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Introduction

Obesity has turned out to be a global problem.1,2 The pro-
gress of obesity is portrayed by either an increase in fat cell 
number or an increase in fat cell/lipid droplet size.3 Previous 
research showed that several important adipokines secreted 
by adipocytes can modulate insulin sensitivity and energy 
homeostasis in the muscles and liver.4–6 Thus, investigations 
on the epigenetic mechanisms of obesity and metabolism of 
adipocytes may shed light on novel therapeutic strategies for 
various metabolic disorders.

MicroRNAs (miRNAs) are small regulatory RNAs (18–25 
nt in length), which post-transcriptionally modulate the 

expression levels of particular genes by base-pairing, gener-
ally to the 3′-untranslated regions (3′-UTRs) of target gene, to 
result in a decrement in translation and/or stability.7 Various 
miRNAs display numerous biological functions, including 
effects on cell proliferation and metabolism.8 In addition, 
several miRNAs, including miR-103,9 miR-27,10 let-7,11 miR-
199a,12 miR-143,13 and miR-425,14 are emerging as new regu-
lators in the modulation of metabolic activity of adipocytes. 
Although previous studies found that miR-143 can enhance 
adipocyte differentiation, the role of miR-143 in regulating 
3T3-L1 cell growth is not clear.

Epigallocatechin gallate (EGCG) has been suggested as 
beneficial agents for antiobesity and as regulators of cell 
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Abstract
Green tea epigallocatechin gallate (EGCG) and microRNA (miRNA) molecules 
modulate obesity. Nevertheless, it is still unknown whether EGCG modulates fat cell 
growth via miRNA-related signaling. In this study, white preadipocytes were used to 
examine whether the antimitogenic effect of EGCG on fat cells is regulated by the 
miR-143/MAPK7 pathway. We showed that EGCG upregulated the levels of miR-
143, but not miR-155, in 3T3-L1 preadipocytes. Moreover, EGCG downregulated 
MAPK7 mRNA and protein levels time- and dose-dependently. MAPK7 expression 
increased during 3T3-L1 cell proliferation. miR-143 overexpression in the absence 
of EGCG mimicked the effects of EGCG to suppress preadipocyte growth and 
MAPK7 expression, whereas knockdown of miR-143 antagonized the EGCG-
altered levels of miR-143, MAPK7, and pERK1/2 and reversed the EGCG-inhibited 
cell growth. These findings suggest that EGCG inhibits 3T3-L1 cell growth via miR-
143/MAPK7 pathway.
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Epigallocatechin gallate (EGCG) directly modu-
lates the functions of adipocytes. Few studies have 
examined whether EGCG has distinct microRNA 
(miR) signaling pathways to act on cellular pro-
cesses among white fat cells. This study provides 
convincing evidence that EGCG can upregulate the 
expression of miR-143 in 3T3-L1 cells. We dem-
onstrated that EGCG downregulated mRNA and 
protein levels of MAPK7 and miR-143 suppressed 
3T3-L1 preadipocyte proliferation by directly target-
ing MAPK7. We found a novel miR-143/MAPK7 
signaling pathway for EGCG regulation of the cell 
growth of 3T3-L1 preadipocytes.
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proliferation, differentiation, and browning in white adipo-
cytes.15–17 Numerous studies have demonstrated that EGCG 
can modulate miRNA expression for the regulation of cancer 
cell growth in cervical, breast, prostate, lung, and liver cancer 
and melanoma.18–23 Nevertheless, there is little knowledge 
about the miRNA regulated by EGCG for the modulation of 
fat cell growth.

This study aims to explore the signal pathway through 
which EGCG affects miR-143 in relation to growth and to 
improve our understanding of the utilization of EGCG or 
miRNA molecules in antiobesity strategies.

Materials and methods

Reagents

EGCG was dissolved in 0.1% dimethyl sulfoxide (DMSO).24  
The miR-143 mimic (sequences for sense strand: UGAGA 
UGAAGCACUGUAGCUC; sequences for antisense  
strand: GCUACAGUGCUUCAUCUCAUU) mimic negative  
control (NC; sequences for sense strand: UUCUCCGAACG 
UGUCACGUTT; sequences for antisense strand: ACGUGA 
CACGUUCGGAGAATT), miR-143 inhibitor (sequences 
for sense strand: GAGCUACAGUGCUUCAUCUCA), and  
inhibitor NC (sequences for sense strand: CAGUACU 
UUUGUGUAGUACAA) were purchased from Shanghai 
GenePharma Co., Ltd. MaestrofectinTM transfection reagent 
was obtained from Omics Bio.

Cell culture

3T3-L1 cells (ATCC-CL-173) were used in this study. The cells 
were maintained in Dulbecco’s modified Eagle’s medium 
supplemented with 10% fetal calf serum. The 3T3-L1 cells 
were induced for differentiation by using the standard 3T3-
L1 cell differentiation protocol described previously.16

MTT assay

Twenty microliters of MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) solutions from the stock 
(5 mg/mL) was added to the cells (10,000 cells per well, 
48-well culture plates) for 1 h. Formazan crystals were dis-
solved using DMSO. The absorbance was recorded at 570 nm.

Decreased formazan quantification was assayed using a 
formazan standard.

MiR-143 mimic or inhibitor transfection

3T3-L1 cells were transfected with miRNA mimic (100 nM), 
miRNA inhibitor (100 nM), and scrambled NCs using the 
MaestrofectinTM transfection reagent. After transfection for 
48 h, miR-143 levels and cell number were examined.

Real-time polymerase chain reaction

Real-time polymerase chain reaction (RT-PCR) with SYBR green 
(Bio-Rad) was carried out on a 7300 RT-PCR System (Applied 
Biosystems). The primer sequences for the genes were as fol-
lows: MAPK7 forward, 5′-TAGTGAGCCTGTGTGTCCAG-3′ 
and reverse, 5′-CTGCGCTTCTCTTCTCGTTC-3′, C/EBPα 
forward, 5′-GTAACCTTGTGCCTTGGATACT-3′ and 
reverse, 5′-GGAAGCAGGAATCCTCCAAATA-3′, PPARγ 
forward, 5′-CACAAGAGCTGACCCAATGGT-3′ and 

reverse, 5′-GATCGCACTTTGGTATTCTTGGA-3′, and 
GAPDH (glyceraldehyde 3-phosphate dehydrogenase) for-
ward, 5′-CCTCTGGAAAGCTGTGGCGT-3′ and reverse, 
5′-TTGGCAGGTTTCTCCAGGCG-3′. For miRNA analysis, 
complementary DNAs (cDNAs) were synthesized using 
the TaqMan MicroRNA Reverse Transcription Kit and sub-
jected to RT-PCR using KAPA PROBE FAST qPCR Kit Master 
Mix (2X) Universal. The primers for mus-miR-143 (00-0377, 
Thermo Fisher Scientific) were used. Synthetic miRNA U6 
was used as a reference gene.

Western blot analysis

Protein concentrations were determined using the Bradford 
method. The following antibodies and secondary antibodies 
were used: phospho-ERK1/2 (Cat. No. 9101; 1:1000; Cell 
Signaling Technology), MAPK7 (Cat. No. 33725; 1:1000;  
Cell Signaling Technology), actin (Cat. No. 8457; 1:1000; Cell 
Signaling Technology), and ERK1/2 (Cat. No. sc-93; 1:1000; 
Santa Cruz Biotechnology).

Statistical analysis

Values are expressed as mean ± standard error of the mean 
(SEM). Student’s t-test and one-way analysis of variance 
(ANOVA) and a subsequent post hoc Tukey test were used 
in this study. P < 0.05 was considered statistically significant.

Results

EGCG upregulates the expression levels of  
miR-143 time- and dose-dependently, but  
not miR-155, in 3T3-L1 preadipocytes

MiR-143 modulates adipocyte differentiation by directly 
targeting MAP2K5 signaling,25 and EGCG is considered a 
chemopreventive agent for the modulation of cell growth, 
apoptosis, and differentiation in white adipocytes;15,26–28 how-
ever, it is unknown whether miR-143 serves as a molecular 
target of antimitogenic effects of EGCG in white adipocytes. 
We first investigated miR-143 levels after EGCG treatment in 
3T3-L1 preadipocytes. We found that EGCG time- and dose-
dependently upregulated miR-143 expression levels (Figure 
1(a) and (c)). In addition, miR-155 secreted from the adipose 
tissue macrophage-derived exosomes can regulate insulin 
sensitivity.29 MiR-155 was significantly upregulated in the adi-
pose tissue of obese subjects.30 We further found that EGCG 
did not change miR-155 expression (Figure 1(b) and (d)).

EGCG inhibits the mRNA and protein levels of 
MAPK7 in 3T3-L1 cells time- and dose-dependently

According to the TargetScan Mouse database for target 
gene prediction and previous reports,25 MAPK7 can act as 
the target gene of miR-143. We showed that MAPK7 was 
upregulated during the proliferative stages of 3T3-L1 cells 
(Figures 2(a)) and that EGCG significantly reduced the 
mRNA (Figure 2(b) and (c)) and protein levels (Figure 2(d) 
and (e)) of MAPK7 time- and dose-dependently.

MiR-143 inhibits 3T3-L1 preadipocyte proliferation

We next investigated whether miR-143 regulates the cell 
growth in 3T3-L1 preadipocytes. Compared with the NC, 
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50 and 100 nM miRNA-143 mimic upregulated the miR-143 
expression (Figure 3(a)). As shown in Figure 3(b) and (c), 100 
nM miRNA-143 mimic decreased the mRNA and protein 
levels of MAPK7 compared to the NC. Moreover, miR-143 
mimics inhibited cell proliferation (Figure 3(d)) and viability 
(Figure 3(e)). These findings demonstrate that miR-143 can 
suppress 3T3-L1 cell growth.

Knockdown of miR-143 antagonizes the EGCG 
regulation of expression levels of miR-143 
and MAPK7 and cell proliferation in 3T3-L1 
preadipocytes

The miR-143 inhibitor significantly decreased the miR-143 
expression level and antagonized EGCG-induced miR-143 
expression (Figure 4(a)). miR-143 knockdown caused by the 
inhibitor significantly upregulated the mRNA (Figure 4(b)) 
and protein levels (Figure 4(c)) of MAPK7. In addition, the 

miR-143 inhibitor counteracted the EGCG-induced decrease 
in the MAPK7 mRNA (Figure 4(b)) and protein levels (Figure 
4(c)). The miR-143 inhibitor also antagonized the EGCG-
induced downregulation in cell number (Figure 4(d)).

Knockdown of miR-143 antagonizes EGCG-
regulated pERK1/2 in 3T3-L1 cells

The miR-143 inhibitor reversed the EGCG downregulation 
of phosphorylation of ERK1/2 (Figure 5(a) and (b)) but did 
not alter the total ERK1/2 protein level (Figure 5(a) and (c)). 
Therefore, miR-143 was involved in EGCG regulation of the 
ERK1/2 signaling.

Discussion

In this study, we demonstrated that EGCG upregulated 
miR-143 expression in 3T3-L1 cells. We further showed that 

Figure 1.  The effect of EGCG on the levels of miR-143, but not miR-155 in 3T3-L1 cells: For dose-dependent effect, the cells were treated with EGCG for 24 h. (a) 
and (c) miR-143 expression was analyzed via quantitative PCR (qPCR). (b) and (d) miR-155 expression was analyzed by qPCR. Data are presented as mean ± SEM 
(n = 3). *P < 0.05, compared with the control group.
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Figure 2.  The effect of EGCG on the mRNA and protein levels of MAPK7 in 3T3-L1 preadipocytes. For dose-dependent effect, the cells were treated with EGCG for 
24 h. (a), (b), and (c) MAPK7 expression was analyzed via qPCR. (d) and (e) Representative immunoblotting analyses of MAPK7 and quantification of western blot 
bands. Data are presented as mean ± SEM (n = 3 or 4). *P < 0.05, **P < 0.01, ***P < 0.001, compared with the control group. (A color version of this figure is available 
in the online journal.)
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EGCG significantly decreased the mRNA and protein levels 
of MAPK7. The miR-143 mimic inhibited 3T3-L1 cell growth, 
and the MiR-143 inhibitor antagonized the EGCG-induced 
decrease in the cell number. Furthermore, miR-143 was 
involved in the EGCG modulation of the ERK1/2 signaling 

pathway. Our findings demonstrate that EGCG might sup-
press 3T3-L1 cell proliferation via miR-143/MAPK7 signal-
ing pathways (Figure 6).

We found that EGCG could reduce body fat, body weight, 
blood lipids, adipokines, and food uptake.24,31 Green tea 

Figure 3.  MiR-143 mimic inducing significant decreases in MAPK7 mRNA and protein levels and inhibiting cell growth in 3T3-L1 cells. The cells were transfected 
with miR-143 mimic for 48 h. (a) miR-143 expression was analyzed via qPCR. (b) The expression of MAPK7 was analyzed by qPCR. (c) The protein level of MAPK7 
was measured via western blot analysis. (d) Cell number. (e) Cell viability was analyzed by the MTT assay. Data are presented as mean ± SEM (n = 3–8). *P < 0.05, 
**P < 0.01, ***P < 0.001, compared with the NC group. (A color version of this figure is available in the online journal.)
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extract and catechin-polyphenols increase energy expend-
iture and thermogenesis in rats and humans.32,33 Lee et al. 
showed that EGCG-fed mice had higher body temperature 
and mitochondrial DNA content in brown adipose tissue.34 In 
addition, EGCG suppressed the expression of genes related 
to the synthesis of de novo fatty acids such as ACC1, CCAAT/
enhancer-binding protein beta (C/EBPβ) and PPARγ and 
increased the expression of hormone-sensitive lipase in the 
white adipose tissue of mice.35 To support the in vivo find-
ings, our in vitro studies demonstrated that EGCG suppressed 
preadipocyte mitogenesis, adipogenic differentiation, and tri-
glyceride biosynthetic enzyme activity.15,16,26,27,36,37 In addition, 
EGCG stimulates preadipocyte apoptosis, AMPK activity, and 

reactive oxygen species production by decreasing glutathione 
levels.15,28,38 Moreover, EGCG decreases triglyceride levels 
during the differentiation of white adipocytes, suggesting its 
suppressive actions on terminal differentiation.15,16,39 EGCG 
also inhibits the activity of various fat metabolism–related 
enzymes (e.g. ACC, fatty acid synthase, gastric and pancre-
atic lipases, and squalene epoxidase)40–44 and cell migration, 
and suppresses lipid deposition.45 Although EGCG directly 
modulates the functions of the fat cells and adipose tissues, or 
indirectly modulates hormone-mediated fat cell activity, few 
studies have examined whether EGCG has distinct miRNA 
signaling pathways to act on the cellular processes among 
white fat cells.

Figure 4.  Knockdown of miR-143 antagonizing the EGCG regulation of expression levels of miR-143 and MAPK7, as well as cell proliferation in 3T3-L1 preadipocytes. 
The cells are pretreated with miR-143 inhibitor or negative control (NC) for 24 h and followed by 50 μM EGCG treatment for 48 h. (a) miR-143 expression was analyzed 
via qPCR. (b) MAPK7 expression was analyzed by qPCR. (c) The protein level of MAPK7 was measured by western blot. (d) Cell number. Data are presented as 
mean ± SEM (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001, compared with the NC group. #P < 0.05, ##P < 0.01, EGCG + NC versus EGCG + miR-143 inhibitor. (A color 
version of this figure is available in the online journal.)
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MiRNAs are associated with fat cell function and obe-
sity46–52 and involved in the modulation of lipid and glu-
cose metabolism53,54 A previous study showed the miRNA 

regulation of fat cell function in Drosophila and demonstrated 
that miR-14 inhibits fat metabolism by targeting the p38 and 
MAPK pathways.55 Of the adipogenesis-related miRNAs, 
miR-143 was first described as a positive modulator of adi-
pocyte differentiation through ERK5 pathway.13 However, 
miR-143 was found to impair mitotic clonal expansion 
(MCE),25 suggesting a cell process-dependent effect. miRNA-
143 was found to be upregulated after induction of differen-
tiation in preadipocytes and the mesenteric fat of high-fat 
diet–induced obese mice.13,48,56 A previous study showed 
that obesity-induced upregulation of miRNA-143 increased 
insulin resistance by inhibiting AKT signaling and down-
regulating oxysterol-binding-protein-related protein 8.57

MAPK7, also known as ERK5, belongs to the MAPK family. 
The suppression of miR-143 inhibits adipogenesis and upreg-
ulates the protein levels of MAPK7, suggesting that miR-143 
targets MAPK7.58 However, it is unknown whether miR-143/
MAPK7 pathways are involved in the EGCG modulation of 
the proliferation stage in 3T3-L1 cells. In our study, we showed 
that EGCG alone or miR-143 mimic alone could decrease the 
expression levels of MAPK7 mRNA and protein (Figures 2 
and 3(b) and (c)), suggesting that MAPK7 may regulate cell 
growth in 3T3-L1 cells. We further showed that EGCG alone 
or miR-143 mimic alone could inhibit the pERK1/2 signal-
ing pathway. Knockdown of miR-143 antagonized EGCG-
regulated pERK1/2 in 3T3-L1 preadipocytes (Figure 5).

Figure 5.  Knockdown of miR-143 antagonizing EGCG-regulated pERK1/2 in 3T3-L1 preadipocytes. The cells are pretreated with miR-143 inhibitor or NC for 24 h, 
followed by 50 μM EGCG treatment for 48 h. (a) Representative immunoblotting analyses of pERK1/2 and ERK1/2. (b) and (c) Quantification of western blot bands. 
Data are presented as mean ± SEM (n = 3–7). *P < 0.05, compared with NC group. #P < 0.05, EGCG + NC versus EGCG + miR-143 inhibitor. (A color version of this 
figure is available in the online journal.)

Figure 6.  EGCG inhibiting cell growth of 3T3-L1 preadipocytes through the 
miR-143/ MAPK7 pathways. (A color version of this figure is available in the 
online journal.)
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Although the effects of EGCG and miRNA on 3T3-L1 cell 
differentiation have been extensively reported,42,48 only a few 
studies reported that EGCG had distinct miRNA signaling 
pathways to act on the cellular processes of white fat cells. 
Because the mitotic clonal expansion of 3T3-L1 preadipo-
cytes is preceded by the process of adipogenic differentia-
tion, an examination of the effects of EGCG and miRNA on 
the growth of 3T3-L1 preadipocytes will improve the under-
standing of the mechanism by which the miRNA signaling 
cascades mediate EGCG action. Our study provides evidence 
that EGCG can upregulate miR-143 expression to suppress 
the growth of 3T3-L1 cells. As EGCG and miR-143 were, 
respectively, found to downregulate and upregulate 3T3-L1 
cell differentiation,42,59 it is worthwhile to explore whether 
EGCG influences the differentiation process of 3T3-L1 cells 
through modulation of miR-143 expression. We showed that 
EGCG at 25 µM enhanced miR-143 and miR-let-7a levels 
and inhibited the mRNA levels of other adipogenesis induc-
ers, such as C/EBPα and PPARγ (Supplemental Figure 1). 
As transfection of let-7 into 3T3-L1 cells suppressed growth 
and differentiation11 and as C/EBPα and PPARγ functioned 
to stimulate adipogenic differentiation,60 these data suggest 
that EGCG may suppress 3T3-L1 cell differentiation via dis-
tinct miRNA pathways and/or through inhibition of other 
adipogenic inducers.

Green tea EGCG possesses multiple biological effects in 
vitro, and its effective doses generally range from 1 to 100 
µM.16 In vivo, the circulating and tissue levels of EGCG, as 
generally reported in animals and humans, are in the range 
of 0.1–24 µM and 0.5–565 µM, respectively.16 The wide 
range of EGCG levels is caused by the low bioavailability of 
administrated EGCG, which depends on the purity, dosage, 
route of administration, duration of treatment, type of tis-
sue, and species involved.61 When human subjects receive 
a single ascending dose of EGCG from 50 to 1600 mg, the 
maximum plasma concentrations of EGCG ranged from 0.2 
to 11.4 µM.62 When human subjects drink two to three cups 
of green tea, the saliva levels of EGCG reach peaks of 11–48 
µM after a few minutes of consumption.63 Based on these 
previous reports, we chose the ranging doses of EGCG from 
0 to 50 µM for the study because the dosage range covered 
at least its physiological levels. Whether the circulating lev-
els of EGCG can be accumulated by long-term tea drinking 
was not determined in this study. Thus, the concentrations 
of EGCG used in this study ranged from 10 to 50 µM, in 
which, part of them corresponds to the higher circulating 
EGCG levels in human subjects and tissue EGCG levels in 
animals. However, our findings could not exclude the pos-
sibility that the 50 µM of EGCG used in the study may be 
pharmacological. We did observe that the doses of EGCG at 
20 and 50 μM were effective in upregulating the expression 
of miR-143 and decreasing MAPK7 expression. In addition, 
we found that significant changes in MAPK7 mRNA and 
protein levels of 3T3-L1 cells induced by 50 μM EGCG were 
more consistent than those treated by 20 μM EGCG. This 
allowed us to choose 50 μM EGCG in the subsequent stud-
ies. Unfortunately, the dose of 20 μM EGCG that is more 
physiologically relevant than 50 μM EGCG was not deter-
mined in the subsequent experiments. This is one of our 

limitations. No matter whatever the physiological or phar-
macological effects of EGCG are, these concentrations are 
compatible with the effective doses (10–100 µM) of EGCG 
for regulating mitogenesis and adipogenesis in fat cells and 
body weight in animals.62,64 Most epidemiological stud-
ies indicate that an inverse association exists between the 
consumption of tea and obesity and that miR-143 functions 
to regulate adipogenesis;13,58 however, further research is 
required to obtain definite conclusions on whether these 
epidemiological results can be explained by the effects of 
EGCG on preadipocyte miR-143 signaling cascade. It is also 
worthwhile to explore what the physiological and pharma-
cological levels of EGCG are appropriately and effectively 
used for respective preventive and therapeutic treatments 
for fat cell–associated diseases. Whether the use of EGCG 
as a therapeutic delivered by an intravenous way to get 
past the bioavailability issue is interesting and testable, but 
the possibility needs to be examined in future thorough 
studies.

In conclusion, we showed that EGCG inhibits the cell 
growth of 3-T3-L1 cells through miR-143/MAPK7 pathways 
(Figure 6).
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