
ISSN 1535-3702 Experimental Biology and Medicine 2022; 247: 713–733

Copyright © 2022 by the Society for Experimental Biology and Medicine

Introduction

Reprogramming of metabolism is one of the crucial hall-
marks of cancer.1 Elevated glycolysis, hepatic gluconeo-
genesis, lipolysis, and proteolysis of skeletal muscles result 
in reduced body fat and progressive weight loss in can-
cer patients.1 This systemic tissue wasting sequela termed 
CC diminishes locomotion leading to poor quality of life, 
poor prognosis, and increased mortality. More than 80% 
of advanced-stage cancer patients display cachexia, and it 
accounts for about 25% of cancer-related deaths.2,3 Nearly 
30% of the CC patients have associated cardiac disorders 
with the risk of developing cardiac cachexia.4 Cachexia 

might be present in the early-stage development of cancer 
even before the onset of signs and symptoms of malignancy.2 
Initially, cachexia was thought to be a muscle protein and 
fat depletion metabolic disorder.5,6 However, recent studies 
have established that cachexia is a multifactorial pathologi-
cal condition associated with hypoxia, tissue pH, anorexia, 
altered metabolism, and chronic inflammation.6,7 Hypoxia-
inducible factor 1-α (HIF-1α) and hypoxia-inducible factor 
2-α (HIF-2α) have been revealed to stimulate CC through 
diverse mechanisms comprising loss of appetite, activa-
tion of phosphoenolpyruvate carboxykinase (PEPCK), and 
the Cori cycle.8,9 Indeed, pro-inflammatory cytokines such 
as tumor necrosis factor–alpha (TNF-α) and interleukin-6 
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Abstract
Cancer-associated cachexia (CC) is a pathological condition characterized by 
sarcopenia, adipose tissue depletion, and progressive weight loss. CC is driven 
by multiple factors such as anorexia, excessive catabolism, elevated energy 
expenditure by growing tumor mass, and inflammatory mediators released by 
cancer cells and surrounding tissues. In addition, endocrine system, systemic 
metabolism, and central nervous system (CNS) perturbations in combination 
with cachexia mediators elicit exponential elevation in catabolism and reduced 
anabolism in skeletal muscle, adipose tissue, and cardiac muscle. At the molecular 
level, mechanisms of CC include inflammation, reduced protein synthesis, and 
lipogenesis, elevated proteolysis and lipolysis along with aggravated toxicity and 
complications of chemotherapy. Furthermore, CC is remarkably associated with 
intolerance to anti-neoplastic therapy, poor prognosis, and increased mortality with 
no established standard therapy. In this context, we discuss the spatio-temporal 
changes occurring in the various stages of CC and highlight the imbalance of 
host metabolism. We provide how multiple factors such as proteasomal pathways, 
inflammatory mediators, lipid and protein catabolism, glucocorticoids, and in-depth 
mechanisms of interplay between inflammatory molecules and CNS can trigger 
and amplify the cachectic processes. Finally, we highlight current diagnostic 
approaches and promising therapeutic interventions for CC.

Keywords: Glycolysis, gluconeogenesis, cachexia, anorexia, anabolism, catabolism

1087962 EBM Experimental Biology and MedicineHegde et al.

Minireview

Impact statement

Cancer cachexia is a sequela of catabolism lead-
ing to poor muscle strength, reduced locomotion, 
weight loss, and intolerance to therapy. Greater than 
80% of advanced cancer patients display cachexia, 
and it is a major cause of cancer-related deaths. 
Cancer cells harbor host tissue metabolism by 
secretory molecules and cargo packaged extra-
cellular vesicles (EVs), and skew the entire host 
metabolism toward catabolism while themselves 
being anabolic. Currently, there is no standard 
therapy available that can effectively reverse can-
cer-related cachexia. Therefore, robust preclinical 
research in the context of etiology, initiation, pro-
gression, and therapy followed by robust clinical 
validation are warranted. In this regard, our present 
review discusses the imbalance of host metabo-
lism, early changes during precachexia, and high-
lights the molecular pathways. In addition, we shed 
a light upon current diagnostic and therapeutic chal-
lenges associated with cancer-associated cachexia.
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(IL-6) were shown to be elevated in various CC in vitro and 
in vivo models and are proposed to be diagnostic markers 
of CC.8,10–12 Studies conducted by Oliff et al.13 and Baltgalvis 
et  al.14 demonstrated that supraphysiological IL-6 and 
TNF-α levels led to early CC and deaths in animal models. 
So far, monotherapies targeting numerous inflammatory 
cytokines have failed to efficaciously treat CC, owing to its 
multifactorial landscape.15–17 Two independent studies by 
Stovroff et al.18 and Vaisman and Hahn19 demonstrated that 
TNF-α induces corticotrophin-releasing hormone, and it 
increases the firing of glucose-sensitive neurons leading to 
anorexia followed by cachexia. Furthermore, the cytokine 
surge is known to induce depression-induced anorexia, 
lipolysis via Janus kinase/signal transducer and activator 
of transcription 3 (JAK/STAT3), and Nuclear factor kappa- 
light chain enhancer of activated B cells (NF-κB) pathways 
and β-adrenergic activation connect CC with the central 
nervous system (CNS).20,21 Nevertheless, loss of appetite 
is not a primary cause of cachexia during cancer progres-
sion, as the accompanying engrossment of massive skeletal 
muscle wasting does not occur during anorexia, and nutri-
tional supplementation fails to impede loss of lean body 
mass.22–24 Currently, the precise mechanisms that promote 
and govern CC are yet to be deduced, thereby limiting the 
therapeutic targets for the treatment of CC. Therefore, the 
current review provides in-depth information about spatio-
temporal changes in tissue microenvironment and systemic 
metabolism during the initial stages of CC development. We 
also focus on the energetics of the cancer cell and surround-
ing stromal microenvironment, rate-limiting steps, and the 
mechanism of absconding checkpoints. Furthermore, we 
provide a comprehensive overview of molecular insights 
into tumor cell anabolism and normal tissue catabolism sta-
tus during progressive CC. Finally, we highlight the current 
difficulties and complications in the early diagnosis and 
treatment of CC.

Spatio-temporal changes during 
cachexia progression in cancer 
patients

CC is divided into three successive clinical stages such as 
precachexia, cachexia, and refractory cachexia (RC), although 
not all the patients progress through this continuum.21,22 
The degree of clinical manifestations and the condition of 
patients, including locomotory index and probable survival 
period, are taken into account while staging the disease.3 
The staging of CC has crucial implications for management 
and treatment which go beyond merely an understanding of 
alleviating symptoms.

Cancer precachectic state

Precachexia is associated with less than 5% of unintentional 
total body weight loss in 6 months. Cancer precachectic 
state (CPC) is accompanied by underlying chronic disease, 
inflammation, loss of appetite, and/or metabolic altera-
tions.3 Notably, CPC patients display heterogeneity, with 
some progressing rapidly, while others remain weight stable. 
In all preclinical and clinical settings, CPC displays systemic 
involvement of inflammation with elevated levels of TNF-α 

and IL-6, insulin resistance, in addition to sarcopenia and 
weight loss.25 An important distinction between cachexia 
and anorexia is that weight loss during cachexia is not solely 
confined to reduced calorie intake. Indeed, it is noteworthy 
that not all the malnourished patients are cachectic, while all 
cachectic patients are malnourished.3,26 Malnutrition during 
cancer progression can even be due to the direct impact of 
tumors on the gastrointestinal tract, therapy-induced nau-
sea, satiety, and impaired appetite regulation. The current 
understanding of metabolic balance and body weight is 
largely derived from the integrative physiological research 
into obesity and its associated etiopathologies.27 The inter-
play of chronic inflammation and immune system modula-
tion with dysregulated metabolism in obesity extensively 
involves inflammatory mediators that overlap with potential 
molecular drivers of CPC, suggesting the involvement of 
similar flawed signaling pathways, albeit with dramatically 
contradicting end-stage clinical manifestations.28,29 Higher 
glucose demands are met in the initial stages of CC by gly-
cogenolysis and reduced glycogen storage in muscle, and 
preceding massive gluconeogenesis.30,31 During CPC, muscle 
protein synthesis and degradation have been found to be 
normal, with normal atrogens, while myogenesis and muscle 
contractility have been found to be reduced.30,31 Oxidative 
stress, inflammatory mediators, and reactive oxygen spe-
cies (ROS) emission have been found to be elevated with 
unaltered autophagy and mitophagy.32,33 Similarly, elevated 
mitochondrial ROS generation and oxidative stress have 
been shown to precede terminal cachexia development in 
tumor-bearing mice.34

Cachexia

Cachexia is diagnosed by >5% unintentional total body 
weight loss over the previous 6 months despite the normal 
nutritional food intake, or the combination of >2% ongoing 
weight loss with body mass index (BMI) < 20 or sarcopenia.3

Protein homeostasis in skeletal muscle is imbalanced 
toward decreased protein synthesis and elevated breakdown 
in response to cancer.30,31 The hyperactivated ubiquitin- 
proteasome and autophagy pathways are primarily respon-
sible for this unevenness.30,31 Transcriptional upregulation of 
numerous E3 ligases, including muscle-specific RING finger 
protein 1 (MURF1), muscle atrophy F-box protein (MAFBX), 
FBXO30, and FBXO31, and increased turnover of myofibril-
lar proteins result in muscle atrophy during CC.35–37 These 
amino acids are directed mainly toward gluconeogenesis to 
meet the requirements of growing tumor mass. Furthermore, 
patients with CC often display insulin resistance. Under 
normal physiology, insulin regulates carbohydrate metabo-
lism and muscle protein balance to maintain blood glucose 
levels.38,39 Insulin resistance mobilizes proteins from mus-
cle to liver through the suppression of the PI3K-Akt path-
way and by upregulation of the proteasomal pathway.40,41 
These amino acids released from muscle protein turnover 
are directed to the liver for gluconeogenesis as an alternate 
source of energy production during the period of glucose 
scarcity.42 These dysregulated energy-cumbersome meta-
bolic activities in the cancer cells can henceforth withstand 
energy depletion, necessitating more muscle breakdown as 
cancer progresses.
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Furthermore, increased lipolysis leading to elevated 
levels of fatty acids or glycerol has been reported to fuel 
liver gluconeogenesis and insulin resistance in CC patients. 
Insulin resistance during CC dysregulates the PI3K/Akt/
mTOR pathway in adipose tissues resulting in increased 
adipose tissue wasting.43 Altogether, the complete metabo-
lism of cancer cells concentrates on anabolism while the sur-
rounding host tissues and systemic metabolism of the host 
under continuous catabolism lead to profound muscle and 
weight loss in CC patients.

RC

RC is notable for its poor World Health Organization 
(WHO) physical performance score and survival expec-
tancy of <3 months, and these patients are suited only for 
psychosocial support and palliative care.3 The severity of 
cachexia increases as the disease progresses to metastasize. 
Bodyweight and circulating albumin (ALB) levels of patients 
with RC were significantly lower compared to patients with 
CPC while C-reactive protein (CRP) was found to be pro-
foundly increased in these patients.44,45 Recently, Suno et al.46 
demonstrated that increased plasma fentanyl levels could 
be the biomarker for RC. In this study, the authors analyzed 
the fentanyl levels and hence the exclusion criteria of the 
patients selected in the study was use of drugs, as supportive 
therapy, that might affect the metabolism of CYP3A4, and 
antipsychotic drugs. Suno and co-workers have shown the 
remarkable association of dose-adjusted fentanyl concen-
trations with refractory cancer cachexia. RC is significantly 
associated with cardiac atrophy, arrhythmias, and electrolyte 

imbalance that increase the risk of thromboembolic events, 
cardiac arrest, breathing difficulties, aspiration pneumonia, 
swallowing difficulties, reduced joint movements, gastro-
intestinal muscle atrophy, poor wound healing, and sepsis. 
Not surprisingly, clinical data showed high mortality within 
a few weeks of the development of RC.47

The detailed differences between CPC, CC, and RC are 
summarized in Table 1.14,30,31,35,37,44,46,48–73

Energetics of cancer cells and host 
tissues

Increased catabolism is observed in cancer patients leading 
to unsustainable muscle and fat loss, thereby causing high 
morbidity and mortality.7,74 The factors such as old age, tumor 
progression, comorbid conditions, nutritional deficiency, 
drugs, and medical interventions were found to be the major 
determinants of the resting energy expenditure (REE).75 
Tumors demand a continuous supply of glucose and energy 
for their uninterrupted growth and proliferation and alter 
the energy balance of host tissue by eliciting inflammatory 
pathways which augment both systemic and locally medi-
ated catabolic events.76 Tumors also consume the increased 
amount of macronutrients directly. When tumors reach the 
size >0.75 kg, the energy consumption by the tumor is quan-
titatively important.74 The average daily energy expenditure 
of cancer patients is between 1600 and 1800 kCal.77 Lieffers 
et  al.78 demonstrated that in metastatic colorectal cancer 
patients, there is a cumulative increment in REE which 
accounts for about ~17,700 kCal over 3 months, and this high 

Table 1. Characterization of different phases of cachexia.

Condition/molecule Precachexia Cachexia Refractory Cachexia Reference

Fat loss ↔ ↓ ↓↓ 44,48

Muscle strength, contractility ↓ ↓ ↓↓ 48,49

Food intake and appetite ↔ ↓ ↓↓ 44

Protein synthesis ↔ ↓ ↓↓ 51

Protein degradation ↔ ↑ ↑↑ 51

Regeneration ↔ ↓ ↓↓ 52,53

Atrogenes (Atrogin-1 and MuRF-1) ↔ ↑ ↑ 31

Ubiquitin protein ligase ↔ ↑ ↑ 35,37

Cell cycle and myogenesis ↓ ↔ ? 30,55

Apoptosis ? ↑ ↑ 14,54,55

Autophagy ↔ ↑ ↑ 30,56,73

Mitophagy ↔ ↑ ↑ 57,58

ATP production ↔ ↑ ↑ 59

Inflammation ↑ ↑↑ ↑ 60,61

TNF-α, IL-6, IL-1β, neuropeptide Y ↑ ↑↑ ↑ 54,62,63

CRP ? ↑ ↑↑ 46

MAPK ? ↑ ↑ 63,71

NFκB ? ↑ ↑ 64,65

STAT3 signaling ↑ ↑↑ ↑ 66

ROS ↑ ↑ ↑ 67,68

Calcium homeostasis ? ↑ ↑ 69,70

Oxidative stress ↑ ↑ ↑ 71

Mitochondrial fission ↔ ↑ ↑ 72,73

Mitochondrial fusion ↓ ↓ ↓ 73

ATP: adenosine triphosphate; TNF-α: tumor necrosis factor–alpha; IL-6: interleukin-6; CRP: C-reactive protein; MAPK: mitogen activated protein kinase; STAT3: signal 
transducer and activator of transcription 3; ROS: reactive oxygen species.
↔: unaltered; ↑: increased; ↓: decreased; ?: not reported.
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demand of REE itself can contribute to a substantial reduc-
tion in body weight. In this study, the authors have tried to 
link the REE to energetically demanding tissues such as liver, 
spleen, skeletal muscles, adipose tissues, and tumor mass 
with advanced cancer and cancer cachexia–associated weight 
loss. Another mechanism that amplifies catabolic signals 
while desensitizing muscles to anabolic signals is physical 
inactivity; for instance, Kortebein et al.79 reported that bed 
rest for 10 days causes a 6% loss in lower limb muscle, a 30% 
drop in muscle protein synthesis, and a 16% loss in isokinetic 
muscle strength in otherwise healthy adults over 65 years of 
age. Bed rest elevates catabolic responsiveness of the muscles 
to cortisol by threefold.80 Muscle anabolism was induced by 
physical exercise in these patients and though fatigue was 
not reduced, quality of life was improved.81 Although bed 
rest in healthy elderly subjects leads to signs and symptoms 
of disuse atrophy, more studies are needed to understand the 
molecular mechanisms governing disuse atrophy and CC, 
and exploring whether they are similar or not.

Imbalance of anabolism and 
catabolism: insight into the  
molecular level

Our present understanding of the basic mechanisms that 
promote CC is based on three lines of experimental evi-
dence. First, Ni et al.82 demonstrated that surgical removal 
of cachexia-related tumors entirely (when practicable) could 
reverse CC in pancreatic xenograft models. Tumors are thus 
required not only for the induction of cachexia but also for 
its maintenance. Second, Norton et al.83 showed pro-cachec-
tic factors could be transferred between tumor-bearing rats 
to non-tumor-bearing rats when both are connected surgi-
cally via circulation, indicating the humoral nature of these 
circulatory factors. Succeeding investigations showed that 
humoral factors are secreted either directly by cancer cells or 
by stromal cells in the tumor microenvironment, or by dis-
tant organs. Primary tumors, as well as metastatic cachexia 
models, have revealed that cachexia-induced circulating 
components include hormones, growth factors, metal ions, 
and both pro- and anti-inflammatory cytokines.84,85 Third, 
these circulating factors cause cachexia by two separate path-
ways, either directly by interacting with myocytes and acti-
vating muscle catabolic pathways and by restricting muscle 
protein synthesis, or indirectly through metabolic changes in 
secondary organs, which leads to muscle atrophy.84–86 Table 2 
summarizes the mechanism of cachexia.13,14,34,87–124 The broad 
picture of CC is summarized in Figure 1.

Systemic metabolic dysfunction

Cancer cells remodel their metabolic processes to meet the 
increased demand of proliferative and bioenergetic needs 
while disrupting host systemic metabolism.1,85 As mentioned 
above, protein homeostasis is skewed toward the elevated 
breakdown of muscle proteins and reduced synthesis.35 
Constitutively active ubiquitin-proteasome and insulin sign-
aling pathways are primarily responsible for this. Under 
anabolic conditions, the PI3K–Akt pathway protects the 
muscle from undergoing atrophy by inhibiting Forkhead 
box O (FOXO)-mediated activation of the genes encoding 

MURF1 and MAFBX or FBXO32. Akt also stimulates the ser-
ine/threonine-protein kinase mTOR complex 1 (mTORC1), 
which activates the S6 kinase-1 (S6K1), leading to anabolic 
effects on muscle tissues.35–37 Reduced Akt activity has 
been reported in CC patients to cause the FOXO proteins 
to be dephosphorylated, allowing transcription of Tripartite 
motif containing 63 (TRIM63) and FBXO32, which in turn is 
involved in the myosin heavy chain degradation.36,37 During 
the progression of CC, hyperactivation of genes encoding 
MURF1, MAFBX, FBXO30, FBXO31, and increased turno-
ver of myofibrillar proteins were reported, which results in 
muscle wasting.125,126 Interestingly, it was shown that CC 
patients often present insulin resistance.38,39 Besides control-
ling the carbohydrate metabolism, insulin modulates muscle 
protein breakdown and synthesis to maintain stable blood 
glucose levels. Physiologically, insulin resistance speeds up 
muscle proteolysis by suppressing the PI3K–Akt pathway 
and counter activation of ubiquitin-proteasome pathway.40,41

This mechanism is important in CC since insulin resist-
ance and/or disrupted insulin signaling has been shown in 
CC murine and Drosophila models in vivo.127–130 Furthermore, 
in the murine colon 26 (C26) CC model, treatment with the 
insulin sensitizer rosiglitazone reduced weight loss and ano-
rexia, and in the hepatoma rat cachexia model, this drug 
hampered weight loss and prolonged survival.131,132 In the 
Walker 256 cancer, a commonly used in vitro cachexia model, 
insulin resistance and muscular breakdown were also exac-
erbated by impaired insulin synthesis from the pancreas.130 
Recent studies involving the fruit fly Drosophila melanogaster 
conducted by Figueroa-Clarevega and Bilder129 revealed that 
tumors release ImpL2, an insulin-like binding protein and a 
powerful antagonist of insulin signaling, causing systemic 
metabolic disruption and muscle atrophy. Besides ubiquitin 
and insulin signaling, a growing body of evidence suggests 
that the upregulation of autophagy pathways is also crucial 
for muscle wasting.56,71 A study conducted on lung cancer 
cohorts presented elevated autophagy mediators such as 
Bcl2-interacting protein 3 (BNIP3), LC3B (light chain 3 beta), 
and transcription factors that promote autophagy such as 
FOXO1.133 Tardif et al.134 reported autophagy pathway dereg-
ulation in cachectic esophageal cancer patients versus non-
cancerous subjects. In addition, Johns et al.135 documented 
that increased expression of autophagy-related genes such 
as microtubule-associated proteins 1A/1B light chain 3B 
(MAP1LC3B), autophagy protein 5, and beclin 1 in muscles 
was associated with the CC. Finally, Stephens et al.136 showed 
elevated expression of GABA type A receptor associated pro-
tein like 1 (GABARAPL1), an autophagy inducer, in cachectic 
gastrointestinal cancer patients (n = 92) compared to healthy 
controls. Taken together, these studies indicate that derailed 
insulin signaling in cancer can have a deleterious influence 
on muscle hypertrophy and function.

Inflammatory mediators

As cancer advances, cancer cells, infiltrated immune cells, and 
other stromal cells in the tumor microenvironment secrete 
enormous amounts of cytokines into the circulation.137 A vast 
body of research has established that cytokines including 
TNF-α, transforming growth factor–β (TGF-β), and IL-6 stim-
ulate muscle fiber disintegration. TNF-α and TNF-related 
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Table 2. Cancer cachexia models and mechanisms.

Cancer type In vitro
In vivo

Model Mechanism of action or outcome References

Breast 
cancer

Ex vivo Tissue samples ↑FATP1, CD36, UCP1, p-p38,
↓PPARγ, p-PPARγ

87

In vitro C2C12 cells treated with exosomes 
from MCF-7 and MDA-MB-231 cells

↑UCP3, p-p38, exosomal miR-155,
↓PPARγ, p-PPARγ, p-ERK1/2

87

Ex vivo Tissue samples ↑gelsolin, calponin2, tropomyosin 2, vimentin, P4HAI, PKM2
annexin A1, annexin A2, ARHGDIB, PGK1, LDHA, ALDOA, GPD2, ENO1, 
TPI1, PGAM1, EEF1D, PRDX1, CAT, tenascin C, SPARC, COL1A1, 
COL1A2, alpha fetoprotein, metastasis tumor recurrence, ↓Cav-1, survival

88

In vitro Cav-1 deficient fibroblasts ↑PKM2, LDHA, reactive oxygen species 88

In vitro MCF-7 ↑leptin, mitochondrial respiration, PYC, G6PD, cell proliferation 89

Colorectal 
cancer

In vitro H9c2 cells ↑Oxidative stress
↓Basal, maximum and spare respiration, ATP, mitochondrial membrane 
potential and volume

90

In vivo Mouse cachexia model ↑4-HNE
↓cardiac weight, myocardial area, ATP, SDS-MYL1

90

Ex vivo Plasma ↑exosomes 91

In vitro Exosomes from CT26 ↑IL-6, atrogin-1, MURF1, myotube atrophy, ↓myotube diameters 91

In vitro C2C12 myoblasts ↑IL-6, atrogin-1 92

In vivo ApcMin/+ mouse ↑IL-6, atrogin-1, gastrocnemius muscle wasting 14

In vivo C26 mouse model ↑LIF, STAT3, p-STAT3, atrophy of myotubes 14

In vivo C26, ApcMin mouse model ↑IL-6, STAT3, p-STAT3, atrophy of muscle fiber 92

In vivo ApcMin mouse model ↑IL-6, p-AMPK, ↓ mTOR 93

In vivo C26 mouse model ↑LC3bII/LC3BI, p62, muscle atrophy 94

In vivo C26 mouse model ↑Pax7, p65, delayed muscle regeneration 95

In vivo C26 mouse model ↑UCP1, PBE, CPT1α, BAT temperature 96

In vitro 3T3-L1 ↑ZAG, p62, muscle fiber atrophy 97

In vivo MAC16 mouse model ↑ZAG, weight loss, lipolysis 97

In vivo MAC16 and MAC13 mouse model ↑FDG uptake, succinate level, phosphocholine, weight loss,
MURF1, Serum LDL

98

In vitro C26 conditioned C2C12

myoblasts
↑Ddit4/REDD1, Akt1, mTOR, LC3 II, p62
↓p-Akt1, p-mTOR, p-4E-BP1, p-p70S6K

99

In vivo C26 xenograft model ↑Ddit4, Akt1, Akt2, PDPK1
↓p-Akt1, p-mTOR, p-4E-BP1, p-p70S6K

99

In vitro C26 conditioned AML2 ↓mitochondrial membrane potential, H2O2 production, MFN2,
DRP1, FIS1, PINK

34

In vivo HCT-116 mouse model ↑exosome density, miR-146b-5p, UCP1, PRDM6
↓leptin, ADIPSIN

100

In vivo C26 mouse model ↑exosomes, miR-195a-5p, miR-125b-1-3p, muscle atrophy
↓Bcl-2

101

Kidney 
cancer

In vitro RXF393, SKRC39, A498, 786-O, 
SN12C

↓MyoD1, pan-MHC, mTOR, TGF-β 102

In vivo RXF393, SKRC39, A498, 786-O, 
SN12C mouse model

↓MyoD1, glycolytic signatures, body weight
↑lipolysis, p38 MAPK

102

Lung 
cancer

Ex vivo serum ↑TNF-α, ROS, GSH, vitamin E, IL-6 91

In vitro Exosomes from LLC ↑IL-6, atrogin-1, MURF1, myotube atrophy, ↓myotube diameters 91

In vivo LLC cells ↑gp130, STAT3, p-STAT3, atrogin-1, p38 103

In vitro PC-3, H1299 ↓cavin-3, p-ERK, EGFR1, glucose uptake, lactate production
↑p-Akt, HIF1α, pS6K, survivin

104

In vivo Mouse fetus ↓cavin-3, p-ERK, PTEN, body weight
↑p-Akt, HIF1α, glycolysis, lipodystrophy

104

In vitro LLC conditioned C2C12 myoblasts ↑REDD1,
↓ myotube diameter, muscle loss, p-Akt1, p-mTORC1

105

In vitro Extracellular vesicles from LLC ↑lipolysis, p-HSL, UCP1, PTHrP 106

In vivo C57BL/6 ↑lipolysis, PTHR, PTHrP 106

In vivo LLC ↑IL-6, STAT3, atrophy
↓muscle weight, fat weight, BM-MNCs, NFATc1

107

In vivo LLC ↑RAGE, S100B, HMGB1, IL-6, IL-3, IL-9, IL-12p40, IL-17A,
IFNγ, TNF-α, splenomegaly, muscle wasting
↓body weight, survival, IL-1α, MyoD, MyHC

108

Ex vivo Patient serum, muscle biopsies ↑miR-424-5p, miR-424-3p, miR-450a-5p
↓miR-451a, miR-144-5p, muscle strength

109

In vivo LLC ↑SAA, IL-6
↓PON1

110

 (Continued)
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Cancer type In vitro
In vivo

Model Mechanism of action or outcome References

Pancreatic 
cancer

In vitro MiaPaCa2, AsPC1, BxPC3, HPAF-2, 
Panc-1, C2C12

↑TNF-α, IL-1β, IFN-γ 111

In vivo MiaPaCa2 and AsPC1 xenograft ↑PCB, G-6-Pase, skeletal muscle proteolysis,
↓myosin, body weight, hepatic glycogen, ATGL, atrogin-1, MURF1

111

In vitro MiaPaCa2, AsPC1 ↑Cav-1, IGF1R, IR, glycolysis 112

In vivo MiaPaCa2 cells ↑ Cav-1, IGF1R, IR, skeletal muscle proteolysis, ↑lipolysis,
↓body weight

112

Ex vivo Serum ↑GLP-1, apoC-II, apoC-III 113

Ex vivo Serum ↑ IL-6, glucocorticoids,
↓ ketone levels, food intake

114

In vivo KPC ↑IL-6, glucocorticoids
↓ food intake, ketones, PPAR-α, ACADM, HMGCS2

114

In vivo C57BL/6J ↑LCN2, E3 ubiquitin ligase, MAFBX, MURF1, FOXO1
↓ BNIP3, CTSL, GABARAPL, PPAR-γ, food intake

115

Ex vivo Human tissue ↑ IL-6, cachexia 116

In vitro KPC 32908, C2C12, 3T3 ↑ IL-6, p-STAT3, E3 ubiquitin ligase, atrogin-1, MAFBX, TRIM63/MURF1
↓ myotube diameter

116

In vivo C57BL/6 ↑IL-6, muscle wasting
↓ survival

116

In vitro C2C12 ↑atrogin-1, MURF1
↓MyHC

117

In vivo C57BL/6 ↑macrophage mediated STAT3 activation
↓body weight, body strength, IL-6, TNF-α, IL-1α, IL-1β

117

In vitro C2C12 ↑Sirt1, TRIM63, FBXO32, atrogin-1, NOX4
↓myotube width, total protein content, MyHC

118

In vivo KPC mouse model
S2-013 orthotopic model

↑Sirt1, MURF1, atrogin-1, ZAG, UCP2,
↓body weight, forelimb grip strength, fat content, MyHC

118

In vivo Pan02, FC1242 bearing mice ↑ZIP4, Zinc 119

Other In vivo Walker 256 cells ↓response to glucagon, isoproterenol, cAMP, phenylephrine,
↓liver ATP

120

In vivo Walker 256 cells ↑leucine rich diet, ↓tumor FDG uptake, metastasis 121

In vitro C2C12 myoblasts ↑ atrogin-1, MURF1, E214k, FOXO1, USP2, UBC
↓ myoD, Pax3, p-Akt, MYH2, TNNC1, TPM3, TCAP,

122

In vivo Myostatin cachexia model ↓myoD, Pax3, ↑ atrogin-1, MURF1, E214k
122

In vivo CHO cells ↑TNF-20, weight loss, progressive death 13

Ex vivo Serum from cancer patients ↑ IL-15 123

In vivo MC38, LLC, CT26
bearing mice

↑PLA2G7 124

FATP1: fatty acid transport protein 1; CD36: cluster determinant 36; UCP1: uncoupling protein 1; p-p38: phospho p38; PPARγ: peroxisome proliferator-activated 
receptor gamma; p-PPARγ: phospho peroxisome proliferator-activated receptor gamma; UCP3: uncoupling protein 3; ERK: extracellular signal-regulated kinase; 
p-ERK: phospho extracellular signal-regulated kinase; P4HAI: prolyl 4-hydroxylase subunit alpha 1; PKM2: pyruvate kinase M2; ARHGDIB: rho GDP dissociation 
inhibitor beta; PGK1: phosphoglycerate kinase 1; LDHA: lactate dehydrogenase A; ALDA: aldolase, fructose bisphosphate A; GPD2: glycerol-3-phosphate 
dehydrogenase 2; ENO1: enolase 1; TPI1: triosephosphate isomerase 1; PGAM1: phosphoglycerol mutase 1; EEF1D: eukaryotic translation elongation factor 1 
delta; PRDX1: peroxiredoxin 1; CAT: catalase; SPARC: secreted protein acidic and cysteine rich; COL1A1: collagen type 1 alpha 1 chain; COL1A2: collagen type 1 
alpha 2 chain; Cav-1: caveolin 1; PYC: pyruvate carboxylase; G6PD: glucose-6-phosphate dehydrogenase; 4-HNE: 4-hydroxynonenal; ATP: adenosine triphosphate; 
SDS-MYL1: SDS-soluble myosin light chain 1; IL-6: interleukin-6; MURF1/TRIM63: muscle-specific RING finger protein 1/tripartite motif containing 63; LIF: leukemia 
inhibitory factor; STAT3: signal transducer and activator of transcription 3; p-STAT3: phospho signal transducer and activator of transcription; p-AMPK: phospho AMP-
activated catalytic subunit; mTOR: mechanistic target of rapamycin kinase; p-mTOR: phospho mechanistic target of rapamycin kinase; Pax7: paired box 7; LC3bII/
LC3BI: light chain 3 B 1/light chain 3 B 2; PBE: peroxisomal bifunctional enzyme; CPT1α: carnitine palmitoyltransferase 1 alpha; BAT: brown fat tissue; ZAG: zinc-
alpha-2 glycoprotein; FDG: fluorodeoxyglucose; LDL: low-density lipoprotein; Ddit4/REDD1: DNA damage inducible transcript 4/regulated in development and DNA 
damage responses 1; Akt1: Akt serine/threonine kinase 1; p-Akt1: phospho Akt serine/threonine kinase 1; p-4E-BP1: phospho eukaryotic translation initiator factor 4E 
binding protein 1; p-p70S6K: P70 ribosomal S6 kinase; PDPK1: 3-phophoinositide dependent protein kinase 1; H2O2: hydrogen peroxide; MFN2: mitofusin 2; DRP1: 
dynamin-related protein 1; FIS1: fission mitochondrial 1; PINK: PTEN induced kinase; PRDM6: PR/SET domain 6; Bcl-2: B-cell CLL/lymphoma 2; TGF-β: transforming 
growth factor–beta; MHC: myocin heavy chain; MyoD1: myogenic differentiation 1; MAPK: mitogen activated protein kinase; TNF-α: tumor necrosis factor–alpha; ROS: 
reactive oxygen species; GSH: glutathione; gp130: glycoprotein 130; cavin-3: caveolae associated protein 3; EGFR1: epidermal growth factor receptor 1; HIF1-α: 
hypoxia inducible factor subunit alpha; pS6K: phospho S6 kinase; PTEN: phosphatase d tensin homolog; HSL: hormone sensitive lipase; p-HSL: phospho hormone 
sensitive lipase; PTHR: parathyroid hormone receptor; PTHrP: parathyroid hormone receptor–related protein; BM-MNCs: bone marrow–derived mononuclear cells; 
NFATc1: nuclear factor of activated T cells 1; RAGE: receptor for advanced glycation end product; S100B: S100 calcium binding protein B; HMGB1: high mobility 
group box 1; IL-3: interleukin-3; IL-9: interleukin-9; IL-12p40: interleukin-12 subunit p40; IL-17A: interleukin-17A; IFNγ: interferon gamma; IL-1α: interleukin-1 alpha; 
IL-1β: interleukin-1 beta; SAA: serum amyloid A1; PON1: paraoxonase 1; PCB: pyruvate carboxylase; G6pase: glucose 6 phosphatase; ATGL: adipose triglyceride 
lipase; IGF1R: insulin like growth factor 1 receptor; IR: insulin receptor; GLP1: glucagon like peptide 1; Apo CII: apolipoprotein C2; Apo CIII: apolipoprotein C3; 
PPAR-α: peroxisome proliferator-activated receptor alpha; ACADM: acyl CoA dehydrogenase medium chain; HMGCS2: 3-hydroxy-3-methylglutaryl-CoA synthase 2; 
LCN2: lipocalin 2; MAFBX/FBXO32: muscle atrophy F-box protein/F-box protein 32; FOXO1: Forkhead box O1; BNIP3: Bcl-2 interacting protein 3; CTSL: cathepsin 
L; GABARAPL: GABA type A receptor associated protein like; Sirt1: sirtuin 1, NOX4: NADPH oxidase 4; ZIP4: Zrt/Irt-like protein 4; cAMP: cyclic adenosine mono 
phosphate; E214K: ubiquitin conjugating enzyme E2 14 kDa; USP2: ubiquitin specific peptidase 2; UBC: ubiquitin C; Pax3: paired box 3; MYH2: myosin heavy chain 2; 
TNNC1: troponin C1; TPM3: tropomyosin 3; TCAP: titin-cap; TNF-20: tumor necrosis factor–20; IL-15: interleukin-15; PLA2G7: phospholipase A2 group 7.

Table 2. (Continued)
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Figure 1. Mechanism of cancer cachexia. Anabolic tumor tissue continuously demands glucose, amino acids, fatty acids, and other nutrients. The cytokine storm 
generated from the growing mass of tumors acts on host tissue leading to catabolism and cachexia. The figure was created in BioRender.com. (A color version of this 
figure is available in the online journal.)

weak inducer of apoptosis (TWEAK) have been shown to 
directly activate the NF-κB pathway in differentiated muscle 
cells resulting in the activation of E3 ligases and proteasome-
mediated muscle catabolism.138,139 Guttridge et al.65 showed 
that NF-κB-induced suppression of muscle cell terminal dif-
ferentiation is through loss of MyoD. In addition, Fukawa 
et al.102 demonstrated that exposure of muscle cells to cancer 
cell-conditioned medium containing inflammatory mol-
ecules, including TNF-α, IL-1β, IL-6, IL-8, LIF and angio-
genic factor VEGF, induced fatty acid oxidation resulting in 
oxidative stress via activating the p38 stress response path-
way and impeding the growth of myotube. Tumor-derived 
IL-6 has been shown to reduce ketogenesis by suppressing 

peroxisome proliferator-activated receptor–alpha (PPAR-α) 
in vivo resulting in the marked elevation of glucocorticoids, 
systemic metabolic stress, reduced food intake, and poor 
response to anti-cancer immunotherapy.114 Furthermore, 
chronic IL-6 is sufficient to induce cachexia in mice, lipoly-
sis in cultured adipocytes, and atrophy in myocytes.12,14,140 
Rupert et al.116 demonstrated that depletion of IL-6 from the 
malignant pancreatic cells resulted in a dramatic reduction in 
adipose tissue wasting, myosteatosis, dysregulated metabo-
lism, and eliminated muscle atrophy. Pharmacological inhibi-
tion of STAT3 activation has been shown to suppress caspase 
3 and ubiquitin-proteasome system resulting in prevention 
of muscle protein breakdown and cachexia.66 Recently, Niu 
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et al.141 demonstrated that HSP90-mediated STAT3 activa-
tion induces muscle wasting, weight loss, and catabolism 
in both in vitro and in vivo models of colon adenocarcinoma, 
and pharmacological inhibition of HSP90 reversed this 
effect. Similarly, cancer cachexia has been linked to multiple 
members of the TGF family. Myostatin (MSTN), for exam-
ple, interacts with the activin type II receptors ACVR2 and 
ACVR2B, and stimulates the SMAD2/3 signaling pathway 
in normal mice, causing significant fat and muscle loss. In 
several mouse tumor models, administration of ACVR2B 
prevented cancer cachexia.142–144 Metastatic lesions have been 
shown to induce the secretion of TGF-β from the bone matrix 
into circulation, which then stimulates SMAD2/3 in skeletal 
muscles, in turn inducing the transcription of NADPH oxi-
dase 4 (Nox4).145 Nox4 induces oxidation and stabilization 
of ryanodine receptor 1 (Ryr1) leading to aberrant calcium 
leakage from muscle endoplasmic reticulum, subsequently 
leading to muscle weakness.145 Two more TGF superfamily 
members, namely, growth differentiation factor 11 (GDF11) 
and GDF15, have subsequently been established as media-
tors of appetite and cachexia indirectly by controlling the 
food intake through their action on the hypothalamus.146–148 
Elevated serum level of GDF15 was shown to be correlated 
with increased incidence of CC and poor patient outcome in 
pancreatic cancer.63 In addition, transcription factors such 
as NF-κB, STAT3, and CAAT/enhancer-binding protein-β 
regulate expression of E3 ubiquitin ligases and autophagy 
genes.55,65,66,139,149 These studies suggest that inflammatory 
mediators possibly cause skeletal muscle weakness and atro-
phy to accelerate CC-associated muscle dysfunction.

Extracellular vesicle mediated regulation

Extracellular vesicles (EVs) are secreted vesicles that aid in 
intercellular communication by carrying DNA, RNA, proteins, 
lipids, and metabolites.150 Several experiments have shown 
that conditioned medium from cancer cell lines, including 
LLC, H1299, C26, and AGS secreted EVs carrying heat shock 
proteins such as HSP70 and HSP90, resulting in induction of 
cachexia symptoms both in vitro and in vivo.151–154 Mechanistic 
studies conducted by Zhang et al.155 showed that EV-derived 
HSP70 and HSP90 activate Toll-like receptor 4 (TLR4) and 
p38–MAPK pathways resulting in CC, and that this is pre-
vented by either neutralizing or silencing HSP70 and HSP90 
in LLC cells. Recently, Hu et al.106 demonstrated that LLC 
cell-derived EVs induce lipolysis both in vitro and in vivo by 
delivering the parathyroid hormone–related protein (PTHrP) 
which interacts with its receptor parathyroid hormone recep-
tor (PTHR) to exert downstream effects. Similar observations 
were made by Yang et al.156 in 2019 in pancreatic tumor xeno-
graft models. This study further showed that a zinc finger 
transporter ZIP4 stimulated EVs secretion by cancer cells 
via Ras-related protein 27B (RAB27B) GTPase, and tumor 
xenograft models bearing ZIP4 knockdown pancreatic can-
cer cell lines displayed better body weight and survival than 
mice with functional ZIP4 bearing tumors.156 Using human 
pancreatic cachexia inducing cancer cell lines and patient 
sera, it has been demonstrated that TLR7/8/9 antagonist 
IMO-8503 reverses tumor-derived EVs-induced myoblast 
apoptosis and CC.157 Waning et  al.145 demonstrated that 
the TGF-β secretion was induced by fusing PDAC-derived 

exosomes with liver Kupffer cells, which induce cachexia in 
metastatic bone disease. Tumor-secreted EVs carrying miR-
21 stimulated apoptosis in myoblast cells via TLR7 signaling, 
leading to muscle atrophy.158 In addition, Miao et al.101 dem-
onstrated that exosome-derived miR-195a-5p and miR-125b-
1-3p downregulated Bcl-2, and thereby induced muscle fiber 
breakdown and cachexia in a mouse colorectal cancer model. 
Recently, Gao et al.159 found that esophageal squamous cell 
carcinoma–derived EVs carrying prolyl 4-hydroxylase beta 
(P4HB) induced skeletal muscle cell apoptosis in a mouse 
xenograft model. Mechanistic studies by the authors have 
revealed that P4HB induced apoptosis via activating the 
ubiquitin-proteasomal pathway and regulating the stability 
of Bcl-2 and phosphoglycerate dehydrogenase. The authors 
further proved that the inclusion of CCF642, a P4HB inhibi-
tor, suppressed apoptosis of muscle cells in vitro and pre-
vented muscle atrophy and weight loss in an esophageal 
squamous cell carcinoma–induced cachexia mouse model.159

These studies have delineated how cancer cells harbor 
host tissue metabolism by secretory molecules and cargo 
packaged EVs and skew the entire host metabolism toward 
catabolism while themselves being anabolic.

Loss of white adipose tissue

Turnover of adipose tissue, especially white adipose tissue 
(WAT), has been commonly observed in cancer patients. 
Early research found that knocking down the gene encod-
ing adipose triglyceride lipase (ATGL), an enzyme that cata-
lyzes triacylglycerol hydrolysis, prevented tumor-bearing 
mice from losing their WAT and reduced skeletal muscle 
atrophy.160 During precachexia, elevated lipolysis, energy 
expenditure, and markers of adipose tissue thermogenesis 
have been reported. In a variety of in vivo tumor models, 
including colon, lung, liver, and pancreatic cancer models, 
browning of WAT was discovered to be the primary response 
during CC development that induces lipid mobilization.21,161 
Mechanistic studies have shown that pro-inflammatory 
cytokine IL-6 induces uncoupling protein 1 (UCP1) in WAT, 
promoting thermogenesis by uncoupling mitochondrial res-
piration from adenosine triphosphate (ATP) production.162 
Blockade of inflammation either by blocking IL-6 signaling 
or by blocking β-adrenergic neurons or by using anti-inflam-
matory treatments resulted in a remarkable reduction of WAT 
browning.21 In the in vivo LLC model, tumor cell-secreted 
PTHrP binds to receptor PTHR on WAT and promotes WAT 
browning, while PTHrP neutralization preserved skeletal 
muscles, preventing CC.162

Furthermore, these circulatory factors alter liver functions 
to meet their energy demand.84 Bioluminescence-based met-
abolic imaging and subsequent experimental evidence have 
shown that elevated lactate levels in primary tumor tissues 
of human cervical cancer were significantly correlated with 
increased risk of metastasis and poor outcome.163 Through 
gluconeogenesis, the liver converts lactate obtained from 
the blood into glucose, which is subsequently reintroduced 
into the circulation and used for energy sources by other 
tissues. This is referred to as the Cori cycle and is an energy-
inefficient process.42,164 Despite the lack of experimental 
evidence, it is believed that the high metabolic demands of 
the tumor, together with an intensified Cori cycle, cause a 
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40% increase in energy consumption in individuals with 
advanced CC.164 The amino acids released through muscle 
breakdown have been postulated to be converted to glucose 
via gluconeogenesis in the liver during glucose scarcity.165–167 
Furthermore, cachectic muscle metabolic profiling from mice 
with lung cancer revealed low amounts of ketone bodies 
in serum despite the fact that prolonged starvation usually 
stimulates ketogenesis. Reduced ketogenesis combined with 
restricted food intake significantly raised glucocorticoid lev-
els, a trend which was seen in various CC models.114,168 In a 
genetically engineered lung CC mouse model, augmenting 
ketogenesis with the PPAR agonist fenofibrate prevented 
muscle atrophy by lowering systemic glucocorticoids.168 In 
addition, tumor-derived IL-6 reduced peroxisome prolifera-
tor-activated receptor-α (PPAR-α)-controlled ketogenesis in 
the colon, liver, and pancreatic cancer models, and the con-
sequent increase in glucocorticoid levels suppressed intra-
tumoral immunity during caloric restriction.114,168,169 During 
CC, malfunction of these general energy-inefficient meta-
bolic activities in the liver might prolong energy shortage 
which necessitates additional muscle breakdown.

Thus, cancer cachexia is likely to be governed by an imbal-
ance in the homeostasis of anabolic and catabolic processes.

CNS in cachexia

Our understanding of the CNS role in CC pathogenesis 
largely depends on observations from animal CC models. 
An increasing body of evidence suggests that the paracrine 
inflammatory milieu generated from peripheral inflamma-
tion during CPC is amplified and modified within the medio-
basal hypothalamus, leading to an alteration in the activity of 
neurons involved in the regulation of appetite and metabolic 
processes.60,170,171 Inflammatory stimuli including TNF-α and 
IL-1β have been shown to initiate a feed-forward loop by 
acting upon receptors on hypothalamic neurons—pro-opi-
omelanocortin, agouti-related protein neurons—resulting 
in acute illness response, loss of appetite, weight reduc-
tion, and muscle protein degradation.61 CNS/IL-1β induced 
hypothalamic-pituitary-adrenal axis activation evokes rapid 
muscle atrophy and is blocked by adrenalectomy or by the 
muscle-specific knockout of glucocorticoid receptors.61 IL-1β 
has been shown to stimulate melanocortin-4, corticotropin-
releasing hormone, adrenocorticotropic hormone, and corti-
sol, thereby reducing appetite and promoting the catabolic 
effects.172,173 To date, the clinical studies on CNS-regulated 
cachexia are limited to investigations on circulatory levels or 
administration of inflammatory molecules or neuromodula-
tory peptides such as ghrelin.174

Cardiac muscle atrophy

Currently, a countable number of studies are available focus-
ing on the effects of CC on vital organs. Cardiac muscle per-
forms a vital role and was assumed to be spared since it 
cannot be exploited as amino acid or fat repository like skel-
etal muscles during normal physiology. Although the car-
diac muscle atrophy in CC remains to be evaluated, research 
on animal cachexia models has shown substantial loss of 
cardiac muscle fibers and functional impairment of cardiac 
muscles by echocardiography.4 In vivo studies have proved 

that mechanisms that contribute to cardiac muscle atrophy 
are similar to those in skeletal muscles including elevated 
protein degradation, reduced protein synthesis, inflamma-
tion, and autophagy.175–177 Although adequate knowledge 
of mechanisms is lacking, it has been shown that RC is sig-
nificantly associated with cardiac arrhythmias and arrest in 
cancer patients.175

Others

Recently, “omic” studies have been extended to find the 
molecular mechanisms, pathways, and promising biomark-
ers for CC. Integrative transcriptomic analysis of cachectic 
muscle and extensive bioinformatics approaches by Niu 
et al.99 revealed that 371 genes were up-regulated and 422 
were downregulated with the enrichment of genes involved 
in extracellular matrix reorganization, muscle system pro-
cesses, muscle differentiation, muscle tissue development, 
JAK-STAT signaling, cytokine-cytokine receptor signal-
ing, HIF-1 signaling, and so on. Using in vitro knockdown 
models, authors further showed that p38 induced expres-
sion of Ddit4 which in turn inhibited phosphorylation of 
Akt1, mTOR, 4E-BP1, and p70SK6.99 Deletion of REDD1 in 
LLC-conditioned C2C12 myoblasts showed that elevated 
phosphorylation of FOXO3A, Akt1, mTORC1 prevented 
cachexia.105 Furthermore, knockout of lipocalin 2 (LCN2) 
in pancreatic cachexia mice models showed the suppres-
sion of food intake by directly acting on CNS upon cross-
ing the blood-brain barrier.115 Recently, transcriptome 
profiling of rectus abdominis muscle from pancreatic cancer 
patients showed 340 differentially expressed genes, includ-
ing FOXO1, FOXO3, phosphoinositide-3-kinase regulatory 
subunit 1 (PIK3RI), glutamate-ammonia ligase (GLUL), 
interleukin-6 receptor (IL-6R), ZIP14, protein phosphatase 1 
regulatory subunit 8 (PPP1R8), apoptosis enhancing nucle-
ase (AEN), coiled-coil domain containing 68 (CCDC68), Wnt 
family member 9A (WNT9A), protein O-mannosyl trans-
ferase 2 (POMT2), sestrin 1 (SESN1), ring finger protein 207 
(RNF207), and dystonin (DST) were found to be correlated 
with an increasing grade of weight loss in cancer patients.178

Diagnosis and treatment

Diagnosis of CC is challenging due to the display of multiple 
symptoms and accordingly, each patient must be critically 
evaluated for BMI, nutritional status, and locomotory index 
prior to the optimization of precision medicine.3,25 Cachexia 
might be under-recognized in certain cases including epi-
demic obesity. Even at the initial time of cancer diagnosis, 
obese patients can have substantial ongoing muscle deple-
tion known as sarcopenic obesity. In addition to obesity, 
underlying cachexia can be masked by weight gain due to 
ascitic fluid accumulation or peripheral edema.74,78,179 Hence, 
the effective early diagnosis of cachexia includes careful 
monitoring of body composition, fat mass, and muscle 
mass. The Patient-Generated Subjective Global Assessment 
(PG-SGA) is an approved and validated method for malnu-
trition in patients with CC.180 PG-SGA contains a comprehen-
sive questionnaire that assesses calorie intake, body weight, 
muscle mass, body fat mass, temperature, functional status 
of locomotory organs, and whether systemic or local edema 
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is present.180 The Mini-Nutritional Assessment (MNA) is a 
rapid nutritional screening tool that evaluates dietary his-
tory, nutritional risk factors, body weight, and mid-arm 
circumference.181 However, these screening tools do not 
measure muscle mass or composition.182 Regularly used 
parameters to evaluate body composition in cancer patients 
include anthropometric methods, bioelectrical impedance 
analysis (BIA), computed tomography (CT), and dual-
energy X-ray absorptiometry (DXA). The anthropometric 
method evaluates body composition by measuring height, 
weight, skinfolds, and body circumference. It is one of the 
oldest and simplest methods, exhibiting poor accuracy, and 
it cannot distinguish between fat content and lean body 
mass.183 BIA, on the contrary, can be used to assess the per-
centage of total body fat, fat-free mass, and to calculate body 
fluid based on the electrical properties.184 Nonetheless, BIA 
is not as accurate as DXA, which predominantly determines 
appendicular muscle mass. Although DXA is cost-effective 
and requires a very low level of radiation, it does not dis-
tinguish subsets of adipose tissues into visceral, subcutane-
ous, and intramuscular.185 Meanwhile, recent advancements 
in CT scans allow assessment of axial muscle mass. This 
approach offers a high level of sensitivity and specificity 
and is a gold standard for evaluating body composition.186 
Magnetic resonance imaging (MRI) has a higher specificity 
and accuracy, equivalent to that of CT, in measuring the 
body composition, and does not expose the patients to ion-
izing radiation, although it is more expensive than CT.187,188 
Upper arm grip assessment, psychosocial and physical 
activity are the few parameters to measure muscle strength 
and functionality of patients with CC.3,189 Screening for the 
novel biomarkers of CC is the research hotspot. A variety 
of inflammatory markers and cytokines are proposed to 
be biomarkers of CC, including hemoglobin content, ALB 
content, CRP, leptin (LEP), adiponectin, ghrelin, insulin-
like growth factor-1 (IGF-1), IL-1, IL-6, and TNF-α.190,191 
Moreover, a few cancer patients might be less susceptible to 
cachexia development. For instance, cachexia is less likely in 
patients with a loss of function mutation in protein P selectin 
(SELP).192 Recently, using an aptamer-based discovery plat-
form, Narasimhan et al.193 demonstrated the expression of 
71 proteins that correlated with pancreatic cancer cachexia, 
including known cachexia markers such as LEP, MSTN, and 
ALB as well as novel cachexia markers such as lymphatic 
vessel endothelial hyaluronan captor 1 (LYVE1), comple-
ment C7 (C7), and coagulation factor 2 (F2). However, these 
biomarkers are affected by several factors such as age, sex, 
inflammation, and other underlying diseases.194 In order to 
measure the CC systematically, systematic scoring meth-
ods have been evolved including the CC scoring system 
(CASCO), the modified Glasgow prognostic score (mGPS), 
and the cachexia staging score (CSS). The score corre-
sponds with either non-malignant CPC or CC and RC and 
effectively predicts the survival of CC patients.194–197 More 
recently, Anderson et  al. demonstrated that CC patients 
display reduced total lean body mass, stair climb power 
(SCP), upper body strength, and bioavailable testosterone, 
and increased REE, cytokines levels, and fatigue compared 
to the cancer patients without cachexia and weight stable 
patients without cancer. This study also showed that SCP is 

a better marker of CC with 78% sensitivity and 77% specific-
ity at a cut-off of 336 watts.198

Over the years, studies have proven that CC can be differ-
entiated from the underlying other muscle wasting disorders 
by the mechanical characteristics, and the targeted therapies 
that prevented CC prolonged the survival and improved the 
quality of life, while tumor cells continue to propagate.143,199 
Multidimensionality of CC demands personalized and sys-
tematized treatment strategies. Nevertheless, RC is rebel-
lious to treat, and palliative treatments are often preferred 
over the other therapy options. The first line of choice to pre-
vent further deterioration during CC is to treat the patients 
with catabolism inhibitory drugs alongside nutrition sup-
plementation, exercise, and psychological counseling.2,200,201 
Table 3 and Figure 2 summarize drugs under various clinical 
trials and their mechanisms.91,92,100–102,174,199,202–219

ASCO guidelines recommend dietary assessment and 
psychological counseling as a crucial part of the treatment 
besides the drug-based treatments.220 Artificial feeding with 
priority given to the enteral route has been the preferred 
way to treat terminally ill cancer patients.221 It is becoming 
increasingly obvious that cancer cachexia is a multiorgan 
disease involving a variety of causes, and hence needs com-
bined therapeutic approaches such as nutrient supply, physi-
cal activity, and drugs for its management.222 Nutritional 
supplementation is inevitable in cancer patients, as food 
intake is compromised secondary to anorexia, oral mucosi-
tis, and vomiting.223 For effective anabolic resistance, an 
increase in caloric intake of 300–400 kcal/day and 50% extra 
protein intake is essential.224 High calorie and proteinaceous 
diet along with oral supplementation of β-hydroxy-β-methyl 
butyrate (HMB), omega-3 fatty acids, L-carnitine, and eico-
satetraenoic acid have shown to be beneficial in patients 
with CPC and CC.225–229 A study conducted on lung cancer 
patients showed that oral administration of omega-3 fatty 
acids increases lean body mass and improves the cachectic 
conditions in these patients.230 In addition, pharmacological 
agents such as those that target proinflammatory cytokines, 
non-steroidal anti-inflammatory drugs (NSAIDs), and can-
nabinoids have been widely used to treat CC.224 Anti-TNF-
α agents such as etanercept and infliximab, thalidomide, 
and pentoxifylline showed a modest gain in lean body mass 
with no noteworthy clinical benefits.15,16,231–235 Clazakizumab 
humanized anti-IL-6 monoclonal antibody increased the 
hemoglobin and ALB levels and relieved fatigue in advanced-
stage cancer patients.236 Administration of ghrelin daily for 
8 weeks in low dose (0.7µg/kg body weight) or high dose 
(13µg/kg body weight) subcutaneously improved the appe-
tite and reduced fat loss in gastrointestinal cancer patients.237 
In a phase II randomized clinical trial, intravenous admin-
istration of ghrelin increased the food intake and appetite 
and reduced chemotherapy-induced nausea in esophageal 
cancer patients.238 In addition, progesterone derivatives 
including megestrol and medroxyprogesterone have been 
shown to inhibit proinflammatory cytokines such as TNF-α, 
IL-6, and IL-1 thereby reducing cancer-related anorexia and 
cachexia.239–241 Various corticosteroids such as dexametha-
sone (3–6 mg/day), methylprednisolone (12 mg/day), and 
prednisone (15 mg/day) have been shown to increase appe-
tite and weight gain in cancer patients.242,243 However, these 
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Table 3. Preclinical and clinical trials to treat cachexia.

Cancer type Drug or treatment In vitro/in vivo/
clinical

Model Mechanism of outcome References

Breast Vitamins—riboflavin, 
Niacin, coenzyme Q10

In vivo Sprague-Dawely rats ↑ Krebs cycle, oxidative phosphorylation 202

Silibinin In vitro MDA-MB-231,
MDA-MB-468,
BT549, BT474,
SKBR3 cells

↓anaerobic glycolysis, GLUT-1, HK-II, p-EGFR, 
c-MYC, stemness
↑cellular biomass

203

Colorectal AR-42 In vivo C26 model ↑restoration glycolytic intermediates, KY, GDAP1, 
KCNH2, ACTC1, FOXO1 ↑PDE4A, TNMD, CASR, 
SYPL2, IGFBP5
↓catabolic muscle phenotype, weight loss, glycogen 
intermediates, ↓IL-6, LIF, EDEM1, FBXO6, XIRP1, 
CDKN1A, DAXX, MYLK2, NUB1
↓NUB1

199

Amelioride In vivo CT26 model ↑PDK4
↓exosome release from tumors, muscle atrophy, 
catabolism, glycolysis, OXCT1, BDH2

91

Lithium chloride In vitro C2C12 cells ↑ myocyte differentiation, MyHC, GSK3β
↓Pax-7, atrogin-1, IL-1β, IL-6, iNOS

204

In vivo CT26 model ↑body weight
↓ atrogin-1, MURF1, iNOS, muscle wasting, tumor 
growth

204

GW4869 In vitro HCT-116 cells ↑Leptin, ADIPSIN
↓exosome secretion, UCP1, PRDM16, WAT 
browning

100

GW4869 In vivo C26 model ↑Bcl-2
↓exosomes, miR-195a-5p, miR-125b-1-3p, muscle 
atrophy

101

ACVR2B/Fc In vivo HCT-116 model ↑muscle strength and function, cardiac strength
↓ fat loss, bone loss,

205

Cryptotanshinone In vitro C2C12 cells ↓ atrogin-1, MURF1, STAT3, atrophy 206

In vivo CT26 model ↓STAT3, atrogin-1, MURF1, weight loss, muscle 
wasting

206

Lung Alpinetin In vitro LLC cells ↓E3 ubiquitin ligase, atrogin-1, MURF1, myoatrophy 207

In vivo C57BL/6 ↑body weight, PPAR-γ
↓spleen weight, IL-1β, NF-κB

207

Anamorelin Phase II trial Advanced NSCLC 
patients

↑ lean body mass, body weight 208

Melanoma Isoliquiritigenin In vitro A375 cell line ↓glucose uptake, lactate levels, GLUT1, HK-II, ATP, 
mTOR, p-mTOR, RICTOR, p-Akt, p-GSK3β
↑oxygen consumption

209

Metformin, teneligliptin, 
vildagliptin, empagliflozin, 
dapagliflozin

In vivo B16F1 mouse 
melanoma cells

↑ body weight, feed intake, water intake, serum  
GLP-1, glycogen storage skeletal muscle weight, 
locomotor count, perirenal fat, visceral fat, 
subcutaneous fat, serum triglyceride, serum HDL, 
serum VLDL 
↓ ghrelin, TNF- α, IL-6, CRP, serum glucose, serum 
insulin, serum LDH, liver weight/body weight ratio, 
kidney weight/body weight ratio, spleen weight/ body 
weight ratio, muscle fibrosis

210

Pancreatic Silibinin In vitro S2-013, T3M4,
PANC-1, BxPC-3,
AsPC-1, MiaPaCa-2

↓c-MYC, STAT3 211

In vivo Orthotopic nude mice ↑body weight
↓c-MYC, p-STAT3, GLUT-1, MURF1, atrogin-1, 
myofiber degradation, TNF-α, IL-6

211

 (Continued)

hormonal derivatives have shown long-term side effects, 
including insulin resistance, myopathy, fluid retention, 
adrenal inefficiency, and sleep disorders.243,244 In addition, 
administration of NSAIDs such as celecoxib showed a sig-
nificant increase in body weight, BMI, and quality of life 

in head and neck and gastrointestinal cancer patients.219 A 
phase III clinical trial showed that administration of phyto-
cannabinoid, tetrahydrocannabinol (THC), increases appe-
tite, body fat, body weight, and quality of life.245 Recent 
studies have shown that Kampo medicine, a traditional 
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Cancer type Drug or treatment In vitro/in vivo/
clinical

Model Mechanism of outcome References

Bergamotiin In vitro Pancreatic cancer 
cell conditioned 
C2C12, 3T3L1

↑MyHC, aP2, adiponectin, resistin
↓MURF1, atrogin-1, cell viability, LC3-II, p-STAT3, 
p-FOXO4, p-Akt, ZAG, HSL

212

In vivo MiaPaCa-2 cells ↑body weight, C/EBP- α, PPAR-γ
↓atrophy, MURF1, atrogin-1

212

SP600125 In vitro Pancreatic cancer cell 
conditioned C2C12

↓TRIM63, FBXO32, myotube atrophy, myosin heavy 
chain turnover

213

In vivo Orthotopic cachexia
Mouse model

↑forelimb grip strength, body weight, carcass weight, 
gastrocnemius weight
↓TRIM63, FBXO32

213

Other Botryosphaeran
Monoclonal Antibody
Against GFRAL
(3P10)

In vivo Walker-256 model Corrected insulin resistance, normalized glucose and 
cholesterol levels
↑leukocytes, lymphocytes
↓tumor growth, cachexia

214

In vivo Patient-derived 
xenograft model

↑forelimb grip strength, body weight
↓FOXO32, BNIP3, GADD45A, lipid mobilization and 
oxidation

215

Indomethacin In vivo C57BL/6J ↑food intake, weight
↓ IL-1α, IL-1β, IL-2, TNF-α,

216

Ghrelin In vivo F344/NTafBR ↑weight gain, lean body mass, neuropeptide Y, agouti 
gene-related peptide
↓ IL-1β,

174

Megestrol acetate Clinical trial Cachectic cancer 
patients (n = 133)

↑weight gain, appetite, food intake 217

Cannabinoids Clinical trial Advanced stage 
cancer patients 
(n = 24)

↑food intake, appetite, quality of sleep, improved 
chemosensory perception

218

Celecoxib Clinical trial Cachectic cancer
Patients (n = 11)

↑BMI, body weight, quality of life, physical 
performance

219

GLUT-1: glucose transporter 1; HK-II: hexokinase 2; p-EGFR: phospho epidermal growth factor receptor 1; c-MYC: c-MYC proto oncogene; KY: kyphoscoliosis 
peptidase; GDAP1: ganglioside induced differentiation associated protein 1; KCNH2: potassium voltage gated channel subfamily H member 2; ACTC1: actin alpha 
cardiac muscle 1; PDE4A: phosphodiesterase 4A; TNMD: tenomodulin; CASR: calcium sensing receptor; SYPL2: synaptophysin 2; IGFBP5: insulin like growth 
factor binding protein 2; IL-6: interleukin-6; LIF: leukemia inhibitory factor; EDEM1: ER degradation enhancing alpha mannosidase-like protein 1; FBXO6: F-box 
protein 36; XIRP1: xin actin binding protein repeat containing 1; CDKN1A: cyclin-dependent kinase inhibitor 1A; DAXX: death domain associated protein; MYLK2: 
myosin light chain kinase 2; NUB1: negative regulator of ubiquitin-like proteins 1; MyHC: myocin heavy chain; GSK3β: glycogen synthase kinase 3 beta; p-GSK3β: 
phosphoglycogen synthase kinase 3 beta; Paired box 7; IL-1β: interleukin-1 beta; iNOS: inducible nitric oxide synthase; MURF1/TRIM63: muscle-specific RING 
finger protein 1/tripartite motif containing 63; UCP1: uncoupling protein 1; PRDM16: PR/SET domain 16; WAT: white adipose tissue; Bcl-2: B-cell CLL/lymphoma 2; 
STAT3: signal transducer and activator of transcription 3; p-STAT3: phospho signal transducer and activator of transcription 3; NF-κB: nuclear factor kappa—light 
chain enhancer of activated B cells; ATP: adenosine triphosphate; mTOR: mechanistic target of rapamycin kinase; p-mTOR: phospho mechanistic target of rapamycin 
kinase; TNF-α: tumor necrosis factor–alpha; CRP: C-reactive protein; GLP1: glucagon like peptide 1; HDL: high-density lipoprotein; VLDL: very low density lipoprotein; 
RICTOR: RPTOR independent companion of mTOR complex 2; Akt1: Akt serine/threonine kinase 1; p-Akt1: phospho Akt serine/threonine kinase 1; LC3bII/LC3BI: 
light chain 3 B 1/light chain 3 B 2; p-FOXO4: phospho Forkhead box O4; ZAG: zinc-alpha-2 glycoprotein; HSL: hormone sensitive lipase; C/EBP- α: CAAT enhancer 
binding protein alpha; PPARγ: phospho peroxisome proliferator-activated receptor gamma; FBXO32: F-box protein 32; BNIP3: Bcl-2 interacting protein 3; GADD45A: 
growth arrest and DNA damage inducible alpha.

Table 3. (Continued)

Japanese medicine, improves CC condition.247–249 Kampo 
formulae including Hochuekkito (HET), Juzentaihoto (JTT), 
Ninjin’yoeito (NYT), Seishoekkito (SET), Shosaikoto (SSK), 
and Rikkunshito (RKT) improved appetite, anemia, protein 
synthesis, ghrelin levels, and reduced protein breakdown, 
inflammation, and adipose tissue loss in various preclinical 
and clinical settings of CC.248–259

Recently, in December 2020, Japan approved anamorelin 
(non-peptide ghrelin analog) for cancer cachexia treatment 
based on phase II trials conducted in Japanese advanced gas-
trointestinal and lung cancer patients, creating the hope for 
the development of novel drugs.208,260,261 In addition, physi-
cal exercise has shown beneficial effects, including reduced 
systemic inflammation, reduced catabolism, and preserving 
muscle mass in CC patients along with psychological stabil-
ity.262–264 Recent studies have highlighted the considerations 
for multimodal treatment protocol owing to the complexity 
of pathogenesis in CC. A phase II clinical trial conducted by 

Solheim et al.265 used oral nutritional supplements, resist-
ance training, and celecoxib for CC in patients with incurable 
lung and pancreatic cancers. Next, a randomized controlled 
clinical trial by Uster et al.266 implementing nutritional sup-
plements with 60 min of exercise twice a week showed 
increased protein intake, and reduced nausea and vomit-
ing in palliative cancer patients. Since no major side effects 
were observed during these studies, multimodal treatment 
approaches might be considered safe and feasible.

Lack of adequate early diagnosis, prognosis, and thera-
peutic algorithms creates great difficulty in preventing 
cachexia development and effective treatments during can-
cer progression.

Conclusions

Overall, progressive cachexia has deleterious and lethal 
consequences for cancer patients. The widespread failure of 
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upliftment of CC patients by the usage of anti-cancer thera-
pies led to the realization that critical mediators and mech-
anisms that induce cachexia could be distinct from those 
that drive primary tumor progression and metastasis. As 
mentioned earlier, our current knowledge about cachexia is 
widely accepted from the studies on genetically engineered 
and orthotopic animal cachexia models which do not reca-
pitulate systemic and molecular changes occurring in CC 
patients. Moreover, the vast majority of murine models used 
for studying CC are LLC in C57BL/6, colon-26 in Balb/c, 
tumor cell injection, and transgenic mice C57BL/6 APC+/min 
models. Different strains and different cancer types need to 
be employed to reveal the relevant cachectic mechanisms. 

Nevertheless, these observations prompt future studies to 
aim for screening of relevant early diagnostic and prognos-
tic biomarkers and clinical validation of promising thera-
pies that can effectively treat cachexia alongside the tumor. 
In addition, it is important to distinguish precachexia from 
anorexia and later-stage cachexia events. Present knowl-
edge gained from animal studies and a few clinical stud-
ies are insufficient to comment on potential mediators of 
precachexia alone and is a subject of future investigations. 
Clinical trials on RC patients are lacking due to increased 
dropout, missing data, and avoiding issues of confounding 
death. Currently, there is no standard therapy that can effec-
tively reverse the CC. Given the complexity of CC, rigorous 

Figure 2. Molecular insight to cachexia and mechanism of cancer cachexia inhibition by various drugs. The figure was created in BioRender.com. (A color version of 
this figure is available in the online journal.)
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preclinical studies in the context of etiology, initiation, pro-
gression, and therapy followed by robust clinical validation 
are all warranted for the effective management of CC.
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