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Introduction

Inflammatory bowel disease, comprising Crohn’s disease 
(CD) and ulcerative colitis (UC), is characterized by chronic 
intestinal inflammation. Although the pathogenesis of these 
diseases has not been fully elucidated, both genetic and envi-
ronmental factors contribute to the development of IBD. An 
increased incidence of chronic inflammatory diseases, such 
as IBD, has been linked to lifestyle, dietary changes, and 
the resulting impact on gut microbiota composition.1 Loss 
of microbiota diversity and the prevalence of distinct bacte-
rial species in IBD patients, compared to healthy controls, 

further suggest that the microbiome plays an important role 
in IBD development, relapse, and response to treatment.2,3 
Murine models have been demonstrated as a powerful tool 
to explore host-microbiota interactions in mucosa.4,5 Animal 
studies have demonstrated that the gut microbiota is indis-
pensable for pathogenesis in most animal models of colitis.6

Mice have a similar microbiota composition to humans, 
with 90% of the bacterial population composed of Firmicutes 
and Bacteroidetes.7 This similarity makes these models rel-
evant to the understanding of IBD, although it is also impor-
tant to consider how microbiota variations in laboratory 
mice affect disease phenotype, reproducibility, and relevance 
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Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders of the 
gastrointestinal tract with worldwide increasing incidence. Recent studies indicate 
that certain species of intestinal bacteria are strongly associated with IBD. Helper T 
lymphocytes are not only the key players in mediating host defense against a wide 
variety of pathogens but also contribute to pathogenesis of many immune-related 
diseases. Here, using the T cell transfer model of colitis, we observed that the mice 
maintained in a specific-pathogen free (SPF) unit after receiving naïve CD4+ T cells 
developed mild disease. The same mice developed different degrees of disease 
when they were maintained in a conventional animal facility (non-SPF), where some 
pathogens were detected during routine health monitoring. Consistently, increased 
circulating inflammatory cytokines as well as Th1 and Th17 cells were detected in 
mice housed in non-SPF units. 16S rRNA sequencing of feces samples enabled us 
to identify changes in the microbiota composition of mice kept in different facilities. 
Our data indicate that environmental factors influence gut microbiota composition of 
mice, leading to development of colitis in a T-cell-dependent manner. In conclusion, 
changes in environmental conditions and microbial status of experimental animals 
appear to contribute to progression of colitis.
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Gut microbiota is strongly connected with the health 
of the human digestion system. There are reports 
indicating that gut microbiota composition may con-
tribute to the development of inflammatory bowel 
disease (IBD) via influencing T cell activity. This 
research provides proof for the impact of hygienic 
conditions in animal housing environments on exper-
imental colitis development in mice. We further pro-
vide data on the correlation between environmental 
factors and changes of microbiota composition in 
mice. Our data indicate that the richness, diversity of 
microbiota, and presence of commensal and patho-
genic bacterial species determine the severity of the 
experimental colitis development by affecting the 
change of helper T cell subsets. As such, this study 
provides evidence to demonstrate the importance of 
hygienic conditions in animal housing environments 
for experimental colitis progression.
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to an understanding of the human disease. Several factors 
affect laboratory mouse gut microbiota including less expo-
sure to pathogens, different diets, housing conditions, and 
genetics. Different microbiota compositions are observed 
in laboratory mice depending on the supplier.8 In general, 
laboratory mice have relatively simplified microbiomes com-
pared to wild mice, and the variation in the prevalence of 
specific bacterial populations can affect experimental results. 
Differences in susceptibility to infection have been observed 
between specific-pathogen-free (SPF) mice and germ-free 
mice.7 Furthermore, the presence of commensal bacteria can 
protect from colonization of pathobionts.

The T cell transfer colitis is one of the animal models of 
human IBD. In this model, naïve CD4+ T cells isolated from 
immunocompetent mice are transferred to immunodeficient 
Rag -/- or severe combined immunodeficient (SCID) mice, 
and consequently cause colitis.9 In an early study, upon trans-
fer of naïve cells, a high proportion of IFN-γ-producing cells 
was detected in the lamina propria of diseased SCID mice.9 
Therefore, it was generally believed that IFN-γ-producing 
Th1 cells are the key players in IBD pathogenesis. However, 
later studies demonstrated the requirement of additional 
mechanisms for colitis development, including the IL23 sign-
aling pathway and Th17 cells. The significance of targeting 
these mechanisms has been shown in several animal models 
of IBD, including the T cell transfer colitis model,10–12 and in 
clinical trials of CD.13 The essential role of Th17 cells in IBD 
has been well documented. The IL23/IL-17 axis plays pivotal 
roles as the immediate effectors of IBD, whereas defects in 
Treg cells play distinct causative roles in IBD.14–16 Genome-
wide association studies17,18 further support the importance 
of IL-23/IL-17 signaling in the pathogenesis of IBD.19

As previously mentioned, different environmental factors 
such as housing of mice in different caging systems may 
influence the microbiota composition and activity. It has been 
reported that gut microbial communities are protected from 
environmental contamination in mice housed in an individu-
ally ventilated caging system.20 However, it remains unclear 
how environmental factors in different facilities change the 
gut microbiota composition and contribute to the develop-
ment of colitis.

In this study, we investigated how animal housing condi-
tions in an SPF or non-SPF animal unit influenced gut micro-
biota of mice and consequently the development of colitis in 
a T-cell-dependent manner.

Materials and methods

Animal husbandry and diet

This study included the use of mice and was carried out in 
strict accordance with the European (the Directive 2010/63/
EU of the European Parliament and of the Council on the 
protection of animals used for scientific purposes) and 
Finnish legislation (Act 497/2013 and Government Decree 
564/2013 on the Protection of Animals Used for Scientific 
or Educational Purposes). The study protocols and proce-
dures were reviewed and approved by the National Project 
Authorization Board of Finland (license number ESAVI/ 
2502/04.10.07/2015).

Rag1-/- (NOD.129 S7(B6)-Rag1tm1Mom/J) and C57BL/6J 
mice were supplied by Jackson laboratories (USA). Animals 
were housed (2–5 animals per cage) in individually venti-
lated cages (IVC) in the SPF animal facility and in open top 
cages in the non-SPF animal facility with Aspen bedding and 
nesting material (Tapvei Oy, Estonia) and polycarbonate tun-
nels as enrichment. The temperature in the experimental ani-
mal room was 21 ± 3°C, with relative humidity of 55 ± 15% 
and following a 12-h light and 12-h dark light cycle. The 
mice were fed ad libitum with RM3 soy-free diet (Special Diet 
Services, Witham, Essex, England), and tap water was pro-
vided ad libitum. Mice were housed in the respective experi-
mental conditions, in SPF group, n = 7; in non-SPF1, n = 6; 
in non-SPF2, n = 5; and in non-SPF3, n = 6. The mice were 
monitored for signs of colitis and euthanized at the indicated 
time point of 13 weeks for SPF mice, 10 weeks for non-SPF1 
and non-SPF2 mice, and 8 weeks for non-SPF3 mice. Fecal 
samples for DNA extraction and blood samples for serum 
cytokine detection were collected at the time of euthanasia.

T cell transfer model of colitis

A well-characterized mouse model of IBD was used to study 
T-cell-dependent colitis in mice. Colitis was induced in 
immunodeficient Rag1-/- mice that lack mature B and T lym-
phocytes, by adoptive transfer of naïve CD4+ CD45RBhiCD25−  
T cells, which were isolated from immunocompetent, wild 
type C57BL/6J mice. Spleens were isolated from 6- to 
7-week-old male C57BL/6J mice and were disaggregated by 
pressing through a 70-µm filter, red blood cells were lysed 
with ACK lysing buffer (Invitrogen). CD4+ T cells were 
enriched using magnetic separation with a CD4+ T cell iso-
lation kit (Miltenyi Biotec, Bergisch Gladbach, Germany). 
Naïve CD4+ CD45RBhiCD25− T cells were further purified 
by FACS sorting using antibodies recognizing CD4, CD45RB, 
CD62L, and CD25 (eBiosciences). 400,000 FACS-sorted naïve 
T cells in a total volume of 200 μL PBS were injected into 
male Rag1-/- mice. Mice were weighed prior to the injection 
and weekly thereafter.

Flow cytometry

For colitis experiments, spleen and mesenteric lymph nodes 
(MLN) were harvested from mice and quantified prior to 
re-stimulation for 4 h in the presence of PMA and ionomycin 
plus Golgi inhibitor. For analysis of surface markers, cells 
were stained in PBS containing either 5% or 0.1% (wt/vol) 
fetal bovine serum (FBS) with anti-CD4 and anti-CD3 pur-
chased from eBiosciences. Stimulated cells were fixed and 
permeabilized with Transcription Factor Staining Buffer Set 
(eBiosciences, San Diego, CA, USA) stained with anti-IFN-γ 
and anti-IL-17A (both from eBiosciences) according to the 
manufacturer’s instructions, and cells were acquired using 
an LSRII flow cytometer (Becton Dickinson, San Jose, CA, 
USA). Events were collected and analyzed using FlowJo soft-
ware (Tree Star, Ashland, OR, USA).

Histopathology

Colonic sections from mice were collected, weighted, meas-
ured, and then fixed in 10% neutral-buffered formalin for 
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24 h at room temperature. Complete cross-sections of forma-
lin-fixed intestinal sections were placed in cassettes, embed-
ded in paraffin, sectioned at 4 μm thickness, mounted on 
glass slides, and stained with hematoxylin and eosin (H&E). 
Histological sections were evaluated and scored according 
to the following criteria: (A) Distribution of the inflamma-
tion: 0 = None, 1 = Focal, 2 = Multifocal, 3 = Diffuse, 4 = total/
whole/maximal distribution; (B) Degree of inflammation: 
0 = None, 1 = Low level of inflammation with scattered infil-
trating mononuclear cells (1–2 foci), 2 = Moderate inflam-
mation with multiple foci, 3 = High level of inflammation 
with increased vascular density and marked wall thicken-
ing, 4 = Maximal severity of inflammation with transmural 
leukocyte infiltration and loss of goblet cells. The cumulative 
score represents the sum of these two independent criteria.

Cytokine detection

Serum samples were collected from colitis experiment mice 
at the time of euthanasia. Serum cytokines were quantified 
using a Millipore (Billerica, MA, USA) MILLIPLEX® MAP 
Kit.

Health monitoring of animal units

Health monitoring was carried out according to FELASA 
recommendations.21 Samples were collected from sentinel 
mice kept in the animal rooms by direct sampling of Rag -/-  
mice. Sentinel mice are weekly exposed to soiled beddings 
of other animals maintained in the animal facility. A few 
blood drops were collected to Opti-Spot strips (IDEXX 
BioResearch, Stuttgart, Germany) for serologic analysis. Oral 
and fur swabs and feces were collected for PCR analyses. Up 
to five samples were pooled separately for oral, fur, and feces 
and sent to IDEXX BioResearch. In addition, SPF was tested 
by PCR from pooled feces samples.

Microbial community analysis

Fecal samples were collected from mice in colitis experi-
ments at the time of euthanasia. Total DNA was extracted 
using QIAamp Fast DNA Stool Mini Kit (QIAGEN, Hilden, 
Germany) according to the manufacturer’s instructions.

All the qualified DNAs were used to construct libraries 
of 16S rRNA gene (V3 V4 region) followed by sequencing by 
300 bp paired-end run on an Illumina HiSeq 2500 instrument 
at the BGI Genomics (New Territories).

Data analysis was performed by BGI Genomics (New 
Territories). Clean reads were obtained after filtering and 
cleaning, then paired-end reads with overlap were merged 
to tags, which were clustered to Operational Taxonomic Unit 
(OTU) at 97% sequence similarity. Taxonomic ranks were 
assigned to OTU representative sequence using Ribosomal 
Database Project (RDP) Naive Bayesian Classifier v2.2. 
Finally, alpha diversity, beta diversity and the different spe-
cies screening were analyzed based on OTU and taxonomic 
ranks. Linear Discriminant Analysis Effect Size (LEfSe) was 
used to identify microbial biomarkers enriched/depleted in 
each group.22

PCR primers targeted to total bacteria (forward: 5′-AGCA 
CGTGAAGGTGGGGAC-3′, reverse: 5′-CCTTGCGGTTGGC 

TTCAGAT-3′), Enterobacteriaceae family (forward: 5′-CATT 
GACGTTACCCGCAGAAGAAGC-3′, reverse: 5′-CTCTACG 
AGACTCAAGCTTGC-3′), Akkermansia muciniphila (forward:  
5′-CAGCACGTGAAGGTGGGGAC-3′, reverse: 5′-CCTTG 
CGGTTGGCTTCAGAT-3′) and segmented filamentous bacteria 
(SFB, forward: 5′-AGGAGGAGTCTGCGGCACATTAGC-3′, 
reverse: 5′-TCCCCACTGCTGCCTCCCGTAG-3′) were used 
to perform specific Quantitative real-time PCR (qPCR) in a 
LightCycler® 480 Real-Time PCR System (Roche®) by use of 
SYBR® Green PCR Master Mix (Roche®). A melting curve 
analysis was conducted at the end of the PCR, and bacterial 
concentration was calculated by comparing the Ct values 
from standard curves.

Statistical analysis

p-values were calculated using Student’s t-test and one-way 
ANOVA + Tukey’s multiple comparisons test. Error bars rep-
resent means ± SEM.

Results

Hygienic condition in the animal unit contributes 
to T-cell-dependent colitis development

To perform the T cell transfer model of colitis in our animal  
facility, flow cytometry sorted naïve (CD4+ CD25-CD45RBhi) 
T cells from C57BL/6 mice were transferred to Rag1-/- 
recipients housed in individually ventilated cages in the 
specific-pathogen-free (SPF) unit. The mice were weighed 
weekly to monitor colitis development. We observed that 
the Rag-/- recipient mice kept gaining weight until the time 
of sacrifice (13 weeks) after naïve CD4+ T cell reconstitution 
(Figure 1(A)). Histology evaluation confirmed that colons of 
these mice appeared essentially normal or with mild observ-
able pathology (Figure 1(B)). Health monitoring reports 
indicated that many of the pathogenic microbes were not 
detected in the SPF unit (Table 1).

To investigate whether the microbiota in the housing 
environment influence colitis development, we transferred 
Rag-/- mice to non-SPF units, where mice were kept in open 
top cages. Later, the same experiment was performed and we 
observed that post transfer of naïve CD4+ T cells, Rag1-/- 
mice stopped gaining weight and even started losing weight 
by week 7 (Figure 1(A), non-SPF2). These mice had diarrhea 
and at the time of sacrifice we observed increased colonic 
weight/length ratio, a marker of tissue edema (Figure 
1(D)), indicating that these mice developed more colitis 
compared to previous experiments performed in the SPF 
unit. Histopathologic quantitation of colitis development 
demonstrated that distribution, degree of inflammation, 
and cumulative score was significantly higher in animals 
kept in the non-SPF2 unit. Mice that were transferred to the 
non-SPF2 unit developed significant colonic inflammation 
after 4 months of transfer (Figure 1(A) to (C), non-SPF2). 
Interestingly, Rag-/- mice maintained all the time in a sepa-
rate non-SPF unit also just developed mild colitis as shown 
by body weight loss and histology evaluation (Figure 1(A) 
to (C), non-SPF1 group).

Importantly, several pathogenic bacteria species, includ-
ing H. hepaticus and H. typhlonius as well as Klebsiella oxytoca, 
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Pasteurella pneumotropica biotype Heyl (Rodentibacter Heylii) 
were detected from our Rag-/- mice housed in the non-
SPF3 unit (Table 1). In the T cell transfer colitis experiment 

performed at the same period, which was 8 months following 
the transfer to the non-SPF unit, Rag-/- mice were found to 
stop gaining weight 4 weeks after receiving naïve CD4+ T cells,  

Figure 1. Animal housing environment influences pathogenic potential of colitis. (A) Rag1-/- mice housed in SPF or non-SPF units received 400,000 sorted naïve 
CD4+ CD45RBhiCD25- T cells isolated from C57BL/6 mice, and mice were weighed weekly to monitor the onset of colitis. In SPF, n = 7; in non-SPF1, n = 6; in non-SPF2, 
n = 5; and in non-SPF3, n = 6. (B) Colon sections were used for H&E staining. Representative histological images (H&E) are shown. Scale bar, 50 μm. (C) Histological 
scoring. Development of colitis was assessed by monitoring the (a) degree of inflammation, (b) distribution of inflammation, and (c) cumulative score. Data were analyzed 
by Kruskal–Wallis test (p < 0.05) followed by Dunn’s multiple comparisons test (*p < 0.05; ***p < 0.0005; ****p < 0.0001). (D) Colonic weight and length were measured at 
the time of sacrifice. *p < 0.1, **p < 0.05, ***p < 0.01, ****p < 0.001; two-tailed Student’s t-test was used. (A color version of this figure is available in the online journal.)
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started to lose weight from the fifth week post injection, 
and kept losing weight until the eighth week when they 
were sacrificed (Figure 1(A), non-SPF3). Meanwhile, we 
observed that some of these mice had severe diarrhea and 
blood in the stool. Not surprisingly, these mice showed 
very high colonic weight/length ratio (Figure 1(D)) and 
significant histologic changes (Figure 1(B) and (C)) indicat-
ing that Rag-/- mice which received naïve CD4+ T cells 
developed severe colitis.

Murine norovirus (MNV),23 a prevalent pathogen in ani-
mal facilities, is routinely detected by serology in sentinel 
mice in our non-SPF2 and non-SPF3 facility, but not in SPF 
and non-SPF1 units. However, MNV was not detected in 
Rag-/- mice even 8 months post transfer from the SPF facil-
ity to a non-SPF2 and non-SPF3 facility. In order to ensure 
that immunodeficient Rag-/- mice are indeed negative for 
MNV, we also analyzed the feces samples from Rag-/- mice 
by PCR for MNV. Again, no MNV was detected in these 
samples (Table 1).

Animal housing environment alters Th subsets that 
contribute to colitis development

To further evaluate the severity of inflammation developed 
from Rag-/- recipient mice housed in both SPF and non-
SPF environments, we measured inflammatory cytokines in 
peripheral blood samples taken from these mice at the time of 
sacrifice. Compared to mice housed in SPF units, which were 
without clear signs of colitis (experiment SPF), a significantly 
higher level of circulating cytokines, including IFN-γ, IL-17, 
and TNFα, were detected from mice which received naïve 
T cells and were housed in non-SPF2 units (Figure 2(A)). 
Consistent with observations from body weight changes and 
histology, significantly higher concentrations of inflamma-
tory cytokines IL-1β, IL-6, IFN-γ, and IL-17 were detected 
in the peripheral blood of mice which had lost more weight 
from the non-SPF3 experiment compared to those mice that 
experienced less weight loss from the non-SPF2 experiment 
(Figure 2(A)).

Since we detected increased circulating IFN-γ and IL-17, 
we next examined whether recipient Rag1-/- mice had 
enhanced Th1 or Th17 cell differentiation. We performed 
intracellular cytokine staining to detect the proportion of 
IFN-γ and IL-17A-producing CD4+ T cells in spleens and 
mesenteric lymph nodes (MLN) from recipient Rag1-/- mice. 

Mice housed in non-SPF2 units had a significantly increased 
number of IFN-γ+ as well as more IL-17 + cells both in the 
spleen and MLN (Figure 2(B)). Notably, in the non-SPF3 
group, in addition to the detected increased serum IL-17,  
we also observed a higher proportion of IL-17 produc-
ing CD4+ T cells in the spleen and MLN (Figure 2(B)). 
Interestingly, even though IFN-γ producing Th1 cells were 
detected in all non-SPF experiments, only in the spleen 
of non-SPF3 mice did we find both IL-17 + and IFN-
γ + IL-17 + CD4+ T cells. The IL-23 and Th17 signaling path-
ways are supposed to be principal to colitis pathogenesis. 
Since several bacterial species were detected by PCR in 
feces samples, including Helicobacter bacteria, K. oxytoca, and 
Pasteurella pneumotropica biotype Heyl, and this might also 
contribute to the enhanced IFN-γ and IL-17 production. As 
a conclusion, conventional housing conditions influence the 
induction of Th1 and Th17 responses that lead to the devel-
opment of more severe colitis.

Altered gut microbiota correlates with development 
of T-cell-dependent colitis

To explore how the hygiene conditions in the animal hous-
ing environment influences gut microbiota of mice and the 
development of colitis, we collected fecal samples from  
Rag-/- mice housed in one SPF and three non-SPF units. 
DNA was extracted from these fecal samples and processed 
with 16S rRNA sequencing (V3-V4 region) on an Illumina 
HiSeq 2500-platform to further extensively compare the dif-
ference of the composition of bacteria of Rag-/- mice main-
tained in different hygiene environments.

First, to examine the differences of Operational Taxonomic 
Unit (OTU) composition in different samples, principal com-
ponent analysis (PCA) was used to construct a 2D graph to 
summarize factors mainly responsible for this difference. 
PCA analysis showed that the SPF and non-SPF groups 
could be distinguished based on their relative abundance 
of each OTU in each sample. Out of all three of the non-SPF 
groups, the non-SPF1 group displayed a very different OTU 
abundance profile, while samples from the non-SPF2 and 
non-SPF3 groups were closely located, indicating that the 
similarity between these two groups is high (Figure 3(A)). 
This correlated well with the degree of inflammation, as mice 
in these two groups developed more severe colitis compared 
to the non-SPF1 and SPF groups (Figure 1).

Table 1. Health monitoring results.

SPF Non-SPF1 Non-SPF2 Non-SPF3

Mouse norovirus (MNV) – – –
Helicobacter spp. – – – +
 H. bilis – – – –
 H. ganmani – – – –
 H. hepaticus – – – +
 H. mastomyrinus – – – –
 H. rodentium – – – –
 H. typhlonius – – – +
SFB + + +
Klebsiella – – +
Pasterurella pneumotropica biotype Heyl – – +

SPF: specific-pathogen free; MNV: murine norovirus; SFB: segmented filamentous bacteria.
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Figure 2. Hygienic conditions in animal housing environment influences Th subsets. (A) Pro-inflammatory cytokines correlate with colitis development. Serum 
samples were collected at the time of sacrifice. GM-CSF, IFN-γ, IL-10, IL-17, IL-1β, and TNFα were measured using a Luminex MILLIPLEX MAP Mouse Cytokine/
Chemokine Magnetic Bead Panel. *p < 0.1, **p < 0.05; ***p < 0.01, two-tailed Student’s t-test. (B). Representative intracellular cytokine staining for IFN-γ and IL-17 
within gated CD4+ T cells isolated from spleens and MLN of colitic mice is shown. Spleens and MLNs were harvested, cells were stimulated with PMA and ionomycin 
for 4 h. Cells were stained with anti-CD4 followed by intracellular cytokine staining performed using Transcription Factor Staining Buffer Set (eBiosciences, San Diego, 
CA, USA) with antibodies against IFN-γ and IL-17A (both from eBiosciences) according to the manufacturer’s instructions. (A color version of this figure is available in 
the online journal.)
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Alpha diversity was then applied to analyze complexity 
of species diversity. The lowest Chao value, which reflects 
the species richness of community, was observed in the SPF 
group (Figure 3(B)). Non-SPF2 and non-SPF3 groups showed 
no difference of Chao value. The highest species richness 
was seen in the non-SPF1 group, which developed much 
milder intestine inflammation compared to non-SPF2 and 
non-SPF3 groups. The diversity of microbiota also may lead 
to initiating the development of inflammatory disease. The 
Shannon value, reflecting the species diversity of the com-
munity, was also higher in the non-SPF1 group compared 
to the non-SPF2 and non-SPF3 groups (Figure 3(B)). Again, 
the lowest species diversity was observed in the SPF group, 
in which mice were maintained in a facility with the best 
hygiene conditions among the four study groups. These 
results indicate that bacterial richness and diversity may 
contribute to development of intestine inflammation

Next, we further studied species composition and abun-
dance differences among the four groups. We found that 
compared to the non-SPF2 and non-SPF3 group, in the 
non-SPF1 group, Tenericutes phylum was enriched, whereas 
Proteobacteria phylum was lower (Figure 3(C)). At the fam-
ily and genus level, the non-SPF3 and non-SPF2 groups 
showed higher relative abundance of Enterococcaceae (such 
as enterococcus) and Escherichia coli (Figure 3(D)). Consistent 
with the routine health monitoring results, non-SPF2 and 
non-SPF3 groups showed increased relative abundance of 
Helicobacteraceae (Figure 3(D)), indicating it to be an impor-
tant pathogenic agent in intestinal inflammation in the 
mouse model. Increased relative abundance of Bacteroidaceae  
(such as bacteroides species) was detected in the non-SPF2 and 
non-SPF3 groups, in which more severe colitis had devel-
oped compared to the non-SPF1 group. However, although 
the SPF group developed very mild inflammation, no signifi-
cant changes of Bacteroides level were observed between SPF 
and non-SPF2 or non-SPF3 (Figure 3(D), Table 1).

We also performed linear discriminant analysis effect size 
(LEfSe) to compare the alteration of gut microbiota in the 
four groups.22 As shown in Figure 4, a significant enrichment 
of Helicobacteraceae and Enterobacteriaceae in the Proteobacteria 
phylum is observed in the non-SPF3 group. Notably, sig-
nificant shifts in the microbiota composition at the phylum 
level were observed in our LEfSe analysis. In contrast to the 
enriched Proteobacteria phylum detected in the highly inflam-
matory non-SPF3 group, as seen in Figure 3(C), an increased 
Tenericutes phylum in the non-SPF1 group and increased 
Verrucomicrobia phylum in the SPF group were observed 
(Figure 4).

Taken together, the 16S rRNA sequencing data show that 
a clear variation of intestine microbiota was detected from 
mice housed in different hygiene conditions. Bacteria spe-
cies richness and diversity, composition of commensal and 
pathogenic bacteria may contribute to the development of 
T-cell-dependent colitis.

We tested samples taken for health monitoring for SFB, 
and this was positively detected in the samples taken from 
both SPF and non-SPF facilities (Table 1). However, in the 
SPF unit, mice developed very mild colitis even with the 
presence of SFB. We further detected the level of SFB in fecal 
samples collected from different units using qPCR. We used 

a universal primer pair for the 16S ribosomal RNA coding 
sequence as endogenous control. qPCR results showed that 
SFB indeed was present in all facilities. Interestingly, the 
highest relative abundance was seen in mice feces from the 
non-SPF1 group with mild colitis, compared with the non-
SPF2 and non-SPF3 group with more severe inflammation 
(Figure 5(A)).

In the Verrucomicrobia phylum, A. muciniphila is a Gram-
negative mucin-degrading bacterium. Here, we observed 
that the Akkermansiaceae family (A. muciniphila species) 
in the Verrucomicrobiales phylum was enriched in the SPF 
group (Figures 3(D) and 4). Because changes of A. mucin-
iphila abundance was associated with colitis and IBD, we also 
performed qPCR analysis to detect A. muciniphila in mouse 
fecal samples from these four groups. The most relatively 
abundant level of A. muciniphila was detected in the SPF 
group, while the lowest was present in the non-SPF3 group. 
Notably, the relative level of A. muciniphila was inversely cor-
related with the degree of inflammation (Figures 1 and 5(B)).

Discussion

In this study, we investigated how animal housing condi-
tions influenced the composition shifts of gut microbiota of 
mice, and consequently the changes of Th subsets for devel-
opment of colitis.

We have observed that upon transfer from SPF to non-SPF 
housing conditions, after naïve CD4+ T cell reconstitution, 
Rag1-/- mice developed more colitis compared to previ-
ous experiments performed in the SPF unit. Several patho-
genic bacteria species were detected from our Rag-/- mice 
housed in the non-SPF3 unit during routine health moni-
toring. These findings suggest that the pathogenic species 
detected by health monitoring may contribute to the severe 
intestinal inflammation observed in the T cell transfer colitis 
experiment.

Elevated levels of inflammatory cytokines IFN-γ and IL-17 
in peripheral blood of mice from non-SPF3 experiments 
are consistent with the reports stating that elevated Th17 
and Th1 responses are observed in animal models of coli-
tis as well as in patients with IBD.4,9 Studies have indicated 
that Helicobacter, through stimulation of IL-23 production, 
expands Th17 cells.24,25 In the non-SPF3 experiment, we also 
observed a higher proportion of IL-17 producing CD4+ T cells 
both in the spleen and MLN. Consistently, Helicobacter bacte-
ria strains were also detected from mice in this experiment. 
In addition, several other bacterial species were also detected 
by PCR in feces samples, including K. oxytoca and Pasteurella 
pneumotropica biotype Heyl, and this might also contribute to 
the enhanced IFN-γ and IL-17 production. Moreover, only in 
the spleen of non-SPF3 mice did we find both IL-17 + and 
IFN-γ + IL-17 + CD4+ T cells. Taken together, these findings 
suggest that conventional housing conditions influence the 
induction of Th1 and Th17 responses that lead to the develop-
ment of more sever colitis.

Using 16S rRNA sequencing, we found several bacteria 
species that may be associated with the development and 
progress of colitis. The non-SPF1 group, which has developed 
the milder intestine inflammation compared to the other two 
groups, was characterized by highest species richness and 
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Figure 3. Microbiota composition between SPF and non-SPF groups. (A) PCA based on OTU abundance. X-axis represents the first principal component and Y-axis, 
second principal component. Number in brackets represents contributions of principal components to differences among samples. A dot represents each sample, and 
different colors represent different groups. (B) Boxplot displays the differences of the alpha diversity among groups. *p < 0.1, **p < 0.05; ***p < 0.01, ****p < 0.001 two-
tailed Student’s t-test. (C) The taxonomic composition distribution in samples of phylum-level and (D) log-scaled percentage heat map of species-level. Presented data 
were obtained by 16S rRNA sequencing. (A color version of this figure is available in the online journal.)
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Figure 4. LEfSe analysis. In the LEfSe tree, different colors indicate different groups. Note colored in a group color shows an important microbe biomarker in the 
group and their names are listed on the right. The yellow notes represent the biomarker which does not show any importance in groups. (A color version of this figure 
is available in the online journal.)

Figure 5. qPCR detection of selected bacteria strains. qPCR detection of Segmented filamentous bacterium (SFB, A) and Akkermansia mucin (B), showing the 
relative abundance of Akkermansia mucin and SFB with universal bacteria. For each group, n = 5. *p < 0.1, **p < 0.05, ***p < 0.01, ****p < 0.001; two-tailed Student’s 
t-test was used. (A color version of this figure is available in the online journal.)
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species diversity of the community what may suggest that 
reduced bacterial richness correlates with development of 
T-cell-dependent colitis.

K. oxytoca is able to colonize in human skin or the human 
intestine26 and is described as an opportunistic pathogen 
rather than a part of healthy human microbiota.27 K. oxytoca 
has been linked to antibiotic-associated hemorrhagic coli-
tis (AAHC).28 In addition, there has been at least one case 
study suggesting the association of K. oxytoca with refractory 
colitis independent of antibiotic treatment.29 The source of 
K. oxytoca infection often comes from the hospital environ-
ment30 and as such may pose a danger to patients under-
going treatment, such as with K. oxytoca contamination upon 
intravenous injection causing septic arthritis.31 Despite the 
emerging importance of K. oxytoca as a human pathogen, 
to the best of our knowledge, no studies on the interaction 
between this bacteria and T cells in colitis are available.  
In this study, we observed that Rag-/- mice with detectable 
K. oxytoca developed more severe colitis after receiving naïve 
CD4+ T cells, supporting the correlation between K. oxytoca 
infection and T-cell-dependent colitis development.

Helicobacteraceae have been reported to be important 
pathogenic agents in intestinal inflammation in both mouse 
models and humans.32,33 Some commensal bacteria, such as 
Bacteroides fragilis protect mice from Helicobacter hepaticus–
induced colitis by suppressing IL-17 expression and by pro-
moting suppressive Treg differentiation in the intestine.34 
Unlike previous reports,35–37 here we detected increased rela-
tive abundance of Bacteroidaceae (such as bacteroides species) 
in the non-SPF2 and non-SPF3 groups, in which more severe 
colitis was developed compared to the non-SPF1 group. 
However, no significant changes of Bacteroides level were 
observed between SPF and non-SPF2 or non-SPF3, suggest-
ing the role of Bacteroides species in regulation of intestine 
inflammation may need to be further characterized.

Proteobacteria has been previously reported to be associated 
with CD.32,33,38–48 In this study, a lower level of Proteobacteria 
was detected in a mild disease non-SPF1 group. However, 
in an LEfSe analysis, we found a significant enrichment of 
Helicobacteraceae, Enterobacteriaceae, E. coli, Sutterella, and 
Parabactreioides in the group that developed severe colitis. 
The increased prevalence of Helicobacteraceae, E. coli, Sutterella, 
Enterobacteriaceae, and Parabacteroides are commonly observed 
in intestinal inflammation and IBD.38–41,49 The genus Sutterella 
and the genus Parabacteroides, although present in healthy 
individuals, may have a role in IBD.42 Although Sutterella has 
a low proinflammatory potential, it may affect the host’s intes-
tinal barrier function, but whether it contributes to inflamma-
tion in IBD is still unclear.42 Results from clinical trials of fecal 
microbiota transplanted to UC and CD patients suggest that 
the role of the species Sutterella wadsworthensis may be disease 
specific. In mouse models, the immunomodulatory role of 
Sutterella is associated with a low IgA phenotype, which can 
be transmitted through fecal microbiota transplant. Mice with 
this phenotype also presented more severe ulceration in a 
DSS model of colitis.43 The strain Parabacteroide distasonis has 
been isolated from lesions in CD patients44 and it is enriched 
in their microbiota.45,46 Interestingly, some in vitro studies 
and IBD mouse models show a potential strain-dependent 
antiinflammatory effect.47,48 Our results are in line with these 

studies, indicating the presence of certain pathogenic bacteria 
is critical for colitis development.

A. muciniphila, first isolated from human fecal samples in 
2004,49 accounts for 1–5% of the gut microbial community in 
healthy adults.50 Studies have confirmed the obvious rela-
tionship between A. muciniphila, chronic inflammatory meta-
bolic diseases, and cardiometabolic risk factors associated 
with a low-grade inflammatory tone such as type 2 diabetes, 
obesity, and IBD.51–53 As a marker of a healthy microbiome, 
A. muciniphila has been shown to increase the integrity of the 
intestinal barrier both in humans and mice.54,55 Furthermore, 
a purified membrane protein from A. muciniphila or the pas-
teurized bacterium has been reported to ameliorate colitis.56

Some results of this study correlate with the observa-
tions previously reported on the human microbiota and IBD 
patients. For instance, in our study, we observed the increased 
relative abundance of microbiota of Actinobacteria and 
Proteobacteria phyla and the decrease of some families of phyla 
Firmicutes, specifically Lachnospiracea, in groups with more 
severe inflammation. Nevertheless, we also detected some 
bacterial strain changes that are different than previously 
reported in human IBD patients. Since Th17 cells are known 
to play an essential role in colitis development and SFB was 
reported to be a potent inducer of Th17 cell differentiation,57–61 
we observed that SFB was detected in fecal samples from all 
our animal facilities and was not correlated with colitis sever-
ity, suggesting that the presence of commensal together with 
pathogenic bacterial species determines disease severity.

Finally, the increase of A. muciniphila negatively corre-
lates with the development of colitis in mice kept in differ-
ent facilities. Further studies are warranted to characterize 
whether and how A. muciniphila affects the dynamic changes 
of Th cell subsets in the intestine, to reveal the potential of 
A. muciniphila in modulating intestine immune response, 
and the effect on development of colitis. Overall, our data 
help understand how microbiota variation in mice can affect 
IBD development in a T-cell-dependent manner. The species 
identified here that are important for disease development 
in mice could be further studied to understand how similar 
changes may impact human gut health and whether they are 
relevant in disease progression.
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