alginate neural ribbons provide degradable short-term 
support for transplanted preformed neuronal circuitry to 
integrate with the host parenchyma and drive host–graft 
interactions and are being explored along with other research 
efforts to test additional platforms that biomimic the spine 
or integrate electrostimulation (Figure 4). Printable three-
dimensional (3D) biomimetic scaffolds may offer an alternate 
reproducible platform to bridge the injury site and provide a 
suitable scaffold and microenvironment for retaining grafted 
cells and promoting repair.71,72 The use of a fabricated colla-
gen/silk fibroin scaffold designed to simulate the spinal cord 
anatomy73 also reduced scarring in vivo. In another study, a 
bioink scaffold designed to biomimic the white matter of the 
native spinal cord, composed of hydroxypropyl chitosan, 
thiolated hyaluronic acid, vinyl sulfonated hyaluronic acid, 
and matrigel, resulted in an increase in axon regeneration, 
decreased scarring, and significant locomotor recovery in 
a rat model of SCI.74 Combination of hydrogels with other 
techniques that show promise, such as electrical stimula-
tion, are also being developed to improve functional cir-
cuitry regeneration.75 In this study, stem cell–derived neural 
cells encapsulated in a 3D gelatin scaffold and transplanted 
into the transected rat spinal cord with electroacupuncture 

Figure 3. Preformed neural circuitry ribbons for SCI. Encapsulated hiPSC NMP-derived spinal motor neurons and oligodendrocytes in a 1:5 ratio in RGD-
alginate-type I collagen hydrogel as 150-micron diameter neural ribbons. Images left to right: images 1 and 2, DAPI, nuclei (blue), antibodies: SMI312, pan-axonal 
neurofilament (red), β-III tubulin, Tuj1 (green); image 3, DAPI, nuclei (blue), pan-cadherin (green); image 4, mitochondria (mitotracker). Technology is published in 
Olmsted et al.67,68 Scale bars are 50 microns.
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exhibited increased graft cell survival and neuronal differen-
tiation along with synapse formation. An alternate strategy 
is use of a macroporous flexible mesh as a combined roll-out 
electronics and scaffold that is deliverable by syringe injec-
tion76 Improved ability to monitor grafting cells in the acute 
injury site in real-time by integrating advanced imaging 
approaches with intravital windows77 will allow observa-
tion and quantitation of integration and regeneration over a 
timespan of days to months to advance and compare innova-
tive SCI therapeutic strategies more quickly.

SCI therapeutics in the context of human 
development

A powerful capability of pluripotent stem cells is their abil-
ity to generate all cell lineages relevant to early embryonic 
gastrulation that is the formation of endoderm, mesoderm, 
and ectoderm, as well as the downstream lineages relevant 
to human development.78 The important discovery of NMPs 
beyond their use to generate anatomically matched neurons 
for SCI repair79 also allows embryo-like gastruloids to be 
developed to study the complex integration of CNS–PNS 
neural circuitry. Two recently developed NMP gastruloid 

strategies are human elongating multilineage organized 
(EMLO) gastruloids,80 in which trunk CNS and PNS neu-
rons form around the enteric gut, as well as cardiac directed 
EMLOCs,81 that recapitulate formation of the human embry-
onic multichambered heart along with its intrinsic neural cir-
cuitry.81 These living human gastruloid EMLO and EMLOC 
platforms allow the study of previously unobtainable stages 
of human neurodevelopment for CNS–PNS integration, 
including key developmental events in neural crest cell 
(NCC) migration. The advancement of human gastruloid 
technology along with existing organoid technologies now 
allows multitissue insights into human trunk development 
and organ integration with the spinal cord.

Conclusions and future directions

The spinal cord critically links elements of the CNS and 
PNS for conduction of sensory and motor signals. The 
complex neuronal network of the spinal cord coordinates 
multiple actions including motor function, voluntary, and 
involuntary movements. In SCI, spinal neurons may suf-
fer abrupt discontinuation of axonal projections generating 
gaps in CNS connections harming ascending sensory and 

Figure 4. Current clinical trial landscape and forefront of SCI therapeutic approaches. (A) Brief overview of current stem cell therapeutic sources for SCI and future 
landscape for the application of hiPSC NMP neurotechnology and preformed neuronal circuitry in clinical trials. (B to D) Technologies at the forefront of SCI therapeutic 
approaches. (B) Gastruloid models based on NMP protocols can mimic human multilineage development of the trunk and spine regions in a dish and are ideal models 
to understand integration of CNS and PNS neurons. Shown center in the diagram is a human embryo near 28 days. Gastruloid EMLO and EMLOC technologies model 
neurons of the multichambered embryonic heart (left) or enteric gut (right). (C) Implementation of electrical stimulus and exercise as a synergistic and complementing 
therapeutic approach for improved results is expected to be a required step to optimize clinical translational recovery of SCI therapy. (D) The future of SCI therapeutic 
approaches is expected to advance transplantable neural circuitry considerations applying novel platforms with hiPSC NMP-derived subtype-specific networks.
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descending CNS–PNS motor and autonomic pathways. 
Depending on the location and severity of the injury, the 
effects can range from loss of motor function and sensation 
below the injury site to loss of bowel control, loss of bladder 
control, and sexual dysfunction.82 To target repair of SCI and 
stimulate reformation of new synaptic connections via thera-
peutic cells and intrinsic regeneration, strategies that focus 
primarily on neuronal circuitry and combined strategies will 
bring considerable advancements as alternate approaches. 
With refined, developmentally appropriate, robust protocols 
for spinal motor neuron differentiation, neuroanatomical, 
and cellular diversity along the rostral–caudal and dorsal–
ventral axes can be achieved and may be the key missing 
element in functional recovery with transplanted mature 
neuron survival and host integration.69,70 No comparative 
functional studies in animal models have yet been published 
to evaluate SCI cell therapies that use non-NMP-generated 
NSCs preprogrammed for brain neural cells versus NMP-
trunk–derived NSCs. As new analysis approaches emerge 
and are integrated into SCI studies, such as spatial single-
cell RNA-Seq of tissues along with proteomics and cell–
cell interaction data, more rapid and detailed quantitative 
comparisons at the molecular level will be possible. These 
detailed data can be integrated together with results on func-
tional recovery after treatment to improve outcomes. The 
next decade of stem cell–based SCI therapeutics is expected 
to deliver rapid next level advances and NMP-based spinal 
motor neuron differentiation strategies now bring neurons 
as cell therapeutics back to the forefront.
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