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Introduction

Bone is constantly renewed by a delicate balance between 
osteoblastic bone formation and osteoclastic bone resorption 
and this balance is pivotal for the maintenance of integrity 
and function of the skeletal system. Excessive bone resorp-
tion or inadequate bone formation during bone remodeling 

may result in osteoporosis associated with skeletal fragility.1 
The bone marrow (BM) compartment is rich in hematopoietic 
and stromal cells (BMSCs)2 that have a self-renewal capacity 
and the potential to differentiate into osteoblasts, adipocytes, 
chondrocytes, myocytes, fibroblasts, and endothelial cells.3–5 
Essential characteristics of BMSCs include plastic adherence 
when maintained in standard culture conditions, expression 
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Abstract
Oxidative stress is involved in the deterioration of bone quality and mechanical 
strength in both diabetic and aging adults. Therefore, we studied the ability of the 
antioxidant compound, S-allylmercapto-N-acetylcysteine (ASSNAC) to protect 
bone marrow stromal cells (BMSCs) from advanced glycation end-products 
(AGEs) cytotoxicity and improve bone microarchitecture of adult healthy and 
obese/diabetic (db/db) female mice. ASSNAC effect on AGEs-treated cultured rat 
BMSCs was evaluated by Neutral Red and XTT cell survival and reactive oxygen 
species (ROS) level assays. Its effect on healthy (C57BL/6) and obese/diabetic 
(C57BLKS/J Leprdb+/+; db/db) female mice femur parameters, such as (1) number 
of adherent BMSCs, (2) percentage of CD73+/CD45− cells in bone marrow (BM), 
(3) glutathione level in BM cells, and (4) femur microarchitecture parameters by 
microcomputed tomography, was studied. ASSNAC treatment protected BMSCs 
by significantly decreasing AGEs-induced ROS production and increasing their 
cellular resistance to the cytotoxic effect of AGEs. ASSNAC treatment of healthy 
female mice (50 mg/kg/day; i.p.; age 12–20 weeks) significantly increased the 
number of BMSCs (+60%), CD73+/CD45− cells (+134%), and glutathione level 
(+110%) in the femur bone marrow. Furthermore, it increased the femur length 
(+3%), cortical diameter (+3%), and cortical areal moment of inertia (Ct.MOI; 
+10%) a surrogate for biomechanical strength. In db/db mice that demonstrated 
a compromised trabecular bone and growth plate microarchitecture, ASSNAC 
treatment restored the trabecular number (Tb.N, +29%), bone volume fraction  

(Tb.BV/TV, +130%), and growth plate primary spongiosa volumetric bone mineral density (PS-vBMD, +7%) and thickness 
(PS-Th, +18%). In conclusion, this study demonstrates that ASSNAC protects bone marrow cells from oxidative stress and may 
improve bone microarchitecture in adult healthy and diabetic female mice.
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Impact Statement

Oxidative stress is suggested to adversely affect 
bone quality and mechanical strength. This study 
demonstrates the antioxidant protective effect of 
S-allylmercapto-N-acetylcysteine (ASSNAC) on 
bone tissue. ASSNAC protects cultured bone mar-
row stromal cells (BMSCs) from advanced glycation 
end-products (AGEs)-induced cytotoxicity by atten-
uating reactive oxygen species (ROS) production. In 
healthy mice treated with ASSNAC, an increase in 
the number and percentage of mesenchymal cells 
in the BM and in glutathione content was observed. 
Furthermore, in obese/diabetic (db/db) mice, which 
demonstrate significant deterioration of bone qual-
ity associated with compromised trabecular bone 
and growth plate microarchitecture, the treatment 
with ASSNAC improves the microarchitecture of the 
femur bone. These findings suggest the potential of 
ASSNAC to attenuate the deterioration of bone tis-
sue microarchitecture of adult healthy and diabetic 
female mice.
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of CD73 by >95% of the cells, and low expression (<2%) of 
CD45 (pan-leukocyte marker).6,7

Oxidative stress is associated with reduced activity of cel-
lular antioxidant defense mechanisms and/or increase in 
environmental- or cellular metabolism-derived free radicals, 
such as reactive oxygen species (ROS). It is implicated in the 
development and progression of various diseases, including 
cancer, neurodegenerative diseases, rheumatoid arthritis, 
chronic inflammation, autoimmune diseases, renal failure, 
atherosclerosis, ischemia/reperfusion injury, aging, diabetes 
mellitus,8,9 and osteoporosis.10,11 Oxidative stress may also 
play a central role in the pathogenesis of diabetes-associated 
osteoporosis.12,13

Protection from the deleterious effect of ROS is achieved 
by antioxidants that are classified according to their mecha-
nism of action, either by direct scavenging of free radicals or 
by indirect mechanisms increasing the endogenous cellular 
antioxidant defense by the activation of nuclear factor-eryth-
roid 2-related factor 2 (Nrf2).14 Under oxidative stress condi-
tions, Nrf2 translocates to the nucleus, where it induces the 
expression of Phase-II detoxifying and antioxidant enzymes, 
and the biosynthesis of glutathione, the major intracellular 
redox buffer, thereby protecting cells from oxidative stress.15

The established involvement of oxidative stress in the pro-
gression of age-related degenerative diseases16,17 triggered 
the search for compounds capable of controlling the oxi-
dant/antioxidant balance that may effectively delay degen-
erative processes.18 These compounds include vitamins and 
polyphenols,14 N-acetyl-L-cysteine (NAC), and its derivative 
N-acetylcysteine amide19,20 and luteolin,21 all of which acting 
directly or indirectly as ROS scavengers. Furthermore, the 
natural antioxidants polyphenols and anthocyanins protect 
cultured bone cells and support their osteogenic differentia-
tion22 and protect against bone loss in osteoporosis mouse 
model.23,24 Nutraceutical antioxidants that may serve as pro-
tective agents were recently reviewed by Kelsey et al.14 and 
divided into molecules that directly scavenge free radicals 
or augment the endogenous cellular antioxidant defense 
mechanisms by the activation of Nrf2.25

This study explores the role of our newly developed com-
pound, S-allylmercapto-N-acetyl-cysteine (ASSNAC) in bone 
metabolism. ASSNAC is a conjugate of S-allylmercaptan, 
the hydrophobic moiety of allicin, rendering the molecule 
cell permeability and upregulating glutathione level,26 and 
NAC, a supplier of cysteine, the limiting precursor in glu-
tathione biosynthesis. Our previous in vitro studies have 
shown that ASSNAC undergoes a thiol exchange reaction 
with free cysteine residues on the oxidative stress sensor of 
Keap1, resulting in the release of Nrf2 from its complex with 
Keap1 and its translocation into the nucleus.27 In parallel, 
the free NAC released throughout the process is utilized 
for glutathione biosynthesis. Thus, ASSNAC plays a dual 
role, activating Nrf2 and supplying cysteine. Nrf2 nuclear 
translocation activates the expression of Phase-II detoxify-
ing and antioxidant enzymes, including the cysteine trans-
porter (xCT) and glutathione synthesis enzymes, leading 
to an increase in cellular glutathione, altogether protecting 
vascular endothelial27 and nerve cells28 from ROS-induced 
oxidative stress. In vivo studies further demonstrated a 
protective role for ASSNAC against oxidative stress, as it 

prevents the death of Caenorhabditis elegans exposed to lethal 
concentrations of H2O2,29 attenuates the clinical symptoms 
of experimental autoimmune encephalomyelitis, serving as 
a multiple sclerosis mouse model,28 and ameliorates elastase-
induced chronic obstructive pulmonary disease in mice.30

Thus, in this study, we explored the ability of ASSNAC to 
protect BMSCs from the diabetes-associated AGEs-induced 
cytotoxic effect in vitro and improve bone microarchitecture 
in adult healthy and diabetic mice in vivo.

Materials and methods

ASSNAC was synthesized as previously described.27 Briefly, 
cold sodium thiosulfate and allyl bromide mixed to form 
allylthiosulfate was further mixed with a cold solution of 
NAC (at pH 8.0). The resulting ASSNAC extracted at room 
temperature (at pH 3.0) by t-Butyl methyl ether that was 
evaporated under vacuum conditions, resulting in the for-
mation of ASSNAC in the form of yellowish oil crystals. The 
purity of the preparation was assessed by high-performance 
liquid chromatography (HPLC) using a C:18 hydrophobic 
column and ASSNAC appeared as a major peak representing 
96.8% of the loaded material at a retention time of 6.23 min. 
One contaminating peak of a less hydrophobic material at a 
retention time of 3.91 min, representing 3.2% of the loaded 
material, was also detected. To prepare an aqueous stock 
solution, 100 mg ASSNAC dissolved in 8.48 mL DDW and 
2.12 mL Na3PO4 (0.2 M). The resulting ASSNAC solution 
(40 mM) in phosphate buffer (40 mM; pH = 7.4) was further 
diluted in phosphate-buffered saline (PBS) and kept at 4°C.

However, 5-Sulfosalicylic acid, oxidized glutathione 
(GSSG), D-glycolaldehyde, D-ribose, bovine serum albu-
min (BSA; endotoxin free), and Neutral Red dye were pur-
chased from Sigma (St. Louis, MO, USA). Alpha-modified 
Eagle’s minimal essential medium (αMEM), antibiotics, glu-
tamine, trypsin (0.25%)/EDTA (0.02%), bovine fibronectin, 
and fetal calf serum (FCS) were from Biological Industries 
(Beit Haemek, Israel). Tissue culture dishes were from Nunc 
(Roskilde, Denmark). PE-conjugated anti-CD73 antibody 
was from R&D Systems (Minneapolis, MN, USA), and Pacific 
BLUE-conjugated anti-CD45 antibody was from Biolegend 
(San Diego, CA, USA).

Cell culture

A rat long-term cell line of BMSCs with osteogenic potential 
prepared in our laboratory31 was grown in αMEM supple-
mented with FCS (15%), glutamine (2 mM), and antibiotics 
(penicillin [100 U/mL], streptomycin [100 µg/mL], and nys-
tatin [12.5 U/mL]) (Growth medium).

Preparation of advanced glycation 
end-products

Advanced glycation end-products (AGEs) were prepared 
as previously described32 using glycolaldehyde and ribose 
as reducing reagents, resulting in the formation of Gly-BSA 
and Rib-BSA, respectively. Briefly, BSA (50 mg/mL) was 
incubated at 37°C under sterile conditions with D-ribose or 
D-glycolaldehyde (0.1 M) in a phosphate buffer (0.2 M; pH 
7.4) for 7 days followed by dialysis against PBS (pH 7.4) at 
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4°C and the prepared AGEs, Rib-BSA and Gly-BSA, respec-
tively, were collected and sterilized by filtration. BSA treated 
similarly but without the reducing agents was used as a con-
trol. The reducing level of Rib-BSA and Gly-BSA was visible 
as a change in the BSA solution color from white to brown-
yellow and brown-dark brown, respectively.

Cell survival assay

Rat BMSCs grown in fibronectin-coated (5 µg/mL) 24-well 
plates up to 70%–80% confluence were washed, exposed 
to medium containing 0.5% FCS in the presence or absence 
of ASSNAC (0.2 mM) for 18 h, and further incubated in the 
presence or absence of Rib-BSA and Gly-BSA for 6 or 24 h. 
The number of viable cells was determined by the Neutral 
Red staining method as previously described.33 Briefly, 
cultures were washed, incubated in Dulbecco's Modified 
Eagle Medium (DMEM) containing Neutral Red solution 
(1%; 2 h; 37°C), and washed, and the Natural Red staining 
in the cell layer, representing cell survival, was extracted 
with the Sorenson solution and read on a colorimetric plate 
reader at a 550 nm wavelength. The number of viable cells 
was further tested by the XTT kit (Biological Industries Ltd., 
Beit Haemek, Israel). Briefly, cells were cultured in 100 µL 
medium/well in a flat 96-well plate and treated as described 
for 24 h. Cultures were further incubated for 2 h with freshly 
prepared XTT reagent and activation solution (50 µL per 
well), and the absorbance was read against a background 
control (culture medium without cells) with an enzyme-
linked immunosorbent assay (ELISA) reader at 490 nm.

ROS measurement

Intracellular ROS levels were examined using the H2DCF-DA 
kit (PromoCell, Heidelberg, Germany) according to the 
manufacturer’s instructions. The fluorescence intensity was 
measured using a fluorescence plate reader (Bio-Tek) at Ex/
Em = 495/527 nm.

Animals

Animal source and maintenance

C57BL/6 J-Rcc healthy wild-type (WT) female mice (7 weeks 
old) were purchased from Envigo Ltd. (Rehovot, Israel) and 
C57BLKS/J Leprdb+/− from the Jackson Laboratory (Bar 
Harbor, Maine, USA). Homozygote C57BLKS/J Leprdb+/+ 
female mice (db/db; diabetic) were obtained by in-house 
breeding followed by genotype characterization. Animals 
were housed at an ambient temperature of 23°C and a 12-h 
light–dark cycle with water and food ad libitum. Animal 
experiments were approved by the Tel Aviv University 
Institutional Animal Care and Use Committee (Approval No. 
M-14-020) and carried out in accordance with the National 
Institutes of Health guide for the care and use of Laboratory 
animals.

Animal treatment

Mice were injected, starting at the age of 12 weeks, with 
either ASSNAC at a dose used in our previous study28 
(i.p.; 50 mg/kg/day dissolved in 0.1 mL PBS) or with PBS 

alone (i.p.; 0.1 mL), as control group, five times per week 
for 8 weeks. Mice health and weight monitored weekly and 
every 2 weeks, respectively. A 15% weight loss and loss of 
ability to ambulate (inability to access food or water) were 
indicators for a deteriorating body condition and the need to 
immediately kill these mice due to humane reasons. At the 
end of treatment, mice (20 weeks old) were killed in a CO2 
atmosphere and the femurs were collected.

Animal groups

The original aim of this study was to explore the effect of 
ASSNAC on BM cells of healthy and diabetic mice. The first 
feasibility experiment included 10 healthy and 4 db/db 
female mice that were randomly divided into two treatment 
groups, treated either with PBS (healthy – 8 and db/db − 2 
mice) or with ASSNAC (healthy − 2 and db/db − 2 mice). At 
the end of the treatment, BM cells were harvested from the 
femurs of healthy mice; however, our attempts to harvest 
BM cells from db/db mice femurs failed due to the brittle-
ness of their bones. This unexpected observation limited our 
study to BM cells of healthy mice. However, the observed 
brittleness of the diabetic mice femur led us to modify the 
aim of the study and to explore the effect of ASSNAC on 
the microarchitecture of the femur bone of both healthy and 
db/db mice. Consequently, the second experiment, included 
16 healthy and 8 db/db female mice that were randomly 
divided into two treatment groups, treated either with PBS 
(healthy − 8 and db/db − 4 mice; 1 db/db mouse died, finally 
n = 3) or with ASSNAC (healthy − 8 and db/db − 4 mice).

Femur collection

At the end of the treatment, one femur from each mouse was 
taken for microcomputed tomography (µCT) analysis and 
the other femur from each healthy mouse was used for BM 
cells isolation. The BM-collected cells were counted and sub-
jected to adhesion assay. Aliquots of BM cells were also used 
for fluorescence-activated cell sorting (FACS) analysis (n = 5 
and n = 6 for control and ASSNAC-treated mice, respectively) 
and for glutathione determination (n = 3).

BM cells collection

Dissected femurs were washed three times (10 min each) in 
αMEM containing antibiotic (10-fold of growth medium con-
centration). BM cells were flushed out with growth medium 
by insertion of a 25G needle into the femur using a 1 mL 
syringe. Red blood cells in the collected samples were lysed 
by 10-min incubation in lysis buffer.34 BM cells were collected 
by centrifugation, re-suspended in 1 mL growth medium 
and counted using a Bright-Line Hemocytometer. The sam-
ples were used for cell adhesion assays (80% of cells in each 
femur), FACS analysis, and glutathione determination (10% 
of cells for each assay).

BM cells adhesion assay

Freshly collected BM cells suspended in 10 mL growth 
medium were incubated in 10-cm tissue culture plates (37°C, 
10% CO2) for 48 h, then washed and attached cells (BMSCs) 
were collected using a trypsin/EDTA solution and counted.
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Glutathione determination

Aliquots of BM cells were centrifuged and pellets were 
lysed in HCl (10 mM), followed by three cycles of freezing 
and thawing, and proteins were precipitated by the addi-
tion of 5-Sulfosalicylic acid (10%) followed by centrifugation 
(10,000g). Supernatants were used for glutathione determi-
nation by the Anderson recycling method35 using 96-well 
plates. Results were determined at 412 nm in an Elisa Reader 
(ELx808; Bio-Tek Instruments Inc., Winooski, VT, USA) and 
presented as nmole GSH per 106 cells.

Expression of CD45 and CD73 cell 
surface markers

Expression of hematopoietic cells marker (CD45) and BMSCs 
marker (CD73)36 was studied using fluorescence-labeled 
antibodies. Aliquots of freshly collected BM cells were cen-
trifuged, re-suspended in FACS buffer (PBS without calcium 
and magnesium containing 1% FCS, 0.5 mM EDTA, and 0.1% 
sodium azide) and aliquots of 0.5 × 106 cells were incubated 
with the antibodies in the dark (30 min; 4°C), washed with 
FACS buffer by centrifugation, fixed in 2% paraformalde-
hyde (overnight), and analyzed by FACS Calibur (Becton 
Dickinson, Franklin Lakes, NJ, USA). Fluorescence-labeled 
rat IgGs isotype controls were used to determine back-
ground fluorescence (cut-off of less than 0.5% false positive). 
Collected events (104/sample) were analyzed by the Flowing 
Software (version 2.5.1, University of Turku, Finland).

Femur µCT analysis

Dissected femurs were fixed in paraformaldehyde solution 
(4%) for 48 h, washed, transferred to 70% ethanol, and ana-
lyzed on a µCT50 system (Scanco Medical AG, Switzerland) 
as previously reported.37 Briefly, whole femurs were scanned 
at a 10 µm nominal isotropic resolution, with 90 kV energy, 
88 µA intensity, and 1000 projections with a 1000 ms integra-
tion time. A gaussian filtration (sigma = 0.8, support = 1) and 
threshold (160 permil for trabecular bone and 224 permil for 
cortical bone) were applied to the tomographic volumes. The 
femur trabecular bone parameters were measured in the sec-
ondary spongiosa of the distal femoral metaphysis defined 
as a 3 mm height volume ending distally at the proximal-
most border of the primary spongiosa (PS) (calcified part of 
the growth plate). The following parameters were analyzed: 
femur length, trabecular bone volume fraction (Tb.BV/TV), 
trabecular number (Tb.N), spacing (Tb.Sp), and thickness 
(Tb.Th). The cortical bone parameters were determined in 
a 1 mm height ring located at the mid-diaphysis and con-
sisted of cortical thickness (Ct.Th; direct measure), moment 
of inertia (Ct.MOI; areal), cortical bone area fraction (Ct.BA/
TA), and mid-diaphyseal diameter (Ct.Dia.Dia; based on the 
cross-sectional area). In addition, to determine the effect of 
diabetes and ASSNAC treatment on the epiphyseal growth 
plate, we delineated the unmineralized and mineralized 
parts of the growth plate. The former will be referred as “car-
tilage” (Cart) and the latter, which comprises both the miner-
alizing cartilage and the PS, will be herein referred to as the 
PS. After manual delineation, we refined the borders of each 
part using segmentation (below and above 100 permil of 

maximal gray values for the cartilage and PS, respectively). 
In each compartment, we measured the mean thickness of 
the PS and Cart (PS-Th; Cart-Th) layers and the volumetric 
bone mineral density (PS-vBMD). In the PS, we also meas-
ured the bone volume fraction (PS-BV/TV, which is also the 
inversed ratio of the porosity).

Statistical analysis

Results are presented as mean ± SD. Statistical analysis 
was tested by two-way ANOVA with Bonferroni post hoc 
test (multiple groups), two-tailed Mann–Whitney test or 
Student’s t-test (for paired comparisons). Differences at 
p ⩽ 0.05 were considered statistically significant and differ-
ences at the range of 0.10 ⩾ p ⩾ 0.05 were considered close to 
significant.

Results

ASSNAC attenuates AGEs-induced cytotoxicity in 
cultured rat BMSCs

The previously observed lack of ASSNAC cytotoxicity (up to 
2.0 mM and optimal activity at 0.2 mM) in vascular endothe-
lial cells27 was confirmed in a preliminary experiment with 
rat BMSCs cultures. Consequently, to test the protective 
effect of ASSNAC against AGEs-induced cytotoxicity, rat 
BMSCs cultures were either not pretreated or pretreated with 
ASSNAC (0.2 mM; 18 h), exposed to Rib-BSA or Gly-BSA 
for 6 h (Figure 1(A)) or 24 h (Figure 1(B), (D), and (E)) and 
analyzed for cell survival. Exposure to Rib-BSA or Gly-BSA 
at concentrations of 2 mg/mL for 6 h or 0.5 and 1.0 mg/mL 
for 24 h, resulted in significant cytotoxicity of up to 80–90% 
(Figure 1(A)) or 90−100% (Figure 1(B)), respectively. Cells 
treated with un-glycated albumin (BSA) or H2O2 were used 
as negative and positive controls and demonstrated no cyto-
toxicity (96% cell survival) or significant cytotoxicity (42% 
cell survival), respectively; ASSNAC pretreatment signifi-
cantly protected the H2O2-treated cells (76% cell survival) 
(Figure 1(E)). The cytotoxic effect of Rib-BSA and H2O2 
and the protective effect of ASSNAC were also confirmed 
using the XTT cell survival assay (Figure 1(D)). In summary, 
ASSNAC significantly protected BMSCs as reflected by an 
almost complete prevention of the cytotoxic effect of Rib-
BSA, Gly-BSA, and H2O2.

ASSNAC attenuates Rib-BSA-induced ROS 
production

Rib-BSA-treated rat BMSCs demonstrated a significant 
increase in ROS production, which was significantly attenu-
ated by ASSNAC pretreatment (45% reduction) (Figure 1(C)).

The weight and blood glucose level of healthy and 
diabetic mice

The weight and blood glucose level of 12- and 20-week-old 
mice from the second experiment is presented in Table 1. 
Blood glucose levels were significantly higher (about three-
fold) in db/db compared to healthy mice and were not 
affected by ASSNAC treatment in either group. The weight 
of db/db mice was significantly higher (about twofold) 
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compared to healthy mice, while ASSNAC treatment sig-
nificantly increased the weight of healthy mice (+8.8%) but 
not that of db/db mice.

ASSNAC increases BMSCs number and the 
glutathione level in mouse femur BM cells

A 20-week old healthy female mouse femur contains about 
17 × 106 BM cells, 2.4% of which are adherent BMSCs (Figure 
2(A) and (B)). ASSNAC treatment of healthy female mice 
had no effect on the femur BM cell number (Figure 2(A)); 
however, it significantly increased (+60%) the femur adher-
ent BMSCs number (Figure 2(B)). In addition, femur BM 
cells collected from ASSNAC-treated mice demonstrated a 

significant increase in glutathione level (+110%) compared 
to that of cells collected from control mice (Figure 2(C)).

ASSNAC affects BM cell population phenotype

BM cells harvested from femurs of control (Figure 3(A)) or 
ASSNAC-treated (Figure 3(B)) healthy mice were stained, 
or not stained, with a PE-conjugated anti-CD73 or an iso-
type control antibody and analyzed by FACS. The scatter 
histograms of cells stained or not stained with the isotype 
control antibody overlapped, indicating lack of non-specific 
staining.

Analysis of histograms presented in Figure 3(A) and (B) 
revealed an ASSNAC-induced significant increase (+134%) 

Figure 1.  Effect of ASSNAC on the survival and ROS level of AGEs-treated BMSCs. Rat BMSCs treated with or without ASSNAC (0.2 mM) for 18 h were further 
exposed to Rib-BSA and Gly-BSA at the indicated concentrations for (A) 6 h or (B) 24 h. Control and ASSNAC-treated cultures were further exposed to untreated BSA, 
Rib-BSA (2 mg/mL), or H2O2 (50 µM) for 24 h (D and E). At the end of the treatment, cultures were washed and cell survival determined by the Neutral Red assay  
(A, B, and E) and by XTT kit (D). Cultures treated without or with ASSNAC (0.2 mM) for 18 h were further exposed to Rib-BSA (2 mg/mL) for 24 h, while control cultures 
were not treated (None) followed by ROS determination (C). The results are presented as mean ± SD (a. n = 2; b. n = 2; c. n = 8; d. n = 6; e. n = 4). Significance of difference 
was tested in (A) and (B) by the two-way ANOVA with Bonferroni post hoc test; (*)p ⩽ 0.01; and in (C), (D), and (E) by two-tailed Mann−Whitney test; (**)p ⩽ 0.001.

Table 1.  Blood glucose and weight.

Treatment A. Glucose B. Weight

  Mean ± SD; mg/dL Mean ± SD; grams

  12 weeks 20 weeks 12 weeks 20 weeks

WT 138 ± 33 133 ± 14 18.5 ± 2.3 18.3 ± 1.0
WT + ASSNAC 139 ± 26 144 ± 15 18.2 ± 1.8 19.8 ± 1.2**#

Db/db 393 ± 155* 459 ± 105* 41.3 ± 1.5* 43.3 ± 4.0*
Db/db + ASSNAC 449 ± 154* 495 ± 167* 41.5 ± 12.4* 43.5 ± 11.1*

Number of mice per group: WT − 8; WT + ASSNAC − 8; Db/Db − 3; Db/Db + ASSNAC − 4.
*Significant difference − db/db versus WT mice.
**Significant difference − WT + ASSNAC versus WT mice.
#Significant difference − 20 versus 12 weeks.
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in the population of CD73-positive cells as compared to that 
of control cells (16.2 ± 4.2% versus 6.9 ± 4.5%, respectively) 
(Figure 3(C)).

Anti-CD73 and anti-CD45 double staining of BM cells 
from control and ASSNAC-treated healthy mice revealed 
a low percentage of double stained cells (0.98 ± 0.80% and 
0.48 ± 0.43%, respectively), suggesting that the majority of 

the CD73-positive cells are CD45-negative, indicating their 
stromal nature.

ASSNAC improves femur bone microarchitecture in 
healthy and db/db mice

Femurs of WT healthy female mice treated with ASSNAC or 
PBS (control) for 8 weeks were analyzed by µCT. ASSNAC 

Figure 2.  Effect of ASSNAC on cell number and glutathione level in femur BM cells. BM cells collected from femurs of healthy female mice either untreated (control; 
n = 16) or ASSNAC-treated (n = 10) were counted (A) and plated in tissue culture plates for 48 h and then the adherent BMSCs counted (B). BM cells collected from 
femurs of healthy female mice either untreated (control; n = 3) or ASSNAC-treated (n = 3) were subjected to glutathione determination (C). Data are presented as 
mean ± SD and significance of difference was tested by two-tailed Student’s t-test; (*)p ⩽ 0.05.
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significantly increased femur bone length (+3%) and diam-
eter (+3%), improved the estimated cortical bone mechani-
cal strength based on the improved Ct.MOI (+10% [areal]) 
and close to significant increase in cortical thickness (+9%; 
p = 0.098), while trabecular parameters were not affected 
(Figure 4(A)). db/db mice demonstrated a significant dete-
rioration of the bone microarchitecture compared to healthy 
mice (Figure 4(A) and (B) and Figure 5), including decreased 
Tb.BV/TV (−61%), Tb.Th (−29%), Ct.MOI (−18%), and close 
to significant decrease in Ct.Th (−23%; p = 0.056) and Ct.BA/
TA (−20%; p = 0.080). Diabetic mice exhibited also a close to 
significant decrease in femur length (−8%; p = 0.070 versus 
WT). ASSNAC treatment of db/db female mice (Figures 4(B) 
and 5) significantly increased Tb.N (+29%) and Tb.BV/TV 
(+130%), the latter to a level similar to healthy mice, dem-
onstrating a significant restoration of the deleterious skel-
etal effect of diabetes. Other bone parameters impaired in 
db/db mice were partially improved by ASSNAC treatment 
(close to significant effect) including decreased Tb.Sp (−29%; 
p = 0.086) and increased Tb.Th (+26%; p = 0.065), Ct.MOI 
(+10%; p = 0.100) and bone length (+5%; p = 0.110). Cortical 
and trabecular images of control, db/db, and ASSNAC-
treated db/db mice presented in Figure 5 demonstrate 
the compromised bone structure of db/db mice and the 
ASSNAC-induced partial improvement. Notably, ASSNAC 
partially restored the trabecular bone volume fraction that 
was severely reduced in the db/db mice and restored the 
Ct.Th to values similar to the WT mice.

As ASSNAC treatment significantly increased femur 
length in healthy mice and a similar trend was demonstrated 
in db/db mice, we analyzed its effect on the femur epiphy-
seal growth plate (Figure 6). db/db mice demonstrated sig-
nificant changes, compared to healthy mice, in PS-BV/TV 
(+10%) and PS-vBMD (−30%) and PS-Th (−19%). ASSNAC 
treatment of db/db mice resulted in increased PS-vBMD 
(+7%; close to significant, p = 0.08) and PS-Th (+18%; close to 
significant, p = 0.09). The thickness of the Cart layer was not 

affected by the diabetic phenotype nor by the ASSNAC treat-
ment. The microtomographs of representative images show 
the thinning of the PS in db/db mice with partial recovery 
following ASSNAC treatment (Figure 6).

Discussion

Our previous studies in cultured vascular endothelial, nerve 
cells, and retinal pigment epithelial cells demonstrated the 
protective effect of ASSNAC against oxidative stress through 
a unique dual mechanism, including Nrf2 nuclear translo-
cation and cysteine supplementation, which supports glu-
tathione biosynthesis.27,28,38 Furthermore, ASSNAC was 
found to attenuate the clinical symptoms of experimental 
autoimmune encephalomyelitis in a mouse model.28

In this study, we hypothesized that diabetic-associated 
oxidative stress may have a deleterious effect on bone metab-
olism and microarchitecture. Therefore, we tested the ability 
of ASSNAC to protect cultured BMSCs from the cytotoxic-
ity of the hyperglycemia products, Gly-BSA and Rib-BSA, 
which were shown to significantly induce ROS produc-
tion followed by cell death. Indeed, ASSNAC significantly 
attenuated Gly-BSA- and Rib-BSA-induced ROS production 
and cell death. This observed protective effect of ASSNAC is 
similar to the previously described protective effect of NAC 
against AGEs-induced cell death.39 Although it is not clear 
whether this protective effect of ASSNAC on BMSCs in vitro 
may suggest a similar protective effect on bone cells in vivo, 
we decided to explore ASSNAC effect in healthy and db/
db mice. The animal studies further supported the potential 
antioxidant effect of ASSNAC on BM cells. BM derived from 
ASSNAC-treated mice demonstrated an increased number 
of adherent cells and an increased fraction of CD73+/CD45− 
cells, considered as mesenchymal cells.6,36 Furthermore, the 
observed increase in glutathione level in femur BM cells of 
ASSNAC-treated healthy mice may augment/improve the 
antioxidant cellular resistance, resulting in increased BMSCs 

Figure 3.  Effect of ASSNAC on the percent of BM cells expressing CD73 and CD45. Flow cytometry fluorescence scatter histogram of BM cells of non-treated (A) 
and ASSNAC-treated (B) mice are presented (representative experiment). The cells were either not stained (red line) or stained with anti-CD73-PE (green histogram) 
or an isotype control antibody (blue histogram). BM cells of both animal treatments were stained with anti CD73-PE and CD45-PB antibodies and the percentage 
of positive cells ± SD in each treatment is presented (C). To calculate the percentage of positive cells, a gate of up to 0.5% false positive was set. Significance of 
difference was tested by two-tailed Student’s t-test; (*)p ⩽ 0.05 (control n = 5; ASSNAC n = 6).
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Figure 4.  Effect of ASSNAC on µCT femur trabecular and cortical bone parameters: (A) healthy female mice (WT) treated with PBS (control; n = 8) or ASSNAC (n = 8). 
(B) db/db female mice treated with PBS (control; n = 3) or ASSNAC (n = 4). µCT analysis of the femur included bone length, cortical diameter (Ct.Dia.Dia), thickness 
(Ct.Th), bone area fraction (Ct.BA/TA), and moment of inertia (Ct.MOI; areal) in the mid-diaphysis and the trabecular bone volume fraction (Tb.BV/TV), number 
(Tb.N), thickness (Tb.Th), and separation (Tb.Sp) in the distal metaphysis. Data are presented as mean ± SD. Significant differences were determined by Student’s 
t-test between ASSNAC and control groups (marked by asterisks) and between db/db and healthy mice (marked by asterisks in squares); (**) p ⩽ 0.05,  
(*) 0.10 ⩾ p ⩾ 0.05.
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number, similarly to the previously reported antioxidant 
protective effect of curcumin on BM cells in mice.40 Thus, 
we suggest that ASSNAC treatment of healthy female mice 
may have significantly increased BM antioxidant capacity 
associated with an increase in the mesenchymal adherent 
cell population.

Oxidative stress is suggested to play a major role in 
the progression of diabetes; therefore, we tested the effect 
ASSNAC on db/db mice and found that it did not affect 
the elevated blood glucose level. However, we observed 
an increase in femur length in ASSNAC-treated db/db and 
healthy mice. This observation may be explained by the fact 
that unlike in humans, in whom the growth plate closes on 
maturity, in adult rodents it persists in mature animals.41 
Our results demonstrated an ASSNAC-positive effect on 
BM cells and an increase in bone femur length of healthy 
mice. These changes were not accompanied by an increase 
in relevant growth plate parameters that may explain the 
increased femur length suggesting that it is probably asso-
ciated with the increase in body weight in healthy mice. 
However, the effect of ASSNAC on the growth plate was 
likely to be transient as the increased PS-vBMD was only 
close to significance in the µCT analysis carried out at the 

end of the 8-week treatment period. As recently reported 
for leptin-deficient mice,42 our db/db mice demonstrated 
significant changes in the growth plate µCT parameters, 
including deterioration of the PS-vBMD and PS-Th while 
PS-BV/TV was increased.

Previous studies have reported a compromised trabecu-
lar bone microarchitecture with a significantly lower femur 
Tb.BV/TV and Tb.Th in mice with impaired leptin activity, 
such as db/db43,44 and ob/ob.43,45 Our study confirms the 
significantly lower femur Tb.BV/TV and Tb.Th and further 
suggests significant deterioration of the Ct.MOI and some 
close to significant decrease in Ct.Th and Ct.BA/TA in db/
db mice.

The effect of ASSNAC treatment differed between healthy 
and db/db mice. In healthy mice, ASSNAC significantly 
increased Ct.Dia.Dia and Ct.MOI with a close to signifi-
cant increase in Ct.Th but it did not affect the trabecular 
bone compartment. In db/db mice, ASSNAC significantly 
improved Tb.BV/TV and Tb.N with only close to significant 
effect on Ct.MOI and Tb.Th. This may suggest a different 
mechanism of action for ASSNAC in healthy versus dia-
betic mice. Based on those results, one can speculate that in 
healthy mice, ASSNAC primarily targets the cortical bone 

Figure 5.  Effect of ASSNAC on femur cortical and trabecular bone architecture of db/db mice. The cortical (Cort) and trabecular (Trab) images of healthy control 
(Con) and db/db mice without (Db) and with ASSNAC treatment (Db + ASS) are presented. Note that the reduced cortical thickness and trabecular density in the db/
db mice were partially rescued in the Db + ASS mice.
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through an increase in the number of stromal cells, while, in 
db/db mice, ASSNAC primarily targets the trabecular bone 
through the neutralization of the diabetes-induced oxidative 
stress in the BM.

It is suggested that oxidative stress plays a role in altered 
characteristics of diabetic bone.46 The oxidative stress-
induced compromised bone structure observed in db/db 
mice is probably the result of the elevated level of AGEs. 
Consequently, the observed anti-osteoporotic effect of 
ASSNAC in the db/db mice might be related to attenuat-
ing the AGEs-associated oxidative stress, as observed in our 
in vitro studies. Furthermore, in a previous study in type-1 

diabetic rats, a decrease in BM osteoprogenitor cell num-
ber, probably due to oxidative stress-induced apoptosis, 
was observed.47 This previous observation in type-1 diabe-
tes may suggest a similar decrease in the BM population in 
db/db mice that may be attenuated by ASSNAC treatment. 
Altogether, the protective effect of ASSNAC in diabetic mice 
described in our study is possibly an anti-oxidative effect and 
it is in agreement with previous reports demonstrating the 
attenuation of osteoporosis in a mouse model of Alzheimer 
by NAC,48 the attenuation of type-1 diabetes-induced osteo-
penia by thioredoxin-149 and the attenuation of sex steroid 
deficiency-related osteoporosis by flavonoids.50

Figure 6.  Effect of ASSNAC on the femur growth plate. Femurs of healthy female mice treated with PBS (control; n = 8) or db/db female mice treated with PBS (DB; 
n = 3) or ASSNAC (DB + ASS; n = 4) were collected. µCT analysis of the femur growth plate included bone volume fraction (PS-BV/TV), volumetric bone mineral 
density (PS-vBMD), and thickness (PS-Th) of the PS and cartilage thickness (Cart-Th). Data are presented as mean ± SD. Significant differences were determined by 
Student’s t-test; (**) p ⩽ 0.05, (*) 0.10 ⩾ p ⩾ 0.05. Axial tomographs of growth plate of control (Con) and db/db mice without (Db) or with ASSNAC treatment (Db + ASS) 
are presented in the lower part of the figure. The cartilage and PS are the lowly (dark) and highly mineralized (light gray) parts of the femoral distal growth plate, 
respectively.
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In conclusion, ASSNAC protected cultured BMSCs from 
AGEs-induced cytotoxicity by attenuating ROS production 
and increasing the glutathione level in BM cells of healthy 
mice, suggesting its anti-oxidative protective effect, both 
in vitro and in vivo. An increased number and percentage 
of mesenchymal cells in the BM and an increase in femur 
length, Ct.Dia.Dia, and Ct.MOI accompanied this effect of 
ASSNAC in healthy mice. Furthermore, the antioxidative 
protective effect of ASSNAC in healthy mice may explain its 
protective effect on the deterioration of bone microarchitec-
ture in db/db mice, demonstrated by the improved femur 
Tb.N, Tb.BV/TV, and growth plate PS-vBMD and PS-Th. 
These findings demonstrate the potential of ASSNAC to 
preserve and prevent deterioration of bone tissue of adult 
healthy and diabetic female mice.
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