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Introduction

Alginate is usually referred to the salt of alginic acid, 
mostly sodium alginate, or alginic acid itself. The majority 
of commercially available alginates are typically extracted 
from brown algae although alginate can also be produced 
through biosynthesis. Alginate is a biocompatible, enzyme-
degradable, and versatile biopolymer. Sodium alginate 
has a unique property to form hydrogel once it encounters 
polyvalent cations, such as Ca2+, forming calcium alginate 
hydrogel (usually simplified as alginate hydrogel), which is 
typically optically clear, simple to make, and easy to use.1,2 
Both sodium alginate and calcium alginate are on the list of 
Food and Drug Administration (FDA) Generally Recognized 
As Safe (GRAS) food substances, which have no significant 
toxicological effects from oral administration and also used 
as the excipient (pharmacologically inactive substance) in 

drugs.3,4 Due to their biocompatibility, mechanical stabil-
ity, high permeability, and processability, versatile alginate 
hydrogels (e.g. microbeads/microcapsules, microfibers/
microtubes, fibrous matrices, and porous scaffolds) have 
been widely utilized in 3D cell culture, cell delivery, and tis-
sue engineering, which shows great potential for cell therapy 
and regenerative medicine. For the past 20 years, alginate-
related papers have increased exponentially as shown in 
PubMed (Figure 1(A)).

We start this article with a historical review of alginate 
as biomaterials and discuss the properties of alginate and 
alginate hydrogel in general. After summarizing current 
challenges in cell transplantation and tissue engineering, we 
focus on alginate hydrogel microfiber technology and dis-
cuss how the tubular-structured alginate hydrogel addresses 
needs in effective cell delivery and functional tissue engi-
neering, followed by future perspectives.
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Abstract
Alginate, a naturally occurring polysaccharide, has been widely used in cell 
encapsulation, 3D culture, cell therapy, tissue engineering, and regenerative 
medicine. Alginate’s frequent use comes from its biocompatibility and ability to 
easily form hydrogel in a variety of forms (e.g. microcapsules, microfibers, and 
porous scaffolds), which can provide immunoprotection for cell therapy and mimic 
the extracellular matrix for tissue engineering. During the past 15 years, alginate 
hydrogel microfibers have attracted more and more attention due to its continuous 
thin tubular structures (diameter or shell thickness ⩽ 200 µm), high-density cell 
growth, high handleability and retrievability, and scalability. This review article 
provides a concise overview of alginate and its resultant hydrogel microfibers for 
the purpose of promoting multidisciplinary, collaborative, and convergent research 
in the field. It starts with a historical review of alginate as biomaterials and provides 
basics about alginate structure, properties, and mechanisms of hydrogel formation, 
followed by current challenges in effective cell delivery and functional tissue 
engineering. In particular, this work discusses how alginate microfiber technology 
could provide solutions to unmet needs with a focus on the current state of the art 
of alginate microfiber technology and its applications in 3D cell culture, cell delivery, 

and tissue engineering. At last, we discuss future directions in the perspective of alginate-based advanced technology development 
in biology and medicine.
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Minireview

Impact Statement

Alginate hydrogel plays an important role in three-
dimensional (3D) cell culture, cell encapsulation and 
transplantation, tissue engineering, and regenerative 
medicine. This work is a timely review of the fast-
growing field of alginate hydrogel microfiber technol-
ogy. It provides a concise but complete overview of 
the current state of the art of microfluidic synthesis of 
alginate hydrogel microfibers and their applications 
in 3D cell culture, cell delivery, and tissue engineer-
ing, in the context of historical review of alginate and 
its resultant hydrogel. The knowledge of what has 
been done, what can be done, and what needs to 
be done will further advance microfiber technology in 
biology and medicine, and promote multidisciplinary, 
collaborative, and convergent research in the field.
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Historical review of alginate as 
biomaterials

As shown in Figure 2, alginic acid was first discovered and 
extracted from brown algae by Stanford in 18815 and pro-
posed as therapeutics by MacLennan in 1898.6 Early work 
studied chemistry and crystalline structures of alginic acid,7,8 
showed decomposition of alginic acid by bacteria,9 and 
demonstrated bacterial biosynthesis of alginic acid.10 Early 
biomedical applications of alginic acid mainly focused on 
using alginate for dental impressions,11 absorbable surgery 
products,12 immunization/antigen depot,13 or inhibition of 
intestinal absorption of radioactive strontium.14,15 Starting 
in 1970s, alginate was used for immobilization of enzymes 
and microorganisms,16 plant cells,17 algae “living” electrodes 
as a photoconverter,18 and animal cells for the production of 
antibodies,19 in addition to being served as food additives.20

Almost one century after the discovery of alginic acid, 
Lim and Sun invented alginate microencapsulation in 1980, 
by which cells (e.g. insulin-secreting islets) mixed with low-
viscosity alginate solution were introduced to Ca2+ solution 
(e.g. CaCl2) dropwise to form alginate hydrogel microbeads, 
followed by coating with poly-l-lysine through polyelec-
trolyte complexation and liquefied by sodium citrate, leav-
ing core–shell-structured alginate/polylysine microcapsules 
containing islets.21 It demonstrated that microencapsulated 

islets maintained morphology and function during a 15-week 
in vitro culture and corrected diabetic state for 2–3 weeks 
after in vivo implantation in rat.21 Although this milestone 
work stemmed from the concept of “Artificial Cell” in the 
form of semipermeable microcapsules, which were proposed 
by Chang in 1964,22 it opened up a new era for using algi-
nate hydrogels for cell therapy and tissue regeneration. The 
clinical benefits of alginate encapsulation systems were evi-
denced by maintaining tight glycemic control in a diabetic 
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Figure 1. Survey of alginate-related papers in PubMed. (A) Increasing 
number of alginate-related papers published each year. (B) Spherical alginate 
hydrogels (e.g. microcapsules, microbeads, microspheres, microparticles, 
and microcarriers) dominating their biological and biomedical applications in 
comparison to alginate microfibers (e.g. microfibers, microtubes, microstrands, 
and microribbons), nanofibers, porous matrices or scaffolds, hydrogel sheets, and 
bulk hydrogels. (A color version of this figure is available in the online journal.)
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Figure 2. Timelines of the key alginate-based biotechnology developments. The 
white dashed line indicates the start of a new era of alginate as biomaterials 
for 3D cell culture, cell therapy, and tissue regeneration. (A color version of this 
figure is available in the online journal.)
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patient for 9 months,23 providing immunoprotection of 
human islet cells in four diabetic patients for three years,24 
and improving glycemic controls in eight diabetic patients 
for over 20 months even with encapsulated clinical grade 
porcine islets that could alleviate the shortage of donated 
human organs.25 It leads to wide applications of alginate 
hydrogels for biomedical research.

To accommodate quick growth of the field, American 
Society for Testing and Materials (ASTM) provided ASTM 
alginate standard guides in 2001.26 From PubMed, we have 
found that the majority of alginate hydrogels are spherical in 
shape (Figure 1(B)), including microcarriers, microspheres, 
microbeads, microcapsules (Figure 3(A)), onion-like multi-
membrane hydrogels27 (Figure 3(B)),28 and multicompart-
ment microparticles29 (Figure 3(C)).30 The ability to fabricate 
multicompartment alginate hydrogels has enabled the devel-
opment of alginate microbots that can be driven by rotating 
magnetic fields.31 In addition, alginate hydrogel microfib-
ers32 or microstrands (Figure 3(D)), co-shell microfibers33 or 
hollow microtubes (Figure 3(E)),34 cavity microfibers (Figure 
3(F)),35 and multicompartment microfibers (Figure 3(G))36 
have been synthesized through microfluidic spinning and 
attracted more and more attention for the last 15 years. To 
mimic extracellular matrix (ECM), electrospun alginate 
nanofibers37 (Figure 3(H)), interpenetrating polymeric net-
work (IPN) hydrogels (Figure 3(I)),38 cryogel (Figure 3(J)),39 
cryoelectrospun nanofiber sponge scaffolds,40 and bioprinted 
hydrogel41 (Figure 3(K)) were fabricated as well.

To simulate biological cues in ECM microenvironment, 
controlled release of growth factors from alginate hydrogel 
has been developed,42 followed by on-demand delivery of 
macromolecules or cells controlled by magnetic,43 mechani-
cal, light, temperature, chemical, or biological triggers. With 
advancement in bioinspired nanotechnology and hydro-
gel engineering,44 alginate-based biomaterials have been 
explored to design and develop biomimetic and advanced 
biomaterials, including onion-like, inside-out shape-mor-
phing hydrogels,27,28 spindle-knot microfibers for water 
collection,35 adhesives that work in wet environments,45 
biomimetic cell wall,46 layered nanosheets,47 and bioinks,48 
highly stretchable, tough alginate composite hydrogels,49 
soft stretchable electronics,50 and photonics.51

Chemical structure and properties of 
alginate

Chemical structure of alginate

Alginic acid is a naturally occurring, anionic polysaccharide. 
It is a linear copolymer, consisting of blocks of (1,4)-linked 
β-d-mannuronate (M) and α-l-guluronate (G) residues.52 
Sodium alginate aqueous solution has the unique feature to 
form alginate hydrogel on encountering divalent solution 
cations, such as Ca2+. It is believed that G-blocks of alginate 
crosslink with divalent cations, such as Ca2+, to form the 
alginate hydrogel, described by a prevailing simple “egg-
box” model (Figure 4), which is true for initial association 

Figure 3. Representative versatile alginate hydrogel systems. (A) Optical image of alginate microcapsules. Scale bar = 100 µm. (B) Photo of alginate core (left), one-
layer (middle), and two-layer onion-like hydrogel capsules (right).28 (Adapted from Zarket and Raghavan, https://creativecommons.org/licenses/by/4.0/.) (C) Confocal 
image of multicompartmental alginate microparticles.30 Scale bar = 1000 µm. (Reproduced from Lu et al. with permission from the Royal Society of Chemistry.)  
(D) Optical image of alginate hydrogel microfibers. Scale bar = 300 µm. (E) Photo of the preformed alginate microtube.34 Scale bar = 4000 µm. (Adapted from Jorgensen 
et al.) (F) Optical image of the cavity microfiber.35 Scale bar = 400 µm. (Adapted from Tian et al., https://creativecommons.org/licenses/by/4.0/.) (G) Confocal image of 
multicompartmental microfibers.36 Insert: Cross-sectional view. Scale bar = 200 µm. (Adapted from Cheng et al., Copyright © 2016 American Chemical Society.)  
(H) Scanning electron microscopy (SEM) image electrospun alginate nanofibers. Scale bar = 1 µm. (I) SEM image of the IPN hydrogels composed of 15% 
PF127/0.25% alginate.38 (Adapted from Chou et al.) (J) SEM image of alginate cryogel.39 (Adapted from Bencherif et al.) (K) SEM image of bioprinted alginate 
hydrogel with minimal porosity.41 (Adapted from Chaji et al., https://creativecommons.org/licenses/by/4.0/.) (I–K) Scale bar = 100 µm.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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and certain conditions (such as low fractional Ca2+ satura-
tion and low G content).53 Other models include description 
of further lateral association of chain segments for other con-
ditions (such as high Ca2+ saturation and high G content)54 
and two-component, broken rod-like model for competitive 
ligand exchange of chelated Ca2+ gelation.55

Solubility of alginic acids and its salts

Alginic acid is water-insoluble, but can be dissolved in 
sodium chloride solution (e.g. physiological saline − 0.9% 
NaCl), forming sodium alginate. Monovalent salts of alginic 
acid (sodium alginate, potassium alginate, and ammonium 
alginate) and propylene glycol alginate are soluble in water 
while polyvalent salts are insoluble or form hydrogels. All 
salts of alginic acids are insoluble to oils or organic solvents, 
except the tetrabutylammonium (TBA) salt of alginic acid 
that is soluble in water and ethylene glycol, and polar aprotic 
solvents, such as N,N-dimethylformamide (DMF), dime-
thyl sulfoxide (DMSO), dimethylacetamide (DMAc), and 
1,3-Dimethyl-2-imidazolidinone (DMI) in the presence of 
TBA fluoride trihydrate (TBAF).56 The solubility of alginates 
in water depends on the structure of the biopolymer, viscos-
ity, temperature, pH, and ionic strength of the dissolving 
medium. For example, it will be a little quicker to dissolve 
low-molecular weight and low-viscosity alginate in hot 
water, at neutral pH in the presence of 0.9% NaCl.

Molecular weight and viscosity of alginate

The molecular weight of commercially available sodium 
alginates ranges between 10,000 and 600,000 g/mol. The 

concentration of alginate used to form hydrogels is usually 
in the range of 0.5–5% (wt/vol). The pH of alginate solution 
for encapsulation of biomacromolecules or cells is usually 
maintained at 7.0–7.4, using physiological saline (0.9% NaCl) 
to make alginate solution or mixing alginate solution with 
cell culture media.

Viscosity is one of the important properties of alginate. The 
viscosity of alginate solution increases with increasing molec-
ular weight and concentration of alginate, or decreasing pH, 
reaching a maximum viscosity at pH 3–3.5. Low-viscosity 
alginate is desirable for cell encapsulation or microfluidic 
processing, and therefore, alginate with low viscosity (e.g. 
20–200 cp or 150–250 cp, 2%, 25°C) is usually used for making 
alginate hydrogel microbeads, microcapsules, microfibers, 
and microtubes. Medium-viscosity alginate (e.g. ⩾ 2000 cp, 
2%, 25°C) is typically used for making electrospun nanofiber 
scaffolds or highly stretchable hydrogels in combination with 
other polymers, for example, polyethylene glycol (PEG) or 
polyacrylamide (PAAm) to increase electrospinnability or 
stretchability. Sterilization techniques, such as γ-irradiation,57 
autoclave, and filtration, through 0.22 µm membrane would 
decrease viscosity of alginate (Table 1).

Formation and properties of alginate 
hydrogels

Sterilization of alginate solution or alginate 
hydrogel

Methods for sterilizing the alginate solution or disinfecting 
alginate hydrogels are summarized and compared in Table 1. 

Figure 4. A simple egg-box model of calcium alginate hydrogel. G: α-l-guluronate residue; M: β-d-mannuronate residue. (A color version of this figure is available in 
the online journal.)

Table 1. Overview of alginate sterilization methods.

Sterilization methods Alginate solution or powder Alginate hydrogel

Sterile filtration Filtration with ⩽ 0.22 µm filter:
Time-consuming; reduced viscosity

—

Sterile filtration + lyophilization Filtered 1% alginate through a 0.2 μm filter/frozen at −80°C 
and lyophilized for 48 h at 11 μbar:
Maintained Mw and printability

—

Ethanol disinfection — Treated with 70% ethanol for 20 min:
Maintained structural and mechanical properties of 
hydrogels; sufficient to eliminate bacteria persistence

Lyophilization — Freeze-dried for 36 h:
Impacted hydrogel structure and mechanical properties

Autoclave 15 min at 121°C
Reduced alginate Mw and viscosity

15 min at 250°C and 15 psi:
Visual and structural defect; increased hydrogel stiffness

γ-irradiation Degradation of alginate; reduced Mw; decreased viscosity Degradation of hydrogel
Ethylene oxide gas Residual ethylene oxide gas that is potentially carcinogenic and toxic for in vivo applications
Ultraviolet (UV) irradiation Alginate powder under a UV lamp at 254 nm, 2 cm distance 

for 1 h:
Maintained printability of bioink; ineffective for sterilization

20 min per side at 250 nm in a biosafety cabinet:
Maintained mechanical properties; insufficient to eliminate 
bacteria persistence
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Filtration through a filter (0.22 µm or less) in a biosafety cabi-
net was traditionally used to sterilize alginate solution for 
cell encapsulation (e.g. alginate concentration ⩽ 1.5%). For 
sterilization of alginate bioink, filtration of alginate solution 
at even lower concentration (e.g. 1% alginate) followed by 
lyophilization was recommended.58 Treatment with 70% eth-
anol was recommended for disinfection of alginate hydro-
gels.59 Autoclave and γ-irradiation could sterilize alginate or 
its hydrogel, which, however, would reduce the molecular 
weight (Mw) and viscosity of alginate and cause structural 
defect of alginate hydrogels.58–60 Ethylene oxide gas could 
sterilize alginate solution, powder, or hydrogel, but residual 
ethylene oxide gas is potentially carcinogenic and toxic, rais-
ing the concern for in vivo implantation and clinical appli-
cations. UV irradiation would not be an effective way to 
eliminate bacterial persistence at all.58,59

Gelation mechanisms and methods to form 
alginate hydrogels

Alginate hydrogels can be formed by ionic crosslink-
ing, covalent crosslinking, photo crosslinking, free-radical 
polymerization, and cryogelation, and cell crosslinking.

Ionic crosslinking is the most common method since 
alginate has the ability to form hydrogel instantly in con-
tact with polyvalent cations, for example, Al3+, Ba2+, Ca2+, 
Cd2+, Ce2+, Co2+, Cu2+, Mg2+, Mn2+, Ni2+, Pb2+, Sr2+, and 
Zn2+. The crosslinking strength depends on the type of cati-
ons, G–M content, and sequence of alginate. For example, 
G-blocks of alginate displayed binding strengths as fol-
lows: Ba2+ > Sr2+ > Ca2+ >> Mg2+, whereas for M blocks, 
Ba2+ > Sr2+ ~Ca2+ ~Mg2+, and for alternating GM sequences, 
no significant differences between these ions.30 More general, 
the affinity of alginate toward divalent cations was from high 
to low as follows: Pb2+ > Cu2+ > Cd2+ > Ba2+ > Sr2+ > Ca2+ > 
Co2+, Ni2+, Zn2+ > Mn2+.61 Even though Ca2+ does not exhibit 
the strongest binding to alginate, Ca2+, in particular CaCl2, 
is still the most widely used crosslinking cation for alginate 
gelation due to its relatively strong bridging interaction 
with alginate and non-toxicity. The gelation rate increased 
with increasing Ca2+ concentration, increasing temperature, 
and decreasing alginate concentration.62 However, slower 
gelation could generate more uniform and mechanically 
stronger alginate hydrogels than faster gelation, which could 
be achieved by reducing Ca2+ concentration, lowering tem-
perature, and increasing alginate concentration.

To control the gelation rate and form large-scale homo-
geneous hydrogels, less-soluble CaSO4 or CaCO3, or 
chelate complexes (e.g. Ca-ethylenediaminetetraacetic 
acid [CaEDTA] and Ca-ethyleneglycol tetra-acetic acid 
[CaEGTA]) were used as internal Ca2+ sources, triggered by 
hydrolysis of glucono δ-lactone (GDL) to provide a source of 
H+ that dissolves solid CaSO4 or CaCO3, or substitute Ca2+ in 
chelate complexes.55 “Caged calcium” held in photo-labile 
organic molecules was also used to release Ca2+ internally 
triggered by light.63 In addition, the thermosensitive network 
of pluronic F127 (PF127) was used as a template to form 
Ca2+ crosslinked alginate IPN hydrogels, which were soft, 
elastic, and thermoresponsive.38

Ionically crosslinked alginate hydrogels tend to lose its 
mechanical integrity in a physiological environment due to 

exchange of polyvalent cations (e.g. Ca2+) with monovalent 
cations (e.g. Na+ and K+) and association with phosphate 
groups in buffers, media, or body fluids. Therefore, covalent 
crosslinking was tried to improve mechanical properties of 
alginate hydrogels, using polymers.64 In particular, alginate 
hydrogel that was both ionically crosslinked by Ca2+ and 
covalently crosslinked with long-chain PAAm exhibited 
high stretchability (> 20 times of elongation) and toughness 
(fracture energies of 9 kJ m−2).49 Further increasing alginate 
concentration while maintaining low viscosity (using both 
short- and long-chain alginate) and increasing crosslink den-
sity (using both CaSO4 and CaCl2 as crosslinkers) enhanced 
toughness (fracture energies of ~16 kJ m−2) without jeopard-
izing the stiffness (maintaining constant elastic modulus of 
1 MPa).65

Alginate can be chemically modified with methacrylate 
and covalently crosslinked under an argon laser or UV irra-
diation. Both covalent crosslinking and photo crosslinking 
could slow down gelation rate and provide stable cova-
lent binding for tighter control over stability and mechani-
cal properties of alginate hydrogel compared with ionic 
crosslinking; however, covalent-crosslinking reagents or 
photo-crosslinking by-products might be toxic, and unre-
acted chemicals may need to be removed thoroughly from 
alginate hydrogels.66

Free-radical polymerization has been used to prepare stim-
uli-responsive poly(N-isopropylacrylamide) (PNIPAM)/
alginate semi-IPN hydrogel, which is sensitive to the tem-
perature, pH, and ionic strength of swelling medium.67 
The semi-IPN structure was also generated using in situ 
copolymerization of N-isopropylacrylamide (NIPAAm) 
with poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-
co-PCL) in the presence of alginate under UV irradiation, 
whose swelling ratio increases with alginate concentration 
at a constant temperature and decreases with the increase 
in temperature.68

Cryogelation, which is the process to form cryogels or 
porous hydrogel scaffolds under freeze-drying or freeze-
thawing,69 has also been used for gelation of alginate. For 
freeze-drying gelation, freshly formed alginate hydrogel is 
exposed to freezing condition to induce the growth of ice 
crystals, followed by vacuum drying to eliminate these ice 
crystals. For freeze-thawing gelation, freezing of alginate 
solution results in solvent crystallization that drives alginate 
polymer network crosslinked around ice crystals, and then 
subsequent thawing will leave behind alginate hydrogels 
with interconnective macroporous structures. For exam-
ple, porous alginate hydrogel scaffolds can be fabricated by 
freeze-drying (freezing alginate solution that was immersed 
in aqueous ethanol solution of CaCl2 at −20°C/drying at 
room temperature),70 induced by freeze-thawing at low 
pH (freezing at −25°C/thawing at 4°C, pH 2–4).71 Alginate 
blends with gelatin, hyaluronic acid, and polyvinyl alcohol 
(PVA) can also form cryogel through freeze-thawing.72

Mammalian cells can also crosslink with alginate that is 
modified with cell adhesion ligands (e.g. arginine–glycine–
aspartic acid [RGD] peptides) to form hydrogel network 
structure even in the absence of any other crosslinker.73 This 
cell-crosslinked gelation is governed by weak ligand–recep-
tor interaction and reversible by applying shear force, mak-
ing it ideal for cell delivery. For example, during injection, 
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the cell–alginate mixture will become fluid under flow shear 
while solidifying into hydrogel after injection into the body.66 
Cell-crosslinking gelation is also useful for encapsulation of 
cells that are sensitive to Ca2+.

Advantages and disadvantages of these gelation methods 
are summarized in Table 2. The gelation mechanism can be 
chosen alone or combined based on desired hydrogel prop-
erties (e.g. stability, porosity, and mechanical properties) and 
applications (e.g. in vitro cell culture, in vivo cell delivery, and 
tissue engineering).

Chemical modification and alginate derivatives

Alginate is negatively charged at neutral pH due to the pres-
ence of a significant amount of carboxyl groups, and there-
fore, can interact with positively charged macromolecules 
(e.g. poly-l-lysine, chitosan) through polyelectrolyte compl-
exation or crosslinking, for example, forming alginate-poly-
l-lysine microcapsules,21 alginate-poly-l-lysine microtubes,74 
or an alginate-chitosan membrane,75 with altered permeabil-
ity, mechanical properties, and biocompatibility compared to 
their counterparts of microbeads or microfibers.

Alginate can be chemically modified through its two 
secondary hydroxyl (-OH) positions (C2 and C3) and car-
boxyl (-COOH) position (C6) on the polysaccharide back-
bone, with improved properties. The reaction to synthesize 
alginate derivatives includes acetylation, phosphorylation, 
sulfation, oxidation, hydrophobic modification by cova-
lent attachment of hydrophobic moieties (e.g. long alkyl 
chains, aromatic groups, and hydrophobic polymers), func-
tionalization with cell-signaling moieties (e.g. 1-amino-
1-deoxygalactose, RGD), covalent crosslinking, and graft 
copolymerization.61 The chemical derivatization could 
improve or tune alginate properties, such as improved 
alginate solubility and hydrophobicity, tuned mechanical 
properties, stability, and degradability of alginate hydro-
gels, enhanced capacity for cell adhesion and growth, and 
increased biocompatibility.

Stability and mechanical strength of ionic-
crosslinked alginate hydrogel

The stability and physical properties (e.g. pore size, poros-
ity, swelling ratio, and mechanical properties) are important 
factors for applying alginate hydrogel in biomedical fields. 
The M/G ratio, sequence, G-block length, molecular weight 
and concentration of alginate, concentration of crosslinking 
cation, and gelation temperature affect physical properties 
of alginate hydrogels. It demonstrated that the mechanical 

strength of alginate hydrogel increased with alginate concen-
tration, total Ca2+ content, molecular weight, and G content 
of the alginate.62 Gelation at low temperature could slow 
down crosslinking, and therefore, increase crosslinking 
degree and increase stability and mechanical properties of 
alginate hydrogel.62 Ba2+ was used to increase the stability 
of calcium alginate hydrogel, but potential toxicity at high 
concentration should be avoided.76

Although increasing the molecular weight of alginate can 
improve the mechanical properties of alginate hydrogels, 
high-molecular-weight alginate solution is associated with 
high viscosity. As mentioned early, for cell encapsulation and 
microfluidic synthesis of microfibers, low-viscosity alginate 
is desirable. The viscosity of alginate solution depends on 
both the concentration and chain length of alginate. One 
strategy is to manipulate the molecular weight and its dis-
tribution by combining high- and low-molecular-weight 
alginate,65 which could produce alginate hydrogel with sig-
nificantly increased elastic modulus while causing minimum 
increase in the viscosity of alginate solution.77

Biocompatibility of alginate hydrogel

Alginate–poly-L-lysine microcapsules have been initially 
designed to provide immunoprotection to encapsulated 
cells and prevent immune and autoimmune responses.21 
Biocompatibility of alginate hydrogel depends on alginate 
composition (G content versus M content), purity, crosslink-
ing ions (Ca2+ versus Ba2+), and polyelectrolyte membrane 
coating (poly-l-lysine versus poly-l-ornithine).78 Although 
ultrapure alginate with defined G/M ratio could be chosen 
for cell encapsulation and implantation, the cellular over-
growth and fibrosis would often occur, which were caused 
by foreign body reaction against cell-containing alginate 
hydrogels, in particular, when using xenogeneic cells.79 
Chemically modified alginate derivatives containing anti-
fouling triazole79 or zwitterionic groups80 were employed 
to improve alginate biocompatibility, mitigate cellular over-
growth and fibrosis, and prevent from foreign body response 
against cell-containing microcapsules.

Challenges in therapeutic cell delivery 
and tissue engineering

Needs of long-term survival, integration, and 
function in vivo

Cell transplantation is a procedure to transfer cells or stem 
cells, such as hematopoietic stem cells, mesenchymal stem 

Table 2. Gelation mechanisms to form alginate hydrogels.

Mechanisms Pros Cons

Crosslinking
 Ionic Instant gelation; diverse crosslinkers Loss of mechanical integrity
 Covalent Controlled gelation; stable binding Potential toxicity of unreacted chemicals
 Photo Slow gelation; tight control over stability Potential toxicity of photo-induced by-products
 Cell No need of other crosslinker; reversible Need of modifying alginate with ligands
Free-radical polymerization Temporal and spatial control of gelation; 

ease to incorporate a variety of chemistries
Complicated chemical reactions and use of organic solvent(s); 
toxicity of photoinitiator

Cryogelation Highly interconnected porous structure Low structural stability and other weak mechanical properties
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cells (MSCs), and induced pluripotent stem cells (iPSCs), to 
a damaged or diseased tissue. It holds promise for regenera-
tive medicine to correct diseases that are traditionally incur-
able and regenerate tissues that typically do not regenerate. 
However, major challenges for clinical translation of cell 
transplantation lie in poor cell survival, impaired migra-
tion, and extremely poor engraftment into the host tissue.81–83 
After injection of cells in the body, loss of control over trans-
planted cells occurred, only around 1–20% of transplanted 
cells survived,84 migration of cells from injection site was 
very limited, and in particular, the engraftment rate could 
be as low as 0.001%, typically < 3%, and no more than 10% 
of cells engrafted.85,86 Therefore, there is a great need for 
improving cell survival and engraftment of transplanted 
cells to achieve the full potential and therapeutic benefit of 
cell transplantation.

Alginate hydrogels for improved cell delivery and 
tissue function

Alginate hydrogels have been used for cell delivery in cell 
therapy and tissue engineering, demonstrating the potential 
to improve cell survival and engraftment of transplanted or 
implanted cells.87 Alginate is inert and does not have any 
inherent cell instructive properties. Non-adhesive alginate 
hydrogels have demonstrated that they supported human 
iPSC-derived intestinal organoid growth in vitro and also 
supported in vivo survival and engraftment at the level 
comparable to conventional Matrigel.88 Although Matrigel 
is widely used for organoid culture, it is an ill-defined ECM 
substrate that is derived from mouse tumors, and therefore, 
impractical for in vivo cell therapy. Alginate encapsulation 
has offered a Matrigel-free system for organoid culture and 
stem cell delivery although the organoid yield from alginate 
was lower than that from Matrigel.88

The alginate hydrogel is amenable for modification to 
further improve their properties and performance, such as 
incorporation of adhesive molecules in alginate to improve 
cell adhesion and function, chemical modification to aug-
ment biocompatibility, and blending with other polymers to 
enhance mechanical properties. For example, RGD-modified 
alginate hydrogel disks were used as scaffolds for cell encap-
sulation and transplantation and demonstrated the ability 
to engineer growing-bone tissue from small numbers of 
implanted cells,89 which provides an attractive alternative 
to encapsulate or grow large numbers of cells prior to trans-
plantation.90 In particular, co-transplantation of osteoblasts 
and chondrocytes resulted in increased bone mass, mineral 
content, and cellularity compared to osteoblast alone,89 high-
lighting the importance to recapitulate the cell–cell interac-
tion for functional tissue engineering.

Based on tissue engineering principles,91 alginate hydro-
gels can be used to simulate cellular microenvironments, 
including ECM, soluble factors, and neighboring cells. 
Alginate hydrogels could mimic biomechanical, adhesive, 
and topographic properties of ECM, which regulate cell 
processes, such as spreading, growth, proliferation, migra-
tion, lineage specification, differentiation, and organoid 
formation,92–94 and therefore, modulate functionality.95 
Alginate-based microfluidic scaffolds could replicate solu-
ble gradients of the 3D biochemical microenvironment.96 In 

addition, alginate hydrogels could easily recapitulate cell–
cell interactions by mixing two or multiple types of cells in 
alginate solution followed by gelation.

Alginate hydrogels in the spherical form (e.g. microcap-
sules, microbeads, microspheres, microparticles, and micro-
carriers), tubular structures (microfibers, microstrands, 
microribbons, core–shell microfibers, and hollow micro-
tubes), and porous scaffolds (e.g. electrospun nanofibers, 
cryogel, and porous scaffolds) have been used for cell deliv-
ery and tissue engineering. Although alginate microcapsules 
demonstrate great potential and therapeutic benefits, algi-
nate hydrogels that can be fabricated into long, thin micro-
fibers or microtubes with a thin wall provide a new avenue 
for cost-effective, handleable, and retrievable cell delivery 
and versatile tissue construction. Compared to spherical 
or bulk hydrogels, tubular-structured hydrogels allow for 
easy transport of oxygen and nutrients, and therefore, allow 
for high-density cell growth (e.g. ⩾ 108 cells/mL) and mass 
production of cell aggregates or organoids with uniform 
size. In particular, one long alginate hydrogel microfiber or 
microtube has higher handleability and retrievability than 
individual microcapsules or microbeads. In addition, micro-
fibers or microtubes also protect cells from mechanical stress 
during static or dynamic cell culture.

Alginate hydrogel microfibers for cell 
delivery and tissue mimics

Microfluidic fabrication of alginate microfibers  
and microtubes

The major methods to fabricate alginate hydrogel microfibers 
can be categorized into coaxial microfluidics using glass 
capillaries,32,97 rectangular or cylindrical polydimethylsilox-
ane (PDMS) microfluidic channels,98 wet spinning,99 micro-
fluidic spinning,100 extrusion,74 and bioprinting,101 as shown 
in Figure 5(A) to (D). An array of microfibers has been pro-
duced through a microfabricated nozzle array102 or porous 
filter-like microchannels.103

To make core–shell microfibers or hollow microtubes, 
double-coaxial or multicoaxial microfluidics (glass capil-
lary97,104 or microchannel-based),105 microextruder,106 and 
needle-based devices2,107 were used (Figure 5(E) to (G)). In 
addition, gas bubble-, oil droplet-, and aqueous droplet-
filled microfibers were fabricated using the gas-in-water 
(Figure 5(H)),108 oil-in-water (Figure 5(I)),109 and all-in-water 
microfluidic system (Figure 5(J)),110 respectively. Combining 
multicoaxial microfluidics and a wet spinning process, bam-
boo-like hybrid microfibers were generated.111

Cells can be mixed with alginate or other solution and 
encapsulated in alginate hydrogel microfibers or core–shell 
microfibers during microfluidic fabrication. Alternatively, 
hollow microfibers (i.e. microtubes) were premade, followed 
by seeding cells inside the microtube through perfusion or 
injection.2,112–114 In addition, hollow microfibers with a thin 
polyelectrolyte complexion membrane were produced by 
coating alginate microfibers with poly-l-lysine74 or coating 
coiled alginate microfibers with chitosan,115 followed by 
liquefying the alginate core using sodium citrate solution 
or using a multicoaxial microfluidic device to form hollow 
microfibers followed by dissolving away the outer calcium 
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alginate hydrogel layer to obtain an ultra-thin alginate–
chitosan membrane.75

Using multicoaxial microfluidic devices, multicompo-
nent/compartment microfibers can be produced. One- to 
three-component microfibers were fabricated using multi-
barrel injection capillary microfluidics with multiple lami-
nar flow36,97 or a two-layer coaxial laminar-flow PDMS 
microchip,116 and four-component microfibers with differ-
ent arrangements were made by a membrane-sandwiched 
three-layer coaxial microchip.116 By varying the design of the 
coaxial nozzle and multiple flows, complex microfibers (e.g. 
Janus, multilayered, wavy, double helix, lumen structures) 
could be fabricated. Using these cell-laden microfibers as 
building blocks, anisotropic or heterogeneous tissue mimics 
could be further constructed by manually weaving or stack-
ing microfibers.116

In addition, alginate hydrogel microfibers can be pro-
duced manually through electrostatic interaction. For exam-
ple, by bringing two individual drops of oppositely charged 
alginate and water-soluble chitin on a sterile parafilm into 
contact with each other using a pair of forceps and drawing 
upward, interfacial complexation occurred, forming a con-
tinuous fiber that was consecutively passed through CaCl2 
bath and collected on a rotating fiber holder.117 Successive 

coating was another approach to forming the alginate hydro-
gel shell, which used a capillary tubing or needle to succes-
sively dip into CaCl2 solution and then alginate solution, 
until the shell reaching 7 mm in diameter.118 Both methods 
are simple to use and easy to access, without the need of 
any coaxial microfluidic devices, but lack of control and low 
throughput.

Automated and continuous microfiber production has 
been tried. For example, by adjusting the alginate flow rate 
through a needle-in-needle device, the “liquid rope-coil 
effect” occurred,119 leading to the production of a continu-
ous, coiled alginate hydrogel microtube that can be stacked 
and stored directly in a 50 mL centrifuge tube with hydrogel 
collection solution.2 A wet spinning system was employed 
by a syringe pump, inlet pipe, and spinneret to continu-
ously jet alginate prepolymer into a receiving pool where a 
coagulation wheel filled up with CaCl2 solution to crosslink 
alginate jet into hydrogel microfibers. These were then auto-
matically collected by a center roller in the middle of the 
receiving pool. Microfibers ranging from 20 to 600 µm were 
produced by controlling fabrication parameters, such as algi-
nate flow rate, rotation rate of the central roller, and diam-
eter of the spinneret.120 These continuous microfibers were 
used as individual tubular structures for cell encapsulation/

Figure 5. Versatile fabrication methods to make alginate hydrogel microfibers (A–D), core–shell microfibers or microtubes (E–G), or bead-in-microfiber structures 
(H–J). (A) Coaxial glass microfluidics embedded in a PDMS substrate.32 (Reprinted with permission from Shin et al., Copyright © 2007 American Chemical Society.) 
(B) Coaxial cylindrical PDMS microfluidic device.98 (Reprinted from Jun et al., Copyright (2013), with permission from Elsevier.) (C) Wet spinning.99 (Adapted from 
Yang et al., http://creativecommons.org/licenses/by/4.0/.) (D) Extrusion.74 (Reprinted from Unser et al., Copyright (2015), with permission from Elsevier.)  
(E) Multicoaxial glass capillary microfluidics for making core–shell microfibers.104 (Reprinted from Zuo et al., Copyright (2016), with permission from Elsevier.)  
(F) Multicoaxial PDMS microfluidics for making core–shell microfibers or co-cultured cell fibers.105 (Reprinted from Yamada et al., Copyright (2012), with permission 
from Elsevier.) (G) Extrusion through a needle-in-needle device to fabricate premade alginate microtubes.2 (Reprinted with permission from Jorgensen et al., 
Copyright © 2021 IOP Publishing Ltd.) (H) Coaxial glass capillary gas-in-water microfluidics to fabricate cavity microfibers.108 (Adapted with permission from Tian 
et al. Copyright © 2018 American Chemical Society.) (I) Vertical, coaxial glass capillary microfluidics to fabricate oil droplet-filled microfibers that can be tuned by 
varying oil-phase flow rates.109 (Reprinted from Chaurasia et al., Copyright (2016), with permission from Elsevier.) (J) All-in-water microfluidics to fabricate aqueous-
droplet-filled hydrogel microfibers.110 (Adapted with permission from Wang et al., Copyright © 2021 American Chemical Society.)

http://creativecommons.org/licenses/by/4.0/
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culture or automatically assembled into highly aligned 
fibrous hydrogel mats or bundles with non-aligned hierar-
chical structure.99 Alginate microfibers could also serve as 
bioink to be bioprinted into tissue patches (e.g. cartilage tis-
sue patch).113 In addition, alginate microfibers with grooved 
structures for guiding cell alignment were fabricated using 
microfluidic devices.121,122

Stimuli-responsive hydrogel microfibers, core–shell 
microfibers, or hollow microtubes could also be fabricated 
from alginate in combination with thermoresponsive poly-
mers, such as poly(N-isopropylacrylamide-co-acrylic acid) 
(PNIPAM-AAc) using double-coaxial glass capillary micro-
fluidics. By adjusting the outer to inner flow velocity ratio, 
tubular structures would be produced, showing isotropic or 
anisotropic shrinkage in response to temperature or pH.123

Alginate microfibers for long-term culture and cell 
expansion

Both alginate hydrogel microfibers and microtubes allow 
high-density cell encapsulation (such as 1 × 108 cells/
mL),33,103,124 and in particular, culturing cells in microtubes 
allows for high-fold expansion, leading to high cell numbers 
(volumetric yield of 3–6 × 108 cells/mL alginate microfibers) 
(Table 3). The usefulness of these cell microfibers or micro-
tubes for long-term high-density cell culture is evidenced 
by allowing (1) effective generation of human-induced 
pluripotent stem cells (hiPSCs) from reprogrammed human 
fibroblasts,125 high-efficiency cryopreservation, long-term 
self-renewal,117 high-fold expansion,106 and enhanced differ-
entiation of human pluripotent stem cells (hPSCs) with high 

purity and yield126,127; (2) automated production of T cells for 
future adoptive immunotherapy128; and (3) scalable culturing 
of tumor-initiating cells for drug discovery.129

In general, alginate microfibers (without blending with 
any adhesive macromolecule) showed the ability to sup-
port the generation of hiPSCs,125 maintain pluripotency of 
hESCs and hiPSCs,130 and promote hepatic differentiation 
of hESCs with efficiency comparable to Matrigel.130 Alginate 
microtubes, such as AlgTubes formed from alginate blended 
with hyaluronic acid, could consistently support long-term 
culture, producing a variety of cells in large quantity with 
high viability, high expansion rate, and high yield, including 
hESCs, hiPSCs, hPSC-differentiated neural stem cells (NSCs) 
and vascular smooth muscle cells (VSMCs), therapeutic T 
cells, and tumor-initiating cells.106,126–129

Alginate microfibers for cell delivery

Alginate hydrogel microfibers not only support high- density 
cell expansion and differentiation but also are injectable 
and transplantable. Alginate hydrogel microfibers, ribbons, 
and core–shell fibers that are incorporated with collagen 
or Matrigel were used as cell delivery vehicles for in vivo 
implantation through injection or conventional transplanta-
tion or implantation approaches (Table 4). The therapeutic 
potential was demonstrated by islet fibers normalizing blood 
glucose for more than four weeks with immunoprotection,98 
without fibrotic reaction in diabetic mice,119 mouse mesen-
chymal stem cell (mMSC) fiber undergoing endothelization 
in response to angiogenic growth factors, showing biocom-
patibility in mice and having potential as small-diameter 

Table 3. Representative cell expansion and differentiation in alginate microfibers and microtubes.

Alginate hydrogel Cells Fabrication Outcomes Ref.

AlgTubes Human fibroblasts Microextruder
(cells/1.5% Alg/100 mM CaCl2)

Reprogrammed/generated iPSCs with high purity (> 95%) 
and yield (~5 × 108 cells/mL) in 30 days (400 µm)

Lin 
et al.125

Alginate/chitin 
microfibers

hESCs (HUES7, BG01V/
hOG) and hiPSCs 
(PD-iPS5, hFib2-iPS4) 
(2–5 × 107 cells/mL)

Interfacial complexation (1% 
Alg + cells/ 1% chitin/50 mM 
CaCl2)

Maintained of self-renewal and differentiation potential of 
hPSCs for 10 passages; 
Cryopreservation efficiency 82.6% (200 µm)

Lu 
et al.117

AlgTubes hESCs (H9) and hiPSCs
(1–10 × 106 cells/mL)
Murine L Wnt3A cells

Microextruder
(HA or MC + cells/1–2% 
Alg/100 mM CaCl2)

Allowed long-term culture of hPSCs (> 10 
passages, > 50 days) with high cell viability, expansion rate 
(500-fold), high purity (> 95%) and yield (~5 × 108 cells/mL);
High yield (6 × 108 cells/mL) (OD ⩽ 400 µm, θ ⩽ 70 μm)

Li 
et al.106

AlgTubes hESCs (H9) and hiPSCs
(1 × 106 cells/mL)

Same above Generated hPSC-differentiated NSCs with high viability 
(∼95%), purity (> 90%), and yield (~5 × 108 cells/mL) in 
12 days (OD = 250 µm, θ = 40 μm)

Lin 
et al.126

AlgTubes hESCs (H9) and hiPSCs
(1 × 106 cells/mL)

Microextruder (HA + cells/1.5% 
Alg/100 mM CaCl2)

Generated hPSC-differentiated VSMCs with high viability, 
purity, and yield (~5.0 × 108 cells/mL) and contractile 
phenotype in 10 days (OD = 250 µm, θ = 40 μm)

Lin 
et al.127

Microfibers hESCs (HUES7)
(1–2 × 107 cells/mL)

Extrusion (1% 
Alg + cells/1–100 mM CaCl2)

Allowed long-term culture of hESCs (6–7 days × 5 passages) 
with pluripotency and differentiated to liver cells with 
efficiency comparable to Matrigel (OD ⩽ 350 µm)

Leong 
et al.130

AlgTubes Human primary CD3+ T 
cells (1 × 106 cells/mL)

Microextruder
(HA + cells/1.5% Alg/10 mM 
CaCl2)

Cultured T cells (three passages, 42 days) with high 
viability, expansion rate (320-fold), purity (98%), and yield 
(~3.2 × 108 cells/mL) in 14 days (OD ⩽ 400 µm, θ ⩽ 60 μm)

Lin 
et al.128

AlgTubes Human primary 
glioblastoma TICs

Microextruder
(HA + cells/1.5% Alg/100 mM 
CaCl2)

Allowed long-term culturing (~50 days, 10 passages) of 
glioblastoma TICs with high cell viability, expansion rate (~700-
fold), and yield (~3.0 × 108 cells/mL) in 14 days (OD: 100–400 µm)

Li 
et al.129

Alg: alginate; iPSCs: induced pluripotent stem cells; HA: hyaluronic acid; hESCs: human embryonic stem cells; hOG: hOct4-GFP reporter cells; MC: methylcellulose; 
hPSCs: human pluripotent stem cells; OD: outer diameter; θ: shell thickness; hiPSCs: human-induced pluripotent stem cells; NSCs: neural stem cells; PD: Parkinson’s 
disease; VSMCs: vascular smooth muscle cells; TICs: tumor-initiating cells.
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vascular grafts,131 osteogenic hMSC fibers achieving com-
plete osseous bridging in rats with critical-sized circular 
defects,132 and hiPSC-derived hepatic fibers secreting albu-
min at therapeutic level.133 In particular, hiPSC-derived neu-
ral ribbons have shown the capacity of retaining cells in the 
rat spinal cord injury cavity and exhibiting neuroprotection 
even at the delivery dose as low as ~5000 cells in 3–4 mm 
microfibers.124

The major difference between alginate microfibers and 
microtubes for cell culture or cell delivery lies in microfibers 
that contain the solid alginate hydrogel throughout, so that 
cells are in direct contact with the hydrogel, and therefore, 
cells can only form small aggregates and are suitable for cell 
maintenance and storage. On the contrary, alginate micro-
tubes contain a wall/membrane with a liquid core, in which 
cells can freely move and self-assemble into large aggregates 
or cell clusters, which can also reach a density as high as that 
of the tissue in the body, and are suitable for high-fold cell 
expansion, stem cell differentiation, cellular organization, 
and organoid formation.

Alginate microfibers and microtubes for 3D culture 
and complex tissue mimics

A variety of cells, including stem cells (e.g. ESCs, iPSCs, 
MSCs, and NSCs), endothelial cells, nerve cells, fibroblasts, 
epithelial cells, salivary gland cells, β-islets, hepatocytes, 
smooth muscle cells, myoblasts, myocytes, osteoblasts, T cells, 
and cancer cells, have been cultured in alginate hydrogel 
microfibers or microtubes to form cell fibers (Tables 3 to 5). 

Cells can be encapsulated in these microfibers, injected to 
premade microtubes or perfused in preformed core–shell cell 
fibers, or seeded onto the surface of microfibers. Co-culture 
can be arranged in diverse ways, for example, mixing 
endothelial cells with different cell types as part of the core 
flow, or subjecting endothelial cells to the core flow and other 
cell types to the shell flow to form cell fibers with an endothe-
lial inner layer, or coating cell fibers with endothelial cells. 
It opens a new avenue to study epithelial–stromal interac-
tions, vascularization, and innervation of tissue constructs 
to address challenges in tissue engineering,134 recapitulate 
in vivo-like tissue physiology,135 leading to functional tissue 
engineering.

Alginate microfibers and microtubes provide valuable 
co-culture platforms for studying cell–cell interactions, such 
as using ESC microstands to study pluripotent signaling that 
could restrict cancer metastatic potential,136,137 using fibro-
blast fibers to supply secretome that promotes survival and 
proliferation of co-cultured myoblasts on a dish138, exploit-
ing the salivary gland epithelial–stromal cell interaction 
for salivary gland self-assembly,34 recapitulating the hepat-
ocyte–stromal cell interaction to enhance liver function,105 
and constructing meter-long hollow osteo fibers with the 
endothelial cell inner layer,139 covering bundles of hepatic 
fibers with endothelial capillaries,140 or injecting astrocytes 
into microtubes covered by endothelial cells to mimic the 
blood–brain barrier.112

Alginate microfibers have been shown to promote spon-
taneous stem cell differentiation (e.g. osteoblastic differ-
entiation from mouse MSCs),118 and in particular, directed 

Table 4. Representative applications of alginate tubular structures for in vivo cell implantation.

Alginate hydrogel Cells Fabrication In vivo delivery/duration Outcomes Ref.

Core–shell 
microfibers

Rat pancreatic 
islet cells 
(1 × 108 cells/mL)

Glass double-coaxial microfluidics
(cells + collagen/1.5% Alg–
agarose/100 mM CaCl2)

Injection into the subrenal 
capsular space of a diabetic 
mouse using a microcatheter 
(13 days)

Glucose-responsive insulin-
secreting islet cell fibers 
(200 µm) normalizing blood 
glucose concentration without 
fibrotic reaction

Onoe 
et al.33

Microfibers Rat pancreatic 
islets (5000 IEQ/
mL)

PDMS cylindrical coaxial microfluidics 
(3% Alg + collagen + cells/3% CaCl2)

Transplantation into the 
intraperitoneal cavity of 
BALB/c mice (4 weeks)

Islet fibers (250 µm) maintained 
normoglycemic blood glucose 
levels four weeks with 
immunoprotection

Jun 
et al.98

Microfibers mMSCs
(1 × 106 cells/mL)

Extrusion through glass microfluidics
(2% Alg + cells + VEGF + FGF2/20 mM 
CaCl2)

Implantation into the 
abdominal cavities of 
Kunming mice (14 days)

MSC fibers (500 µm) exhibited 
better in vitro cell proliferation and 
endothelial marker expression 
and in vivo biocompatibility

Liu 
et al.131

Microfibers hMSCs
(1 × 106 cells/mL)

Extrusion through a needle
(2% Alg + fibrinogen + cells/100 mM 
CaCl2 + thrombin)

Injection to athymic nude 
rats w/ critical-sized circular 
defects in both sides of the 
mandibular rami using a 
syringe (12 weeks)

MSC fibers (~250 µm) 
exhibited proliferation and 
osteogenic potential in vitro 
and achieved complete 
osseous bridging in vivo

Song 
et al.132

Microribbons hiPSC-derived 
spinal cord 
neural stem cells 
(scNSCs)
(1 × 108 cells/mL)

Extrusion through a needle
(1.5% Alg + collagen + cells/100 mM 
CaCl2)

Injection of the segment to 
Long–Evans rat cervical 
spinal cord hemi-contusion 
lesions (3–4 mm microfibers, 
~5000 cells; 9 days)

Neural ribbons (60 µm) 
retaining cells in the spinal 
cord injury cavity and showing 
neuroprotection even at low 
delivery doses

Olmsted 
et al.124

Core–shell 
microfibers

hiPSC-derived 
hepatocytes
(1 × 106 cells)

Glass double-coaxial microfluidics
(cells + Matrigel/2% Alg/20 mM BaCl2)

Spatula transplantation 
into abdominal cavity of 
immunodeficient NOD/SCID 
mice (3 days)

Hepatic fibers (~400 µm) 
secreted albumin at 
therapeutic level

Nagata 
et al.133

BALB/c: BALB/c: albino, laboratory-bred strain of the house mouse; hMSCs: human mesenchymal stem cells; mMSCs: mouse mesenchymal stem cells; MSC: 
mesenchymal stem cell; NOD: non-obese diabetic; PDMS: polydimethylsiloxane; SCID: severe combined immunodeficiency; VEGF: vascular endothelial growth factor.
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differentiation (e.g. brown adipogenesis from mouse 
embryonic stem cells [mESCs],74 neuronal differentiation 
from mouse NSCs,33,141 and endothelial differentiation of 
mMSCs),131 facilitate tissue in vivo-like construction (e.g. per-
fusable endothelial layer,114 neural cell alignment,99 smooth 
muscle-like spring),142 and enhance cell function (e.g. hepatic 
function,105,130,143 biominerization potential,144 and cardio-
myocyte contraction).33

These alginate hydrogel microfibers or microtubes can be 
used in versatile fashions to form cell fibers and further organ-
ize them into higher-order 3D cellular structures,33,36,100,145 
generate multicomponent heterogeneous microfibers for co-
culture or multiculture of cells,116 and create temperature-67,146 
or magnetic-responsive microfibers as microscale toroidal 
cellular building elements for constructing microvascular-
like structures.147

Conclusions and future perspectives

Alginate hydrogel provides a versatile platform for 3D cell 
culture, cell therapy, tissue engineering, and regenerative 

medicine. In particular, alginate hydrogel microfiber tech-
nology opens a new avenue to therapeutic cell delivery and 
construction of tissue mimics. It has demonstrated that:

1. A variety of alginate microfibers and microtubes with 
high handleability and irretrievability could be fabri-
cated through versatile microfluidics, spinning, and 
extrusion processes;

2. Alginate microfibers supported generation of iPSCs 
and long-term maintenance of pluripotency of PSCs 
at high density;

3. With incorporation of the ECM component (e.g. hya-
luronic acid), alginate microtubes supported direct 
cryopreservation, high-fold expansion, and directed 
differentiation of PSCs with high purity and high yield;

4. With incorporation of ECM proteins (e.g. collagen, 
fibronectin, and Matrigel), alginate microfibers or 
microtubes supported functional cell fiber formation;

5. Alginate microfibers and microtubes provided co-
culture and multiculture platforms and building 
blocks for engineering complex tissue mimics.

Table 5. Representative alginate-based tubular structures for tissue mimics in vitro.

Alginate hydrogel Cells Fabrication Duration Outcome Ref.

Core–shell 
microfibers

Rat primary cardiomyocyte 
and cortical cells; HMVEC; 
mouse primary NSCs
(~1 × 108 cells/mL)

Glass double-coaxial microfluidics 
(cells + ECM protein/1.5% Alg–
agarose/100 mM CaCl2)

3, 4, 35, 
77 days

Functional cardiomyocyte, 
endothelial, and cortical cell fibers; 
differentiated NSC fibers (20–100 µm)

Onoe 
et al.33

Core–shell 
microfibers

Rat primary hepatocytes
(3 × 107 cells/mL) and 
mouse Swiss 3 T3 cells 
(1 × 107 cells/mL)

Multicoaxial microfluidic device (0.7% 
Alg + collagen + cells/20 mM BaCl2)

90 days In vivo hepatic cord-like organoid 
fibers (~80 µm) with long-term 
preservation of hepatic functions 
(albumin secretion, urea synthesis, 
and hepatocyte gene expression)

Yamada 
et al.105

Core–shell 
microfibers

HepG2 cells in microfiber 
(3 × 108 cells/mL)
Co-cultured with bovine 
endothelial HH cells

Multicoaxial microfluidic device (0.7% 
GRGDSP-Alg + cells/1% Alg/20 mM 
BaCl2)

2 + 5 days Vascularized hepatic lobule-like fiber 
bundle (~90 µm fiber/1 mm bundle)

Yajima 
et al.140

Hollow 
microfibers

HepG2 Microfluidic chip with four channels 
(MC/2% Alg/1.1% CaCl2/chitosan)

10 days Proliferating and functional HepG2 
fibers with ultra-thin membrane 
(~200 μm)

Liu et al.75

Core–shell 
microfibers

hiPSC-derived hepatocytes
(1 × 108 cells/mL)

Double-coaxial laminar-flow microfluidics 
(cells + Matrigel/ 2% Alg/100 mM Ca2+)

7 days High-density iPSC-hepatocyte fibers 
(~400 µm)

Nagata 
et al.133

Core–shell 
microfibers

HUVEC (0.6–15 × 108 cells/
mL)

Microfluidic coaxial (needle) printing 
(1.5% Alg + GelMA + SilkMA/160 mM 
CaCl2)

3–4 days Perfusable vascular constructs  
(inner 750 µm /outer 1250 µm)

Wu et al.114

Core–shell 
microfibers

Multipotent de-differentiated 
fat (DFAT) cells 
(1 × 107 cells/mL)

Multicoaxial glass microfluidics 
(cells + ECM proteins/1.5% 
Alg/100 mM CaCl2)

30 days Circumferentially oriented smooth 
muscle-like tissue constructs with 
marker expression (300–350 µm)

Hsiao 
et al.142

Core–shell 
microfibers

Human osteoblast MG63 
and HUVECs (1 × 107 cells/
mL)

Multicoaxial PDMS microfluidics 
(HA/1.5% RGD-Alg + HUVECs/1.5% 
RGD-Alg + MG63/300 mM CaCl2)

3 weeks Osteon-like microfibers with 
increased expression of osteogenic 
and vasculogenic genes (~450 µm)

Wei 
et al.139

Tissue strands 
as bioink

Cattle primary chondrocytes Extrusion through a coaxial nozzle 
(4% Alg/4% CaCl2) + cell injection

4 weeks Implanted cartilage in a bovine 
explant exhibited GAG-rich ECM

Yu et al.113

Microfibers Human primary 
chondrocytes (2 × 106 cells/
mL)

Snake micromixing microfluidic device 
(2% Alg, 2% Alg + gelatin or 2% 
Alg + UBM/cells + 6.0 mM BaCl2)

14 days De-differentiated chondrocytes 
regained chondrocyte phenotype and 
recovered from cryopreservation with 
high viability (~700 µm)

Angelozzi 
et al.144

Microfibers Mouse D1 MSC 
(5 × 107 cells/mL)

Successive alginate coating and cell-
collagen injection
(2% Alg/200 mM CaCl2/cells + collagen)

21 days MSC fibers showing spontaneous 
differentiation to osteoblastic lineage 
(200 μm)

Kalisky 
et al.118

HMVEC: human microvascular endothelial cells; NSCs: neural stem cells; ECM: extracellular matrix; Alg: alginate; MC: methylcellulose; HH: bovine carotid artery 
normal endothelial cells; GRGDSP: Gly-Arg-Gly-Asp-Ser-Pro peptide; hiPSCs: human-induced pluripotent stem cells; iPSC: induced pluripotent stem cell; HA: 
hyaluronic acid; HUVEC: human umbilical vein endothelial cells; PDMS: polydimethylsiloxane; RGD: arginine–glycine–aspartic acid; GAG: glycosaminoglycans; UBM: 
urinary bladder matrix; MSC: mesenchymal stem cell.
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To realize the full potential and benefit of alginate hydrogel 
microfiber technology as shown in Figure 6, we suggest:

1. Establishing a standard of alginate and its resultant 
hydrogels and generating an “Alginate Materials 
Genome” because properties of alginate hydrogels are 
highly dependent on the source, molecular weight, 
viscosity, and concentration, and affected by long-term 
storage of alginate and sterilization methods, leading 
to fabrication of off-the-shelf alginate hydrogel tubular 
structures in a designable, continuous and automated, 
reproducible, scalable, and standardized manner;

2. Evaluating dynamic property changes of alginate 
hydrogel microfibers during long-term cell culture, 
such as morphology, diameter and shell thickness, 
porosity, permeability, mechanical properties, degra-
dation, biocompatibility, and how these changes will 
affect cell organization and function;

3. Comparing genomics, proteomics, and metabolomics 
of cell–cell interactions and stem cell development in 
different alginate hydrogel microfibers (e.g. microfib-
ers versus microtubes, alginate versus alginate-ECM 
microfibers/microtubes versus tissues), revealing 
design rules for directed stem cell differentiation, 
organoid formation, and tissue construction;

4. Developing photonic and electronic sensing microfib-
ers for in situ monitoring of cell growth, organization, 
and function in microfibers and microtubes;

5. Studying vascularization and innervation of cell fib-
ers in vitro and in vivo;

6. Evaluating in vivo biocompatibility, survival, and 
engraftment of cell fibers for long term and in large 
animal models.
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