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Introduction

Lung cancer has long been the leading cause of cancer-related 
mortality worldwide,1 with NSCLC accounting for more 
than 80% of lung cancer diagnoses. The advent of small-
molecule drugs targeting specific signaling pathways has 

resulted in a significant breakthrough by markedly extend-
ing progression-free survival (PFS) and overall survival (OS) 
for NSCLC patients with epidermal growth factor receptor 
(EGFR)-sensitive mutation or anaplastic lymphoma kinase 
(ALK) fusion/mutation.2,3 Furthermore, immune checkpoint 
inhibitors (ICIs) targeting programmed death receptor-1 
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Abstract
Despite significant advances in targeted and immune therapy for non-small cell lung 
cancer (NSCLC), effective therapies for wild-type epidermal growth factor receptor/
anaplastic lymphoma kinase (EGFR/ALKWT) with low expression of programmed 
death ligand-1 (PD-L1) NSCLC remain elusive. Numerous studies have shown that 
ferroptosis plays an essential role in antitumor activity. To identify the molecular 
regulation patterns associated with ferroptosis, 351 EGFR/ALKWT NSCLC samples 
with low-level PD-L1 were extracted from The Cancer Genome Atlas (TCGA) and 
clustered using the k-means clustering technique. The two clusters associated 
with ferroptosis showed significantly different prognoses. In total, 169 differential 
expression genes (DEGs) were identified. Cluster differential analysis revealed 
that Cluster 1 had a significantly poorer overall survival (OS) and was associated 
with more negative immune regulation. In addition, TCGA samples were randomly 
assigned in a 7:3 ratio to a training group or testing group. A signature of eight 
genes associated with ferroptosis was established in the training cohort using 
DEGs and validated in the test cohort and three independent cohorts (GSE72049, 
GSE41271, and GSE50081). The 5-year area under the curve (AUC) was 0.713, 
which was significantly higher than that of other predictors, including TNM stage 
and age. Furthermore, the risk score was associated with immune function, 
immune infiltration, and immunotherapy response, with high-risk patients having 
a worse prognosis, an immune-suppressing phenotype, and a poor response to 
immune checkpoint inhibitors. This study aims to contribute to our understanding of 

the biological role of ferroptosis in EGFR/ALKWT NSCLC with low-level PD-L1, laying the groundwork for the development of novel 
therapeutic strategies.
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Impact Statement

Despite substantial advances in targeted and 
immune therapy for NSCLC, viable treatments for 
driver-negative NSCLC with low PD-L1 expression 
remain unresolved. While some of these patients 
might benefit from immune checkpoint inhibitors 
(ICIs), a more precise predictor is also needed to 
identify highly susceptible individuals. Ferroptosis 
is essential for antitumor action. Our findings indi-
cated a link between ferroptosis and both OS and 
the immune microenvironment. Moreover, we con-
structed an eight-gene signature (risk score = [−0.0
24*CLIC6] + [−0.044*ADH1C] + [0.023*CPS1] + [0.0
18*STC2] + [0.007*ABCC2] + [0.041*KLK8] + [0.067
*INSL4] + [−0.005*CHST9]), which negatively cor-
related with patient prognosis and immunotherapy 
response. Collectively, our findings may contribute 
to a better understanding of the biological role of 
ferroptosis in EGFR/ALKWT NSCLC with low-level 
PD-L1, providing a robust basis for developing new 
therapeutic strategies.
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(PD-1) and its ligand (PD-L1) have considerably extended 
the OS of wild-type epidermal growth factor receptor/
anaplastic lymphoma kinase (EGFR/ALKWT) non-small cell 
lung cancer (NSCLC) patients with positive PD-L1 (> 1%).4,5 
However, effective treatment modalities remain elusive for 
EGFR/ALKWT and negative PD-L1 expression (< 1%) NSCLC 
patients, which accounts for about 40% of lung cancers.6,7 
While multidrug combinations have clinically been used 
as a last resort for this population, this has also led to a sig-
nificantly increased number of reported adverse events.5,8,9 
Although a handful of NSCLCs with negative PD-L1 could 
respond to ICIs,6,7 it is difficult to identify this subset of peo-
ple due to the lack of an accurate biomarker. As a result, 
additional efforts are needed to develop novel therapeutic 
strategies for NSCLC with EGFR/ALKWT and negative PD-L1 
expression.

Ferroptosis is a particular programmed cell death involving 
the iron-dependent accumulation of lipid hydroperoxides to 
lethal levels.10,11 Mounting studies have indicated that fer-
roptosis is associated with various antitumor activities.12 
For instance, the ferroptosis activators RSL3 and erastin 
were selectively lethal against tumors with RAS mutation, 
and the activation of ferroptosis cell death could reverse the 
resistance of cancer cells to chemotherapy.13,14 Furthermore, 
ferroptosis has a synergistic effect with anti-PD-L1 anti-
bodies, which can be boosted or diminished by ferropto-
sis activators or inhibitors, respectively.15 Nevertheless, 
damage-associated molecular patterns released during 
ferroptotic cell death also have a tumor-promoting effect. 
HMGB1 has been shown to induce inflammatory responses 
that promote tumor growth,16 and KRAS-G12D can polar-
ize macrophages to an M2 phenotype, resulting in immu-
nosuppression.17 The interaction between ferroptosis and 
antitumor activity is still poorly understood, and additional 
research is required.

Herein, the effect of 24 ferroptosis-related genes on prog-
nosis and the immune microenvironment in EGFR/ALKWT 
low PD-L1 expression NSCLC patients was evaluated. The 
351 samples were clustered according to the levels of fer-
roptosis regulators, and two subtypes, which were signifi-
cantly different in OS and immune function, were identified. 
Based on the differential expression genes (DEGs) between 
the clusters, a scoring model was generated by univariate 
and least absolute shrinkage and selection operator (LASSO) 
penalty Cox regression. Importantly, our signature model 
could predict OS, tumor immune microenvironment (TIME), 
and the response to ICIs. Our current findings suggested a 
potential association between ferroptosis, prognosis, TIME, 
and immunotherapy responsiveness in EGFR/ALKWT NSCLC 
patients with low-level PD-L1.

Materials and methods

The study flow chart is shown in Figure 1.

Datasets and preprocessing

The current study included lung adenocarcinoma and squa-
mous cell carcinoma patients from The Cancer Genome 
Atlas (TCGA) database (accessed December 2021). Genome, 
transcriptome, and clinical data were downloaded on 16 

December 2021. According to previous studies,6,7 about 40% 
of NSCLC showed negative PD-L1 expression; therefore, 
PD-L1 transcript levels lower than 40% were defined as low 
expression. After excluding EGFR/ALK-mutant and high 
PD-L1 expression samples, 351 tumor and 107 paracancer 
tissue samples were selected. The expression data were nor-
malized to transcripts per million (TPM), and batch effects 
were removed using the “RemoveBatchEffect” function in 
the limma package (version 3.46.0).18 We downloaded three 
NSCLC datasets (GSE72049, GSE41271, and GSE50081) from 
Gene Expression Omnibus (GEO, accessed December 2021) 
as independent validation sets. All the analyses were imple-
mented using R software (version 4.0.3, accessed December 
2021–January 2022).

Genetic mutation, expression, and interaction of 
ferroptosis-related genes

Overall, 24 ferroptosis-related genes (Supplementary Table 
S1) were identified by previous studies.11 The genetic 
landscape of EGFR/ALKWT low-level PD-L1 NSCLC was 
generated using the Maftools package (version 2.6.05).19 
The expression of 24 regulators in tumors and paracancer 
tissues was compared using the Wilcox test. A protein–
protein interaction (PPI) network for ferroptosis-related 
genes was generated using the Search Tool for the Retrieval 
of Interaction Genes (STRING version 11.0, accessed 
December 2021). R packages ggplot2 (version 3.3.5), 
reshape (version 0.8.8), and igraph (version 1.2.7) were 
also utilized in these procedures.20

Unsupervised clustering

The k-means clustering method was adopted to classify 351 
samples into different subtypes based on the transcript levels 
of 24 ferroptosis-related genes. The process was repeated 
1000 times to achieve a robust classification,21 and the num-
ber of clusters was adjusted using the consensus algorithm.22

Identification of DEGs and function annotation

To identify DEGs between two ferroptosis-related clusters, 
the limma package was used with the significance crite-
ria of |log2-fold change| > 0.8 and false discovery rate 
(FDR) < 0.05. Gene enrichment analysis was conducted 
using MetaScape (www.metascape.org, version 3.5.20220101, 
accessed December 2021). To identify the molecular char-
acteristic, gene set enrichment analysis (GSEA) was con-
ducted based on “c2.cp.kegg.v7.4.symbols” and “c5.
go.bp.v7.4.symbols” from the MSigDB database (accessed 
December 2021).

Construction of a ferroptosis-related prognostic 
signature

All EGFR/ALKWT and low PD-L1 NSCLC samples were ran-
domly assigned to a training or testing group in a 7:3 ratio. 
We first screened prognosis-related DEGs using univariate 
Cox regression in the training group with a cutoff value of 
0.05. LASSO regression was then implemented to select the 
candidate markers and generate a ferroptosis-related prog-
nostic signature (glmnet package, version 4.1-2).23 Patients 

www.metascape.org
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were classified as high or low risk according to the median 
value of risk scores in the training set. Survival analysis 
between the two risk groups was carried out using the 
Kaplan–Meier method (survival and survivalROC pack-
age, version 3.2-13 and 1.0.3, respectively).24 The predictive 
power of the ferroptosis-related model was evaluated using 
the time-dependent receiver operating characteristic (ROC) 

curve. The ferroptosis-related model was further validated 
in the testing group and three independent cohorts.

Estimation of immune microenvironment feature

The immune score of all samples was calculated using the 
R package ESTIMATE (version 1.0.13).25 The ESTIMATE 

Figure 1. Workflow diagram. The flow chart of data analysis. (A color version of this figure is available in the online journal.)
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algorithm consists of an “immune score” parameter and 
two non-immune parameters, “stromal score” and “tumor 
purity.” We also revealed the immunologic characteristics 
between groups using multiple acknowledged algorithms, 
such as XCELL, MCPcounter, and CIBERSORT. Correlation 
coefficients between the risk score and diverse immune-infil-
trating cells were obtained using the spearman correlation 
method. The estimation data were downloaded from TIMER 
2.0 (http://timer.cistrome.org/, accessed January 2022). The 
R packages tidyverse (version 1.3.1) and ggplot2 (version 
3.3.5) were also utilized.

Based on published studies, 29 immune-related gene sets 
were selected,26 representing distinct immune cells and func-
tions. Each sample’s immune biological role and physiologi-
cal function scores were quantified through single-sample 
GSEA (ssGSEA).

Estimation of immunotherapy response

According to the expression of immune biomarkers, a solid 
tumor can be roughly divided into two categories, immuno-
logically hot or cold tumors, of which hot tumors are more 
sensitive to immunotherapy.27 The association between 
the risk score and immunological cluster was assessed 
by dividing all samples into hot or cold tumors using an 
unsupervised clustering method. In addition, the immu-
nophenoscore (IPS) for each sample was calculated using 
The Cancer Immunome Database (TCIA, accessed January 
2022). TCIA provides an IPS based on tumor immunogenic-
ity identified by a random forest approach, and a higher IPS 
often, but not always, suggests a better response to ICIs.28,29

Statistical analysis

The normality of continuous data was evaluated using the 
Shapiro–Wilk test, and the homogeneity of variance was 
assessed using Levene’s test. Two-sample t-test or Wilcox 
test was used where appropriate. Chi-square tests were used 
to compare the difference in clinical features. Coefficients 
of correlation were computed using the Spearman’s rank 
correlation method. Log-rank tests were used in survival 
analyses. Two-side P value less than 0.05 was considered 
statistically significant.

Results

The genetic and expression characteristics of 
ferroptosis-related genes in EGFR/ALKWT low-level 
PD-L1 NSCLC patients

In EGFR/ALKWT NSCLC patients with low-level PD-L1, mis-
sense mutation was the most frequent variant classification 
(Figure 2(A)). Single-nucleotide polymorphism (SNP) was 
the highest frequency variant type, while the most common 
single-nucleotide variant (SNV) class was C > A (Figure 2(B) 
and (C)). However, 71 of the 346 samples (20.52%) showed 
ferroptosis-related mutations (Figure 2(D)). Of these, 
NFE2L2 exhibited the highest frequency of mutation (7%), 
followed by DPP4 (4%). Interestingly, no ATP5G3, LPCAT3, 
SAT1, CISD1, GPX4, and HSPB1 mutations were detected. 
The most commonly affected oncogenic pathway was the 

PTK-RAS pathway (78%), followed by the TP53 and Hippo 
pathways (62% and 59%, Figure 3). In total, 10 ferroptosis-
related genes (CDKN1A, HSPA5, NFE2L2, HSPB1, SLC1A5, 
TFRC, RPL8, LPCAT3, CS, and ATP5G3) were upregulated 
in tumor samples compared to paracancer tissues, whereas 
8 were downregulated (GPX4, FANCD2, FDFT1, SAT1, 
NCOA4, DPP4, ALOX15, and ACSL4) (Figure 4). To further 
study the interaction of ferroptosis-related genes, we used 
the STRING platform to conduct a PPI analysis and identi-
fied four genes as hub genes (GPX4, SLC7A11, NFE2L2, and 
ACSL4). The correlation network is represented in Figure 
5(A) and (B).

Identification of ferroptosis-related molecular 
subtypes

Based on the transcript levels of 24 ferroptosis regulators, we 
identified two different molecular patterns with the high-
est intragroup and low intergroup correlations using the 
unsupervised consensus clustering analysis (Figure 6(A), 
Supplementary Figures S1 and S2). Overall, 232 samples 
were assigned to the ferroptosis-related Cluster 1, while 119 
were assigned to the ferroptosis-related Cluster 2. The fer-
roptosis regulators SLC7A11, FANCD2, CISD1, TFRC, CARS, 
and ATP5G3 were significantly upregulated in Cluster 1, 
while NFE2L2, HSPB1, GPX4, NCOA4, DPP4, and ALOX15 
were downregulated (Supplementary Figure S3). Survival 
analysis demonstrated that ferroptosis-related Cluster 1 had 
a significantly better OS than Cluster 2 (P = 0.004, Figure 6(B)). 
We found that more males were in Cluster 1 (P = 0.014, Figure 
7(A)), and patients were usually younger (P = 0.011, Figure 
7(B)). No difference was detected between the two ferropto-
sis-related clusters in terms of pathological stage and type 
(Figure 7(C) and (D)). Using the significance criteria of |log2-
fold change|> 0.8 and FDR < 0.05, 169 DEGs were identified 
(Supplementary Table S2). Functional annotation-suggested 
DEGs were enriched in immune process pathways, including 
negative regulation of immune system process and humoral 
immune response (Figure 8). GSEA analysis revealed that 
the JAK-STAT, B cell receptor, chemokine, and T cell receptor 
signaling pathways were downregulated in Cluster 1 (Figure 
9). In addition, the immune and stromal scores of Cluster 1 
were significantly higher than that of Cluster 2 (P < 0.001 and 
P < 0.01, respectively, Figure 10(A) and (B)), while Cluster 1 
had a higher tumor purity (P < 0.001, Figure 10(C)).

Establishment and validation of a ferroptosis-
related signature

To further explore the underlying association of ferroptosis-
related clusters with prognosis, we developed a signature 
based on DEGs. To eliminate bias caused by non-tumor-
related death, 11 samples having a median OS of fewer than 
30 days or lacking survival data were excluded. Thus, 340 
patients were randomly assigned to training and testing 
groups in a 7:3 ratio, resulting in 238 samples being assigned 
to the training group and 102 samples being assigned to the 
testing group. In the training group, univariate Cox regres-
sion analysis identified eight high-risky genes (CPS1, STC2, 
INHA, HHIPL2, CAL, ABCC2, KLK8, and INSL4) and six 

http://timer.cistrome.org
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protective genes (CLIC6, SCL15A2, ADH1C, HLF, and CHST9) 
using the criteria of P < 0.05 as cutoff (Supplementary Figure 
S4). Subsequently, LASSO regression narrowed down the 
potential markers, and an eight-gene ferroptosis-related sig-
nature was generated according to the minimum λ value 
(Supplementary Figures S5 and S6). Risk scores were calcu-
lated as follows: risk score = (−0.024*CLIC6) + (−0.044*ADH
1C) + (0.023*CPS1) + (0.018*STC2) + (0.007*ABCC2) + (0.041
*KLK8) + (0.067*INSL4) + (−0.005*CHST9) (Table 1).

According to the median score, 238 participants in the 
training cohort were divided into high- and low-risk sub-
groups. Survival analysis suggested that higher risk scores 
were associated with worse OS. The area under the curve 

(AUC) values for the signature were 0.672, 0.663, and 0.713 
at 1, 3, and 5 years, respectively, according to the ROC curves 
(Figure 11(A) to (D)). The same formula was applied in the 
testing cohort and three independent validation sets, yield-
ing similar results (Figure 11(E) to (H) and 12(A) to (C)), 
indicating a robust predictive performance of the ferrop-
tosis-related signature model. In addition, the prognostic 
signature was better than other factors for predicting 5-year 
survival of NSCLC patients with EGFR/ALKWT and low-level 
PD-L1 (Figure 12(D)).

Univariate and multivariable regression analyses with the 
risk score and other clinical parameters were also performed. 
The univariate analysis suggested that increased risk scores 

Figure 2. Genetic variation of ferroptosis-related genes in EGFR/ALKWT low-level PD-L1 NSCLC. The mutation frequency, classification, and waterfall plot based on 
346 TCGA samples. (A color version of this figure is available in the online journal.)
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were significantly associated with poor prognosis (Figure 
13(A)). In addition, the multivariate analysis suggested that 
the risk score might be used as an independent predictor 
of OS in EGFR/ALKWT low-level PD-L1 NSCLC patients 
(HR = 5.300, 95% CI: 2.701–10.404, Figure 13(B)).

Immune cell infiltration analysis revealed an 
immune-suppressive state with higher  
risk scores

Based on currently accepted methodologies, the Spearman 
correlation of diverse immune cells with the risk score was 
estimated. As illustrated in Figure 14, negative correlation 
coefficients were frequently observed (P < 0.05), indicat-
ing an immune-excluded phenotype in individuals with a 
higher risk score. Most of the infiltrated cells were negatively 
associated with the risk score, consisting of both antitumor 
and immune-suppressive cells. For instance, all the immune 
infiltration prediction algorithms that indicated B cells were 
negatively linked to the risk score, and five algorithms iden-
tified a negative correlation between T cells and the risk 
score. In terms of immune-suppressive cells, a decreased 
number of myeloid dendritic cells and M2 macrophages was 
substantially associated with elevated risk scores as reported 
by more than four algorithms.

Along with the established cell infiltration algorithms, 
ssGSEA was also used to determine changes in immune 
function and pathways between low- and high-risk groups. 
Consistent with prior findings, significantly decreased 
ssGEEA scores were detected in a range of immune cell sub-
sets (Figure 15(A)) and physiologic processes associated with 
the immune system (Figure 15(B)).

The role of risk scores in immunotherapy  
response

Next, the potential connection between the risk score and 
response to ICIs was further evaluated. First, all samples 
were categorized into immunologically hot or cold tumors 
(Figure 16(A)), and we found that hot tumors had a signifi-
cantly lower risk score (P < 0.05, Figure 16(B)). Furthermore, 
the IPS was calculated for different risk groups using TCIA, 
and the results indicated that patients in the low-risk group 
had a considerably greater IPS, implying a superior response 
to immunotherapy (P < 0.01, Figure 16(C)).

Discussion

Among the 346 EGFR/ALKWT NSCLC patients with low 
PD-L1 expression, PTK-RAS pathways were the most 

Figure 3. The mutation-affected carcinogenic pathways in EGFR/ALKWT low-level PD-L1 NSCLC. (A color version of this figure is available in the online journal.)
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enriched carcinogenic signaling pathways. The activation 
of the RAS-RAF-MEK-ERK pathway has an indispensable 
effect on erastin-induced ferroptosis,30 and KAS mutation 
predisposes lung adenocarcinoma to ferroptosis induced 
by SLC7A11 inhibitor.31 Therefore, identifying the role of 

ferroptosis might help develop new strategies against EGFR/
ALKWT NSCLC patients with negative PD-L1 expression.32

Given that ICIs and other therapies suppress cancer cells 
growth by inducing ferroptosis,15,33 NSCLC patients with 
distinct ferroptosis patterns might have different prognoses 

Figure 4. Transcript variation of ferroptosis-related genes in EGFR/ALKWT low-level PD-L1 NSCLC. The expression of 24 ferroptosis-related genes in EGFR/ALKWT 
and low PD-L1 expression NSCLC and paracancer tissues: tumor, atrovirens; and paracancer, orange. The boxes that represent median, interquartile range, and 
outliers are showed as black dots. Asterisks indicate statistical differences. (Wilcox test. ns means that P ⩾ 0.05; * means that P < 0.05; ** means that P < 0.01; *** 
means that P < 0.001). (A color version of this figure is available in the online journal.)
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and immune phenotypes. In the current study, we gener-
ated a stable classification according to the expression of 
24 ferroptosis-related genes. Remarkably, the two ferropto-
sis-related clusters revealed two distinct types of immune 
microenvironment state in EGFR/ALKWT low PD-L1 expres-
sion NSCLC patients, displaying significant differences in 
prognosis, biological functions, and immune cell infiltra-
tion. The ferroptosis-related Cluster 1 was characterized by 
survival disadvantage, high tumor purity, and low immune 
scores, whereas ferroptosis-related Cluster 2 showed better 
OS and higher immune scores. Functional enrichment analy-
ses also showed a similar difference between the two clus-
ters, in which immune-related pathways were significantly 
upregulated in Cluster 2. Taken together, these findings 

imply that distinct molecular patterns of ferroptosis may 
affect patient prognosis differently, presumably through the 
induction of distinct types of TIME.

A risk assessment model was developed based on two 
ferroptosis-related subtypes. Eight genes (CLIC6, ADH1C, 
CHST9, CPS1, STC2, ABCC2, KLK8, and INSL4) were identi-
fied for our prognostic signature, of which CLIC6, ADH1C, 
and CHST9 were negatively associated with the risk score, 
while the other genes showed opposite correlations. CLIC6 
was first reported in rabbit gastric parietal cells.34 Although 
its function is not completely clear, CLIC6 has been shown 
to interact with dopamine receptors,35 and its function 
may change according to lipids and oxidative conditions.36 
ADH1C encodes a Class I alcohol dehydrogenase and a 

Figure 5. Network of ferroptosis-related genes. (A) PPI interactions network of ferroptosis-related genes (medium confidence = 0.4). (B) The correlation network of 
ferroptosis-related genes (red, positive correlation; blue, negative correlation; color depth represents the strength of the correlation). (A color version of this figure is 
available in the online journal.)
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Figure 6. Subgroups of all samples associated with ferroptosis-related genes. (A) The consensus matrix with the highest intragroup and low intergroup correlations 
when k = 2 in the training set. (B) Overall survival curves for the two ferroptosis-related clusters (log-rank test, P = 0.004). (A color version of this figure is available in 
the online journal.)
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Figure 7. Clinical features of two clusters. Difference in age, gender, pathological stage, and pathological type between two ferroptosis-related clusters (Wilcox test). 
(A color version of this figure is available in the online journal.)
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Figure 8. Functional annotation between subtypes. Bar graph of enriched terms across differential expression genes between two ferroptosis-related clusters, colored 
by p-values. (A color version of this figure is available in the online journal.)

Figure 9. Gene set enrichment analysis. The enriched gene sets in KEGG. Left, Cluster 1; Right, Cluster 2. (A color version of this figure is available in the online journal.)

gamma subunit; it reportedly metabolizes various sub-
strates, including lipid peroxidation products.37 CHST9 
mediates sulfation of carbohydrate structures, which might 
be an alternative transsulfuration pathway to biosynthesize 
cysteine from methionine in tumor cells. CPS1 can mediate 

the generation of carbamoyl phosphate in the mitochon-
dria, which support the growth of KRAS/LKB1-mutant lung 
cancer cells.38 STC2 is involved in the growth, metastasis, 
and progression of lung cancer cells,39 and overexpres-
sion of STC2 can induce EGFR-TKI resistance through the 
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Figure 10. Estimation of immune, stromal score, and tumor purity. (A) Immune 
score in two ferroptosis-related clusters (t-test, ***P < 0.001). (B) and (C) Stromal 
score and tumor purity in two ferroptosis-related clusters (Wilcox test.  
**means that P < 0.01; *** means that P < 0.001.). (A color version of this figure is 
available in the online journal.)

Table 1. Ferroptosis-related signature score and coefficients.

Gene symbol Description Coefficient

CLIC6 Chloride intracellular channel 6 −0.024
ADH1C Alcohol dehydrogenase 1C −0.044
CHST9 Carbohydrate sulfotransferase 9 −0.005
CPS1 Carbamoyl-phosphate synthase 0.023
STC2 Stanniocalcin-2 0.018
ABCC2 ATP-binding cassette sub-family C member 2 0.007
KLK8 Kallikrein-8 0.041
INSL4 Early placenta insulin-like peptide 0.067

STC2-JUN-AXL-ERK signaling pathway.40 Previous studies 
have revealed that increased ABCC2 expression was highly 
associated with platinum resistance,41 making it a potential 
biomarker for NSCLC.42 KLK8 is a favorable prognostic 
factor in ovarian cancer and lung cancer;43,44 however, our 
signature model revealed that increased KLK8 level was 
correlated with higher risk scores, implying a worse prog-
nosis. INSL4 showed an active tumor-promoting effect, and 
studies suggested that INSL4 is a downstream molecular of 
LKB1 inactivation and could promote proliferation, inva-
sion, and migration of tumors.45,46 The biological signifi-
cance of EGFR/ALKWT and low PD-L1 expression in NSCLC 
has not been widely addressed. Altogether, our signature 
demonstrated robust performance in predicting prognosis, 
indicating that each gene deserves further study in future 
research.

Based on the results of multicenter randomized con-
trolled trials,47,48 a relatively small subset of NSCLC patients 
who do not express PD-L1 might also benefit from a dura-
ble response to ICIs. Therefore, identifying this subgroup 
of patients has important biological and clinical implica-
tions. The TIME state is critical in determining prognosis 
and treatment response. Previous studies have put forward 
various classification schemes based on their TIME state, 
such as hot or cold tumors,27 immune-inflamed, immune-
excluded, or immune-desert tumors.49 Generally, abundant 
infiltration of anticancer immune cells is more likely, but 
not always, linked to better prognosis and response to ICIs. 
The current study found that the risk score may serve as 
an independent predictor for ICIs response, where higher 
risk scores indicate poor response to ICIs.50 First, most of 
the immune cells, both immune-activating and immune-
suppressing cells, were reduced as the risk score increased, 
indicating an immune-excluded or immune-desert phe-
notype. Second, after classifying all samples into cold or 
hot tumors, we noted that cold tumors have significantly 
higher risk scores. Finally, significantly lower IPSs were 
found in the high-risk group.

In conclusion, ferroptosis regulators play a critical role in 
determining the risk of EGFR/ALKWT NSCLC patients with 
low PD-L1 expression. The high-risk patients presented 
with a worse OS and response to ICIs, which was possi-
bly induced by negative TIME modulation. The current 
study advances our understanding of ferroptosis in NSCLC 
patients and lays a foundation for developing novel thera-
peutic strategies.
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Figure 11. Construction and validation of the ferroptosis-related model. (A) Kaplan–Meier curves for OS according to ferroptosis-related risk groups in the training set 
(log-rank test). (B) Distribution of risk scores of the ferroptosis-related signature in the training set. (C) ROC curves of the risk score in the training set. (D) The PCA 
analysis of ferroptosis-related risk groups. (E) to (H) Validation in the testing set. (A color version of this figure is available in the online journal.)
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Figure 12. External validation of the ferroptosis-related model. (A) to (C) External validation of the model based on three independent sets (GSE72094, GSE41271, 
and GSE50081). (D) ROC curves about the risk score, age, pathological stage, T, M, and N stage in TCGA cohorts. (A color version of this figure is available in the 
online journal.)

Figure 13. Cox regression analysis of the risk score. (A) and (B) Univariate and multivariate Cox regression of OS in the TCGA cohort. (A color version of this figure is 
available in the online journal.)
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Figure 14. Immune cell infiltration analysis related to the risk score. Correlation of the risk score with estimated tumor-infiltrated immune cells. (A color version of this 
figure is available in the online journal.)
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Figure 15. Immune cell infiltration analysis between high- and low-risk groups. (A) and (B) Differences in the ssGSEA scores based on 29 immune-related gene sets 
between low- (orange) and high-risk (navy blue) group (Wilcox test). (A color version of this figure is available in the online journal.)
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Figure 16. Immunotherapy response analyses. (A) Heatmap plot of hot or cold tumor markers. (B) Violin plot of risk scores in hot or cold tumors. (C) Violin plot of IPS 
in low- and high-risk groups. (A color version of this figure is available in the online journal.)
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