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Introduction

HCC has been identified as the third major contributor to 
deaths associated with cancers globally with the majority of 
the cases being reported from Asia.1 HCC patients diagnosed 
early can be treated with curative therapy, including liver 
transplantation, percutaneous ablation, and surgical resec-
tion; however, around 70–80% of HCC patients will develop 
recurrence after receiving curative therapy.2 Previous evi-
dence suggests that HCC is immunogenic and comprises 

infiltrated tumor-specific T cells as well as other immune 
cells. Through inducing tumor-specific immune responses 
in cancer cells, immunotherapy offers effective and differ-
entiated tumor cell targeting and improves the postopera-
tive relapse-free survival of HCC patients.3 Despite these 
significant advances, owing to significant heterogeneous 
genomic aberrations and complex immune microenviron-
ment of tumors in HCC, translational immunotherapy for 
clinical personalized care remains a challenge in precision 
oncology.4 Analysis of immune subtypes and the immune 
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Abstract
Intra-tumor heterogeneity poses a serious challenge in the treatment of cancer, 
including hepatocellular carcinoma (HCC). Recent developments in single-cell 
RNA sequencing (scRNA-seq) make it possible to examine the heterogeneity 
of tumor cells. The Gene Expression Omnibus (GEO) database was retrieved 
to obtain scRNA-seq data of 13 HCC and 8 para cancer samples, and the cells 
were clustered using FindNeighbors and FindClusters functions. Cell subsets were 
defined using the “Enricher” function of the clusterProfiler package. Monocle was 
used to predict cell developmental trajectory. The LIMMA package included in the 
R program was utilized to detect differentially expressed genes (DEGs) between 
HCC and paracancerous tissues. Univariate Cox analysis and Least Absolute and 
Selection Operator (Lasso) Cox regression analysis were conducted to establish 
a risk assessment model. Thirteen cell subpopulations were identified from 
the sequencing data of 64,634 single cells. Four cell subgroups (dendritic cells, 
hepatocytes, liver bud hepatic cells, and liver progenitor cells) in tumor tissues were 
highly enriched. Between HCC and para cancer tissues, 3024 DEGs were identified, 
and 641 were specific markers of four cell subgroups. To develop a prognostic risk 
model, 9 genes among the 641 genes were selected. In the training and validation 
sets, the model demonstrated a higher 5-year AUC and independently served as a 
prognostic marker as confirmed by multivariate and univariate Cox analyses. This 

study revealed the characteristics of different cell subpopulations of immune cells and tumor cells from the HCC microenvironment. 
We established a novel nine-gene prognostic model to determine the death risk of HCC patients. The discoveries in this research 
improved the current knowledge of HCC heterogeneity and may inspire future research.
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Impact Statement

Intratumoral heterogeneity of hepatocellular carci-
noma (HCC) is a major challenge in clinical treat-
ment. In recent years, scRNA-seq has emerged as 
a significant technique for investigating tumor het-
erogeneity. In this work, at the single-cell level, we 
described the immune microenvironment of HCC 
and identified 25 cell clusters representing 13 HCC 
cell types. Combining single-cell sequencing analy-
sis with RNA sequencing analysis, a prognostic risk 
model developed with markers of dendritic cells, 
hepatocyte, liver bud hepatic cell, and liver progeni-
tor cells enriched in HCC was constructed and could 
independently perform the survival prediction of 
HCC patients. This study extended the application of 
the combination of traditional RNA sequencing and 
single-cell sequencing to cancer research, providing 
novel insights into HCC prognosis.
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microenvironment in HCC may have potential clinical value 
for personalized immunotherapy.

Transcriptome data analysis could influence decision-
making in clinical practice and the development of precise 
regimes of treatment. However, the general transcriptomic 
analysis does not apply to the study of cell heterogeneity (i.e. 
cell subpopulations within major types of cells), specific path-
ogenic cell populations, rare cell populations, and/or dis-
secting the cancer microenvironment and clonal evolution.5 
Transcriptomic analysis of a single cell, that is, scRNA-seq, 
has improved previous understanding of the heterogeneity 
of cell populations and cellular state diversity, thereby con-
tributing to the profiling of properties of several cell types 
in tumor and its vicinity.6 scRNA-seq has been applied to 
reveal immune cell population in different malignancies and 
classify several heterogeneous tumors, such as gastric adeno-
carcinoma,7 colorectal cancer,8 breast cancer,9 and renal clear 
cell carcinoma10. In addition, scRNA-seq could identify key 
molecular markers for predicting cancer prognosis. Zhang 
et al.11 constructed a robust wrinkle-associated genes sig-
nature with scRNA-seq for stratifying clear cell renal cell 
carcinoma patients’ prognosis. Similarly, scRNA-seq analysis 
of melanoma samples has also been used for developing a 
metastasis-associated genes signature to predict patients’ 
prognoses.12 Although a preliminary classification of HCC 
using scRNA-seq has been developed,13 HCC prognostic 
signature involving more effective genes is still needed.

Previous studies have developed various prognostic sig-
natures from different aspects of HCC prognosis prediction. 
For instance, Li and his colleagues explored a gene signature 
incorporating RTN3, SOCS2, and UPB1 for the prognosis 
of patients with HCC premised on T stage stratification in 
TCGA-liver hepatocellular carcinoma (LIHC) dataset.14 Liu 
et al.15 established a four-gene signature related to metabo-
lism for HCC. Li et al.16 identified seven prognostic genes 
associated with DNA repair that could significantly classify 
HCC patients into high- and low-risk subgroups. Long non-
coding RNA-associated prognostic signatures were mined 
using different methodologies.17–19 However, limited studies 
used the scRNA-seq approach to evaluate the heterogeneity 
within HCC tumors and exploit important ligand–recep-
tor interactions. Therefore, this research used the scRNA-
seq data of 13 cancer and 8 para cancer tissue samples in 
GSE149614 to analyze the intra-tumor heterogeneity and cell 
interactions in HCC. The potential risk models for predict-
ing HCC prognosis were identified through bioinformatics 
analysis of the transcriptome of HCC patients in the Cancer 
Genome Atlas (TCGA). Our findings may expand the under-
standing of the heterogeneity of HCC, providing a potential 
novel tool for the prognostic prediction of HCC patients.

Materials and methods

Data acquisition and preprocessing

See Figure S1 for the workflow of this study. We retrieved the 
scRNA-seq data of 21 samples (10 primary tumors; 1 meta-
static lymph node; 2 portal vein tumor thrombus; and 8 para 
cancer tissues) in the GEO database in NCBI (https://www.
ncbi.nlm.nih.gov/geo/). The FPKM data of the samples 
(containing 371 HCC and 50 para cancer tissues) from TCGA 

were converted to TPM data format. Complete survival fol-
low-up records of 366 samples were included in the analysis. 
HCCDB18 cohort with HCC samples was acquired from 
the hepatocellular carcinoma database (HCCDB, http://
lifeome.net/database/hccdb/home.html),20 of which nor-
mal samples and those with missing data on survival status 
or time were excluded.

scRNA-seq data dimension reduction and 
unsupervised clustering

Transcriptomic sequencing data of cell samples from HCC 
patients from the GSE149614 cohort were obtained and con-
verted into Seurat objects using the “Seurat” package21 in R 
software. The PercentageFeatureSet function was used to cal-
culate the proportion of mitochondria and rRNA. Quality fil-
tering was performed to screen cells having > 500 expressed 
genes or > 30% mitochondrial counts. After quality filter-
ing, to identify the genes with highly variable expressions, 
the FindVariableFeatures function in Seurat was employed. 
Normalization of data was achieved through log-normali-
zation, and the ScaleData function was used to scale genes. 
Next, principal component analysis (PCA) of the linear 
dimension reduced data was performed, with dim = 50 and 
resolution = 0.1 as the set parameters. The cells were clus-
tered using FindClusters and FindNeighbors algorithms. 2D 
uniform manifold approximation and projection (UMAP) 
visualized the results.

Defining cell subsets

From the official website of CellMarker,22 cell marker genes 
in humans (http://biocc.hrbmu.edu.cn/CellMarker/) were 
downloaded, and the corresponding liver tissue speci-
men data were obtained. Simultaneously, cell subsets were 
defined using the Enricher function in the clusterProfiler 
package.23

Pseudotime trajectory analysis of cell 
subpopulations

To analyze the alterations in immune cell type distribu-
tions during tumor development, Monocle24 was used to 
investigate the developmental trajectory of each cell sub-
population. Branching of cell trajectories often occurs as a 
result of differential gene expression patterns in cells. During 
development, as cells make their fate choices, the evolving 
trajectory would branch off, resulting in one developmental 
lineage following one path and another, a second path. The 
trajectories were visualized in a 2D T-distributed Neighbor 
Embedding (tSNE) graph.

Pathway enrichment analysis

Marker genes in each subgroup were identified, extracted, 
and input into the WebGestaltR package for Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis.25 We adopted a false discovery rate (FDR) < 0.05 
to determine the significant key pathways, and the enriched 
pathways were presented using a bubble map, with a larger 
enrichment ratio positively correlating to a stronger correla-
tion between genes and pathways.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://lifeome.net/database/hccdb/home.html
http://lifeome.net/database/hccdb/home.html
http://biocc.hrbmu.edu.cn/CellMarker/
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Intercellular communication networks

CellChat26 is a program that allows for the drawing of quan-
titative inferences and assessment of intercellular communi-
cation networks premised on the scRNA-seq data. CellChat 
identifies and analyzes complex interactions between sub-
populations of cells. We followed the standard process of 
loading standardized data onto the CellChat platform. 
After the CellChat object was created, the assumed ligand–
receptor interaction pair was identified through cellChatdb.
human using the default parameters and visualized by the 
“circlize” tool.

Establishment and validation of the prognostic risk 
model for HCC

Differential analysis of the expression spectrum matrix of 
HCC and para-carcinoma tissues was performed using the 
limma package. Screening parameters were set as FDR < 0.05 
and | log2 fold change (FC) | >1. Differentially expressed 
genes (DEGs) that overlapped with marker genes of sub-
populations were identified. For the commonly shared 
genes, univariate Cox proportional risk regression analysis 
was executed with the aid of the survival coxph function in 
the survival R package (https://mran.microsoft.com/web/
packages/survival/index.html), and P < 0.05 was employed 
to identify the genes considerably linked to HCC survival. 
Next, the Least Absolute Shrinkage and Selection Operator 
(Lasso) Cox regression analysis was conducted with the 
help of the R package glmnet,27 and the weighted coeffi-
cients were calculated for developing a cancer risk assess-
ment model. The calculation was as follows: Risk score = Σ 
(βi × Expi), here, βi signifies the weighted coefficient of genes 
whereas Expi signifies the gene expression levels. The effi-
ciency of the risk assessment model for predicting prognosis 
was assessed using receiver operating characteristic (ROC) 
curves created through the use of the R software package 
timeROC.28 Using the risk prediction model, each sample 
was given a risk score, which was subsequently converted 
into a Z score. HCC samples were finally classified into two 
groups of opposite risks (0 was the truncation value). Log-
rank tests and Kaplan–Meier curves were utilized to analyze 
the results of the survival comparisons.

Statistical analysis

R Studio packages (version 3.6.3) were utilized to execute all 
analyses of statistical data. Evaluation of the prognostic sig-
nificance of risk prediction models included both univariate 
and multivariate COX regression analyses. The threshold for 
statistical significance was established at P < 0.05.

Results

Cell classification in HCC and paired 
paracancerous tissues based on scRNA-seq data

The quality control diagram showed the percentages of mito-
chondrial genes, the unique molecular identifiers (UMIs) 
number, and rRNA counts before and after quality control. 
The results indicated a high-quality control of analysis sam-
ples (Figure S2). A total of 64,634 single cells were subjected 
to the quality filtration process. Cell numbers were assigned 

to each sample before- and after-mass filtration, as shown 
in Figure S3. Figure S4 showed the top 20 genes with highly 
variable expressions among a total of 2000. PCA combined 
with ElbowPlot demonstrated that most real signals were 
captured in the first 30 PCs (Figure S5). A total of 25 cell 
clusters were obtained by subsequent cell clustering. The use 
of UMAP allowed for the visualization of the cell distribu-
tion in 21 different tissues, including 26,771 single cells in 
normal and 37,863 single cells in tumor tissues (Figure 1(A)). 
In both the HCC and the para cancer tissues, we discovered 
the presence of several enriched cell clusters. On counting 
the abundances of 25 cell clusters in each sample, we found 
the highest abundance in normal tissues in subgroup 0, 
while cell clusters 1, 2, and 5 were abundant in tumor tissues 
(Figure 1(B)). In addition, we employed the FindAllMarkers 
function to filter each cell cluster consisting of gene markers 
(|log2(FC)| = 0.5, Minpct = 0.1). The heat map presented the 
top 5 marker gene expressions in each cell cluster (Figure 
S6A). According to known markers in the CellMarker data-
base, 25 cell clusters were annotated to a total of 13 cell types 
(Table 1, Figure S6B), namely liver bud hepatic cells, B cells, 
cytotoxic CD4+ T cells, endothelial cells, dendritic cells, 
exhausted CD8+ T cells, hepatocytes, Kupffer cells, liver 
progenitor cells, memory B cells, mucosal-associated invari-
ant T cells, myofibroblasts, and regulatory T cells (Tregs).

Identification of highly enriched cell subsets and 
characterization of cell differentiation trajectories 
in tumor tissues

On analyzing the differences in the proportion of 13 types 
of cells between tumor and para cancer samples, significant 
heterogeneity in the tumor microenvironment between these 

Table 1. Cell type of each subgroup.

cell_type seraut_cluster

CD4+ cytotoxic T cell  0
Kupffer cell  1
Liver progenitor cell  2
Endothelial cell  3
Mucosal-associated invariant T cell  4
Liver bud hepatic cell  5
Regulatory T (Treg) cell  6
Liver bud hepatic cell  7
Myofibroblast  8
Kupffer cell  9
Liver bud hepatic cell 10
Hepatocyte 11
Kupffer cell 12
Memory B cell 13
Liver bud hepatic cell 14
Liver bud hepatic cell 15
Liver bud hepatic cell 16
B cell 17
Dendritic cell 18
Liver bud hepatic cell 19
Regulatory T (Treg) cell 20
Liver progenitor cell 21
Dendritic cell 22
Liver bud hepatic cell 23
Exhausted CD8+ T cell 24

https://mran.microsoft.com/web/packages/survival/index.html
https://mran.microsoft.com/web/packages/survival/index.html
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samples was observed. Dendritic cells, hepatocytes, liver bud 
hepatic cells, and liver progenitor cells were highly enriched 
in tumor tissues (Table 2). Using Monocle to predict state 
trajectories, we reasonably inferred dynamic immune states 
and cellular transitions. The four cell subpopulations were 
differentiated into three branches, with each representing a 
different state (Figure S7A). Dendritic cells and liver progeni-
tor cells were at the initial developmental trajectory, while 
hepatocytes were at the end (Figure S7B). The Seraut_cluster 
locus diagram of four subgroups showed that dendritic cells 
were in Clusters 18 and 22. Cluster 18 was in state 1 and 2 
branches, while subgroup 22 was in the state 2 branch only. 
Cluster 11 was enriched in hepatocytes. There were eight cell 
clusters (5, 7, 10, 14, 15, 16, 19, and 23) in liver bud hepatic 
cells. Clusters 5, 10, 14, and 15 were dominant in the termi-
nal state. Liver progenitor cells were annotated in Clusters 2 
and 21, whereas 2 was in state 3, and 21 was in states 1 and 
3 (Figure S7C, Figure S8).

Intercellular and molecular interaction networks of 
four cell subpopulations

To study the functions of dendritic cells, hepatocytes, liver 
bud hepatic cells, and liver progenitor cell subgroups, the 
corresponding markers of each subgroup were extracted for 
further KEGG analysis. Figure S9A displayed the heat map of 
the top three enriched pathways and the top 50 genes specifi-
cally expressed in each subgroup. Dendritic cells were asso-
ciated with tyrosine metabolism, infection by Staphylococcus 
aureus, and retinol metabolism. The hepatocyte marker genes 
were mainly enriched in proximal tubule bicarbonate recla-
mation, protein export, and pentose and glucuronate inter-
conversions. The specific genes in liver progenitor cells were 
annotated in mineral absorption, glycine, metabolism of ser-
ine and threonine, complement, and coagulation cascades. 
Liver bud hepatic cells played an important role in butanoate 
metabolism, asthma, and allograft rejection. As scRNA-seq 
can indicate the cellular interactions, owing to the integra-
tion of ligand and receptor information, therefore, CellChat 
was used to construct the interaction network of 13 cell sub-
populations, and the changes in the number and intensities 
of ligand–receptor interactions were shown in Figure S9B. 

The cell-ligand–receptor interaction network of the cell sub-
groups comprising dendritic cells, hepatocytes, liver bud 
hepatic cells, and liver progenitor cells was developed. The 
results showed that the interactions among cells were com-
plex; for instance, the communication between dendritic 
cells and the other three types of cells was realized through 
50 ligand–receptor interaction pairs. Hepatocytes, liver bud 
hepatic cells, and liver progenitor cells supported the cellular 
communication through 64, 50, and 57 ligand–receptor cross-
links, respectively (Figure S9C). MIF – (CD74 + CXCR4) was 
the most potent ligand–receptor pair interaction between 
hepatocytes and B cells, and it also performed an integral 
function in the interaction between hepatocytes and other 
cell types, including Kupffer cells, dendritic cells, memory 
B cells, mucosal-associated invariant T cell, cytotoxic CD4+ 
T cells, and Treg cells. Furthermore, these interactions were 
strong. In addition, MIF – (CD74 + CXCR4) showed the 
strongest binding upon liver progenitor cell interaction with 
Kupffer cells, B cells, dendritic cells, mucosal-associated 
invariant T cells, cytotoxic CD4+ T cells, memory B cells, 
and regulatory T (Tregs) cells (Figure S9D).

Development and verification of the nine-gene 
signature prognosis risk model

The differential analysis identified 3024 DEGs (2529 high-
expressed and 492 genes with lower expressions in HCC) 
between HCC tissues and para cancer tissues. Among them, 
641 were specific markers of four subgroups (Figure S10). 
Premised on the selection criteria of the univariate Cox pro-
portional regression analysis on the 3024 DEGs, 266 genes 
were considerably linked to the HCC patients’ survival 
(Table S1). For TCGA specimens, LASSO modeling was per-
formed to select 20 prognostic genes with multiple variables 
through ten-fold cross-validation (Figure 2(A) and (B)). To 
obtain the optimal model, nine genes (GTPBP4, TXN, ERBB3, 
PPP1R1A, CYP2C9, CENPU, SCGN, CD4, and SEMA7A, 
Table S2) were selected for developing the prognostic risk 
model by the stepAIC method. Protein–protein interaction 
(PPI) analysis on these nine prognostic genes revealed that 
five of them (GTPBP4, TXN, ERBB3, CD4, and SEMA7A) 
were directly or indirectly interacted within a PPI network 

Table 2. Differences in the number of 13 cell types between tumor and paracancer samples (Fisher test).

Cell_name T_celltype N_cell type P value FC

B cell 459 760 1.26E-49 0.419989172
CD4+ cytotoxic T cell 739 14,616 0 0.016554501
Dendritic cell 1052 118 5.22E-127 6.455088729
Endothelial cell 1855 1888 2.38E-30 0.678962305
Exhausted CD8+ T cell 57 15 0.000284218 2.689329736
Hepatocyte 1805 0 0 Inf
Kupffer cell 8413 5103 1.80E-22 1.212994547
Liver bud hepatic cell 11,409 1199 0 9.198176601
Liver progenitor cell 3948 303 0 10.16866219
Memory B cell 1270 418 1.36E-47 2.188061303
Mucosal-associated invariant T cell 2203 1231 7.77E-12 1.281728373
Myofibroblast 1747 372 3.49E-126 3.432715387
Regulatory T (Treg) cell 2906 748 1.44E-167 2.892126064

FC: fold change.
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Figure 1. Clustering analysis of single-cell RNA-seq data for HCC. (A) UMAP of 64,634 cells, color-coded correspondingly as a patient (top panel), sample type 
(middle panel), and cell cluster (right panel). (B) In each sample, the abundance of 25 cell clusters. (A color version of this figure is available in the online journal.)
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(Figure S11), suggesting that these five genes may play a 
central role for HCC prognosis.

Each sample’s risk score was obtained by multiplying 
the expression levels of the nine genes using their correla-
tion coefficients derived from the multivariate analysis. The 
Kaplan–Meier analysis showed lower rates of survival in 
the TCGA-high-risk HCC cohort as opposed to the low-risk 
HCC patients at various time points (Figure 2(C)). For the 
5-year OS prediction in TCGA-LIHC cohorts, the AUC value 
of the ROC curve was found to be 0.86 (Figure 2(D)). In the 
validation cohort HCCDB18, patients diagnosed with HCC 
who were classified as having a low risk experienced con-
siderably better survival in contrast with those classified 
as having a high risk (Figure 2(E)). Consequently, the AUC 
value for 5-year OS was found to be 0.71 in the validation 
set (Figure 2(F)).

Risk model as an independent prognostic marker 
for HCC

The association of risk score with clinical parameters includ-
ing gender, AJCC stage (I, II, III, and IV), M stage (M0 and 
M1), N stage (N0 and N1), T stage (T1, T2, T3, and T4), and 
tumor grade (G1, G2, G3, and G4) was analyzed for the HCC 
samples from TCGA, which were grouped to calculate the 
differences in risk scores across various groups. The findings 
illustrated no remarkable differences in risk scores between 
the samples grouped basis of M stage, N stage, and gender 
(Figure 3(A), (C), and (D)). However, considerable differ-
ences were found in the risk scores for the samples grouped 
according to the T stage, with a higher T stage indicating 
a greater risk score (Figure 3(B)). Patients were grouped 
according to the AJCC stage to assess the correlation accord-
ing to the risk scores. The findings illustrated a substantial 
correlation between the risk scores and the AJCC stage 
(Figure 3(E)). For patients grouped based on grade, it was 
found that their risk scores increased in direct proportion 
to the grade (Figure 3(F)). Multivariate and univariate Cox 
analyses were performed using the aforementioned six clini-
cal parameters and risk scores to establish whether or not the 
nine-gene risk model may be used independently for clini-
cal application. Among all seven clinical factors, we discov-
ered that the risk score was the only one that independently 
served as a prognostic predictor (Figure 3(G) and (H)).

Relationship between risk scores and pathways

By employing gene set variation analysis (GSVA), we com-
pared the high- and low-risk groups to determine the dif-
ference in pathway enrichment. After calculating the scores 
for each individual pathway, we investigated how closely 
those values correlated with the risk scores. By selecting 
pathways whose correlations are greater than 0.4, we discov-
ered a total of 17 pathways with significant inverse correla-
tion and nine pathways with significant positive correlation 
with the samples’ risk scores (Figure 4(A)). Cluster analysis 
based on the accumulation scores of the 26 KEGG pathways 
demonstrated that nine pathways, including those involving 
non-homologous DNA, end joining, cell cycle, oocyte meio-
sis, spliceosome, nucleotide excision repair, base excision 
repair, mismatch repair, DNA replication, and homologous 

recombination, were significantly enriched with the increase 
of the risk score (Figure 4(B)). Thus, these pathways might 
have a possible involvement in the malignant advancement 
of HCC.

Discussion

Intratumoral heterogeneity contributes to the non-respon-
siveness of most cancer types to current therapies.29 Intra-
tumor heterogeneity can only be fully characterized at the 
single-cell level.30 Single-cell techniques reveal intratumoral 
heterogeneity through epigenomics, proteomics, transcrip-
tomics, and genomics, of the cell constituents and their spatial 
distributions, and this has greatly improved the develop-
ment of both basic and translational cancer research.31 In 
this study, 25 cell clusters were identified by analyzing the 
scRNA-seq data from 64,634 single cells, which were subse-
quently grouped into 13 cell types.

We found that dendritic cells, hepatocytes, liver bud 
hepatic cells, and liver progenitor cells were highly enriched 
in the HCC tissues. They were divided into three branches, 
with each representing a different state. The differentiation 
of dendritic cells, the most effective antigen-presenting cell 
type in immune response, was generally impaired during 
tumor development.32 Therefore, dendritic cells were only 
involved in the initial states of the estimated differentiation 
pathway. Notably, in addition to dendritic cells, aberrant 
metabolism processes were observed in liver bud hepato-
cytes, liver progenitor cells, and hepatocytes.

Among the genes specifically expressed in highly 
enriched cell subsets in HCC tissues, 641 were differentially 
expressed between HCC and para cancer tissues, which may 
contribute significantly to the overall prognosis of patients 
with HCC. Using classical univariate Cox regression analy-
sis and Lasso modeling, we identified nine HCC prognostic 
markers and established a gene signature. Some of these 
markers played important roles in the onset and advance-
ment of cancer. GTPBP4 is oncogenic in HCC33 and lung 
adenocarcinoma.34 Up-modulation of TXN is linked to unfa-
vorable HCC prognosis and promotes HCC metastasis in 
vitro and in vivo.35 ERBB3 is often abnormally activated in 
many human cancers, and inhibition of ERBB3 signaling is 
important to overcome therapeutic resistance.36 PPP1R1A 
mediates tumorigenesis and metastasis in Ewing sarcoma, 
and its consumption leads to a substantial reduction in the 
cell migration and oncogenic transformation in vitro and the 
xenograft tumor growth and metastasis in mouse models.37 
CYP2 C9 performs an instrumental function in DNA methyl-
ation as well as iron metabolism in HCC and is considerably 
linked to the HCC patients’ prognoses.38 High CENPU levels 
are substantially linked to the absence of distant metasta-
sis and overall survival. In vitro cell experiments show that 
CENPU knockout inhibits vascular endothelial growth fac-
tor A production in triple-negative breast cancer cells, and 
significantly reduces tube formation as well as the migratory 
ability of endothelial cells in the human umbilical veins in 
vitro.39 SCGN has lower expression in colorectal cancer cells, 
and it drives cell apoptosis and attenuates cell migration 
and invasion.40 SEMA7A has been previously identified as 
a new target to block the advancement of breast tumors.41  
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Figure 2. Construction and verification of the prognosis risk model composed of nine genes. (A, B) LASSO analysis based on the glmnet package was used for 
identifying the prognostic genes in the TCGC-LIHC dataset, and the λ values were determined according to the partial likelihood deviance after 10-fold cross-
validation. (C) TCGA-LIHC cohort was used for survival analysis for comparing the prognosis of patients in the high- and low-risk groups. (D) ROC curves of the risk 
model in the TCGA dataset. (E) Risk score Kaplan–Meier survival curve for risk score in the HCCDB18 cohort. (F) The ROC curves of the risk model in the HCCDB18 
cohort. (A color version of this figure is available in the online journal.)
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Figure 3. Relationship between the risk scores of different subgroups with various clinical factors. (A) Risk score differences among HCC samples grouped by 
gender. (B) Association of risk score with T stage. (C) Comparison of risk scores of HCC patients grouped by N stage. (D) Correlation of M stage and risk score. (E) 
Differences in risk scores between different AJCC stages. (F) Changes in risk score with tumor grades. (G) In the TCGA-LIHC database, the forest plot for the univariate 
Cox analysis assessed the association of clinical factors with patient prognosis and the risk score. (H) Multivariate Cox regression analysis identified variables with 
independent prognostic significance according to the clinical characteristics and risk scores. (A color version of this figure is available in the online journal.)
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In summary, almost all the nine genes in the risk assessment 
model were associated with the malignant biological pro-
gression of cancer. Therefore, we reasonably speculated that 
the nine-gene signature had great potential in anticipating 
the clinical prognosis of patients with HCC.

The nine-gene prognostic model could be used to evalu-
ate HCC prognostic survival by calculating the risk score of 
HCC samples and showed higher 5-year AUC values in the 
training and validation sets. In addition, the risk score inde-
pendently served as a prognostic marker, and HCC samples 

at advanced AJCC stage, T stage, and clinical grade had sig-
nificantly higher risk scores. Non-homologous DNA end 
joining, cell cycle, oocyte meiosis, spliceosome, nucleotide 
excision repair, base excision repair, mismatch repair, DNA 
replication, and homologous recombination were consider-
ably enriched with the increase in risk score.

In conclusion, we integrated the scRNA-seq data and 
multi-omic data to evaluate the characteristics of different 
cell subsets of immune and tumor cells in the HCC micro-
environment and established a novel nine-gene prognostic 

Figure 4. GSVA of low- and high-risk score groups in the TCGA-LIHC database. (A) Clustering correlation coefficients for KEGG pathways and risk score larger than 
0.4. (B) Heatmap for the contribution of single-sample gene set enrichment analysis (ssGSEA) scores to hallmarks in the low- and high-risk groups. (A color version of 
this figure is available in the online journal.)
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model predicated specifically on the gene expression levels 
of important subsets. The prognostic model can be applied 
to determine the death risk of HCC patients. This study may 
contribute to a deeper understanding of underlying hetero-
geneity in HCC and offer a potential new tool for the estab-
lishment of individualized treatment for HCC.
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