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Introduction

Cerebral palsy (CP) is a non-progressive neurodevelopmen-
tal disorder that affects approximately one in five hundred 
children. Its clinical features include impairment in move-
ment and posture, motor deficiency, lack of coordination, 
and upper motor neuron disorder involving spasticity.1 The 
motor impairment of CP is often accompanied by other 
related impairments such as epilepsy, intellectual disability, 
and sensory disorders. Although numerous risk factors asso-
ciated with CP are identified, for many individuals, it is diffi-
cult to determine the etiology of CP since it involves multiple 

mechanisms. Some studies report that acute intrapartum 
hypoxic-ischemia, which accounts for less than 10% of cases, 
is the main cause of CP.2,3 The risk factors associated with 
CP include congenital malformations, multiple gestations, 
preterm birth, intrauterine inflammation and infection, birth 
asphyxia, thrombophilia, and perinatal stroke. An important 
pathophysiological mechanism that is observed is the infec-
tion of amniotic fluid and intra-amniotic inflammation that 
causes damage to the developing brain of the fetus, leading 
to CP. This damage may persist for many years. Several neu-
rological and neuropsychiatric disorders are associated with 
perinatal infection and inflammation, and these are found 
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Abstract
Cerebral palsy (CP) is a lifelong disability characterized by the impairment 
of brain functions that result in improper posture and abnormal motor patterns. 
Understanding this brain abnormality and the role of genetic, epigenetic, and 
non-genetic factors such as signaling pathway dysregulation and cytokine 
dysregulation in the pathogenesis of CP is a complex process. Hypoxic–ischemic 
injury and prematurity are two well-known contributors of CP. Like in the case of 
other neurodevelopmental disorders such as intellectual disability and autism, the 
genomic constituents in CP are highly complex. The neuroinflammation that is 
triggered by maternal cytokine response plays a critical role in the pathogenesis 
of fetal inflammation response, which is one of the contributing factors of CP, and it 
continues even after the birth of children suffering from CP. Canonical Wnt signaling 
pathway is important for the development of mammalian fetal brain and it regulates 
distinct processes including neurogenesis. The glycogen synthase kinase-3 
(GSK-3) antagonistic activity in the Wnt signaling pathway plays a crucial role 
in neurogenesis and neural development. In this review, we investigated several 
genetic and non-genetic pathways that are involved in the pathogenesis of CP and 
their regulation, impairment, and implications for causing CP during embryonic 
growth and developmental period. Investigating the role of these pathways help 
to develop novel therapeutic interventions and biomarkers for early diagnosis and 

treatment. This review also helps us to comprehend the mechanical approach of various signaling pathways, as well as their 
consequences and relevance in the understanding of CP.
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Minireview

Impact Statement

Cerebral palsy (CP) is a permanent disability that is 
defined by brain function impairment that results in 
improper posture and aberrant movement patterns. 
Prematurity and hypoxic–ischemic damage are two 
well-known factors contributing to the development 
of CP. It has been discovered that the neuroinflam-
mation caused by maternal cytokine response plays 
an important part in the pathogenesis of fetal inflam-
mation response, which is one of the contributing 
causes for CP, and it persists even after the delivery 
of children with CP. The canonical Wnt signaling 
pathway is crucial for mammalian fetal brain devel-
opment and it governs many processes such as 
neurogenesis. The antagonistic activity of GSK-3 in 
the Wnt signaling pathway plays an important role 
in neurogenesis, neural development, and brain 
development.
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to have long-term consequences on the child’s brain.4 Brain 
encephalopathy in term-born infants accounts for 24% of all 
cases and is reported to cause inflammatory responses in 
the first week after birth, which is correlated with the level 
of brain injury.5,6 Preterm deliveries affect approximately 
15 million births7 and are found to be important risk factors 
for many congenital disorders including cognitive impair-
ment, CP, autism, and mental disorders that are discovered 
later in life.8

Several studies investigated that magnetic resonance 
imaging (MRI) of cerebral phenotypes of preterm babies are 
associated with later functions and involves dysregulation 
of neural pathways, structural alterations of cerebral cor-
tex and gray matter, and diffused white matter diseases.9–12 
Many studies indicated that there has been a decline in 
the incidence rate of CP over the last few decades due to 
improved prenatal care and obstetric practice. These results 
led some researchers to investigate the “unknown patho-
physiologic approaches” that account for significant pro-
portion of CP.13 Out of the studies conducted, some of them 
suggested that the unknown pathophysiology of this dis-
ease may include genetic factors and dysregulation of some 
neuronal pathways. In this article, we investigated the asso-
ciation of genetic or epigenetic factors, neuronal signaling 
pathways, and inflammatory response alterations with CP. 
Understanding these pathways can aid in the development 
of novel, effective, and safe therapeutic treatments for CP.

Methodology

This study aimed to investigate the clear insights about the 
mechanistic pathways involved in the causation of CP as 
well as the food pattern and nutritional status of children 
affected with CP. First, we have identified the research arti-
cles with appropriate words and phrases. We have used 
search engines like PubMed, Google Scholar, and MEDLINE. 
The key phrases used were “cerebral palsy” and “signal-
ing pathways involved in cerebral palsy” combined with 
“nutritional status” and “food intake in CP children.” Total 
number of papers identified (n = 500). The inclusion crite-
ria for paper selection were that we have identified papers 
including studies related to multiple signaling pathways 
and nutritional status of children with CP. Total number of 
papers after inclusion–exclusion consideration (n = 150) and 
full-text screened researched articles (n = 100). Total number 
of papers included into the study (n = 75).

Genetic or epigenetic implications in CP

Current research investigates that 30% of CP cases are caused 
by genetic or epigenetic factors.14–16 Four main types of DNA 
variations are identified that contribute to the pathogenesis 
of CP. The unfortunate outcome of the many mutations is that 
it results in the loss of important cellular functions of several 
proteins that are encoded by these genes. Figure 1 depicts the 
contribution of genetics in the pathophysiology of CP.

The effects of genetic mutation may vary depending on 
its nature, involvement of environmental factors, and the 
individual genomic profiles where mutation occurs. A muta-
tion can either be severe, where the deleterious mutation 

causes major effects, or minor, where the damage caused 
is less enough to not affect the protein function. A deleteri-
ous mutation is sufficient to cause CP in most individuals, 
while in others cases, minor mutations coupled with envi-
ronmental factors like hypoxia may cross thresholds and 
cause severe neuromotor disorders. For instance, CP is not 
caused by one single mutation, but the combined effect of 
several less damaging gene mutations in a polygenic man-
ner.17 A study conducted in hypoxic–ischemic rabbit model 
that is induced by aortic ligation revealed that when their lit-
ters were exposed to the same insult, they developed motor 
impairment suggesting that genetic or epigenetic modulators 
may mediate adverse motor outcome and extent of injury.18 
Mitochondrial DNA is suggested to be a potential biomarker 
for many dysfunctions of mitochondria, and it is found to 
be related to many diseases including neurological diseases, 
traumatic brain injury, and autism. Lu et al.19 investigated the 
association of mitochondrial DNA copy number with CP and 
reported that a decline in mitochondrial DNA copy number 
implied mitochondrial dysfunction and CP. A study that was 
conducted reported that the mutation in mitochondrial DNA 
8993 is associated with Leigh encephalopathy in children, 
where CP or other neurological impairment was found in 
other family members. These family members were exam-
ined to analyze the correlation between mutant mitochon-
drial DNA and the severity of the disease.20 It was observed 
in 10–20% of the cases that genomic copy number varia-
tions, which involve deletions or duplications, may cause 
CP.21–23 Microarray techniques were used by researchers on 
a cohort of 52 subjects suffering from cryptogenic CP. In this 
study, the ACMG (American College of Medical Genetics 
and Genomics) standard was applied to interpret the results 
where it was identified that 31% of cases were pathogenic 
or likely to be pathogenic copy number variation.22 Another 
study used the same technique on 147 non-selected CP 
patients and found copy number changes that met ACMG 
requirements.23 Epigenomic studies revealed some altera-
tions in axon structure, actin cytoskeleton, and cell signal-
ing, which was aligned with genomic studies. Alterations 
caused by DNA methylation that show changes in mitogen-
activated protein kinase (MAPK) signaling, inflammation, 
cytokine–cytokine receptors, and Ras signaling at birth were 
observed in monozygotic twins discordant for CP.24 In non-
selected subjects with CP, there were differences identified 
in the methylation process in the actin cytoskeleton, axon 
structure, crosstalk between dendritic cells and natural killer 
cells, insulin receptors, neuregulin, transforming growth 
factor beta (TGF-β), Wnt signaling, and phosphoinositide 
3-kinases (PI3Ks)/Akt signaling pathways.25 Many cellu-
lar signaling pathways that involve synaptic dysfunction, 
activity-dependent translation and transcription, neuro-
glia signaling, and neuroinflammation are dysregulated in 
numerous neurodevelopmental disorders, which necessitate 
in-depth research by utilizing animal models. It was seen 
that transcriptomic studies of the lymphoblastoid cell lines 
of CP subjects (n = 182) who are exposed to genetic, environ-
mental, and indeterminate causes reported 387 differentially 
expressed genes.26 An analysis of these gene pathways dem-
onstrates a down-regulation of cell signaling and transduc-
tion including an upregulation of immune system-related 
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genes, brain-derived neurotrophic factor (bdnf), and altered 
amyloid precursor protein A. Some studies suggested an 
overlap in dysregulation of MAPK signaling and result of 
the epigenetic analysis. A report showed that defects in genes 
that regulate cell-signaling pathway – that is, MAPK, PI3K, 
or Akt – may cause CP and neuronal signaling defects.26

Implications of cytokine dysregulations  
in CP

While one of the etiologies behind the CP is neuroinflam-
mation that is triggered by several mechanisms including 
maternal/fetal infection, hypoxia, maternal preeclampsia, 
and stroke, the other possibility is genetic etiologies.27 The 
cytokine response that is observed in a maternal amniotic 
fluid includes increased levels of interleukins (IL-6 and 
IL-1β) and tumor necrosis factor (TNF) alpha. In the fetal 
compartment, the level of IL-6 is found to play an impor-
tant role in the pathogenesis of inflammatory syndrome in 
developing fetuses, which is associated with CP. This inflam-
matory pathway appears to continue even after the birth of 
CP subjects and gives rise to the “sustained inflammation 
hypothesis” that suggests that prenatal, antenatal, or neo-
natal pro-inflammatory cytokines induce inflammation that 
contributes to dysregulation of cytokine pathways.28 A study 
conducted on school children having post-neonatal encepha-
lopathy (NE) explored the cytokine response to report an 
abnormally elevated level of cytokines in these children. 
The level of granulocyte-monocyte-cerebrospinal fluid 
(GM-CSF), IL-6, IL-8, and TNF-β was found to be signifi-
cantly high in children with NE when compared to control 

subjects. IL-8 and GM-CSF were found to be significantly 
elevated in children with NE upon stimulation with LPS 
(lipopolysaccharides) when compared with age-matched 
controls. Hypo-responsiveness of LPS in various cytokines 
among schoolchildren demonstrates an altered immune 
response.29 A study conducted by Huang et al.30 investigated 
the association of umbilical cord blood cytokines with CP in 
premature babies. They performed enzyme-linked immu-
noassay technique and identified a significantly high level 
of IL-8, PGE2, and myeloperoxidase (MPO) level in preterm 
babies with a gestation period of 32 weeks when compared 
to full-term babies. These cytokines are not related to gesta-
tional age but to preterm birth. It was also seen that cytokine 
IL-8 was increased in CP-affected preterm infants but not 
MPO. Some of the evidence suggested that preterm deliver-
ies caused by cytokine induction are mostly due to chorio-
amnionitis. It was observed that intrauterine inflammation 
or infection that caused activation of cytokines and elevated 
the level of pro-inflammatory cytokines in amniotic fluid 
and neonatal blood that the preterm baby was exposed to 
was identified as an important reason for preterm deliver-
ies, CP, and periventricular leukomalacia (Figure 2).31 One 
study evaluated the association of four TNF-α promoter sin-
gle nucleotide polymorphism (SNPs), two IL1β SNPs, and 
one IL-6 polymorphism that is susceptible to CP in preterm 
babies. Their results investigated IL-1β and TNF-α polymor-
phism that is related to a higher level of cytokines in the 
circulation, to find their role in genetic susceptibility to dam-
age white matter and cause CP in preterm infants.32 Animal 
model studies provided evidence that ischemic injury and 
inflammation/infection-induced brain injury play a major 

Figure 1. Genetic implications in cerebral palsy showing main sites and types. (A color version of this figure is available in the online journal.)
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role in CP pathogenesis. A study that was based on reverse 
transcriptase polymerase chain reaction (PCR) methods 
showed elevated levels of pro-inflammatory cytokines 
including IL-6, IL-1β, and MCP-1 (monocyte chemoattractant 
protein-1) in the brains of mouse pups that were exposed to 
in-utero lipopolysaccharides (LPS).33 Some studies revealed 
that a dose-dependent elevation was observed in the expres-
sion of TNF-α and IL-1β mRNA in rat fetal brain that are 
exposed to in-utero LPS. In addition to this, the hippocam-
pus and cortical region of the brain observed a significant 
decrease in the level of myelin basic protein, elevations in 
the level of glial protein (acidic or fibrillar), positive astro-
cytes, and changes in immune reactivity of oligodendrocytes 
(OLs).34 Table 1 represents the association of inflammatory 
cytokines with CP.35–48

Some studies reported that immune abnormalities have a 
strong relationship with CP and erythropoietin (EPO) plays a 
neuroprotective role in cell injuries associated with CP. EPO 
is a glycoprotein containing 165 amino acids, and is known 
as pleiotropic cytokine. Some studies suggested that EPO 
performs some non-hematopoietic actions like protection, 
maintenance, and development of nervous system. EPO in 
brain is normally secreted from astrocytes and EPO receptors 
are expressed principally in neurons. EPO acts as neuro-
protective as well as anti-inflammatory agent by activating 
janus kinase 2 (JAK2)/signal transducers and activators of 
transcription 5 (STAT5) pathway. EPO binds with erythro-
poietin receptor (EPOR) in the extracellular domain causes 
conformational changes of receptor homodimers and results 

in rapid phosphorylation of tyrosine residues of JAK2 and 
its activation in turn recognized by several Src homology-2  
(SH-2) domain containing signal transduction molecules 
involving STAT5. Activation of this pathway in turn acti-
vates p85 subunit of PI3PK, NF-β, MAPK, and STAT5. STAT5 
phosphorylation causes translocation and dimerization of 
the nucleus by acting as transcription factor and regulates 
the expression of various EPO-responsive genes. STAT5 is 
dephosphorylated by intra nuclear tyrosine phosphatase, 
and thus terminates the process of signal transduction. Thus, 
EPO provides neuroprotection by activating JAK/STAT 
pathway. Hypoxia inducible factor-1 (HIF-1) activated dur-
ing inflammation enhances the secretion of EPO. It plays the 
role of anti-inflammatory agent by (1) inhibiting the expres-
sion of IL-1 and IL-6 induced by ischemia; (2) stimulating 
inflammatory cell death by pathways including phosphati-
dylserine exposure, protein kinase B, and activated micro-
glia; (3) reducing oxidative stress, inflammatory response 
and myelin basic protein during immune reaction.49 The 
cytokine profile study in postnatal childhood revealed key 
mediators of cell injury in CP and provided a better under-
standing of its pathophysiology that help to develop novel 
therapeutic interventions.

Implications of PI3K–Akt–Wnt pathway 
in CP

The Wnt signaling pathway is important for cell patterning, 
regulation of stem cells, and cell cycle during the mammalian 

Figure 2. Association of cytokines, reactive oxygen species, and maternal infection and inflammation that causes microglial activation to the prematurity and 
periventricular leukomalacia that are responsible for cerebral palsy. (A color version of this figure is available in the online journal.)
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fetal growth and development including the brain.50,51 
Among adults, the Wnt pathways affect the regeneration and 
regulation of many tissues by homeostasis and proliferation 
of stem cells.52 It also maintains critical processes like axon 
remodeling, neuritic outgrowth, neurogenesis, and synap-
tic plasticity. Canonical Wnt signaling pathway suppresses 
glycogen synthase kinase-3 (GSK-3) and stimulates down-
stream regulation of signaling. While inhibiting the functions 
of canonical pathway of Wnt,53,54 GSK-3 also regulate other 
pathways that are involved in the development and func-
tion of neurons. Figure 3 represents the GSK-3 regulation of 
the Wnt and Akt signaling pathways, neurotrophic growth 
factor that activates Akt signaling to phosphorylate GSK-3 
and suppresses it by allowing downstream effectors activa-
tion to promote cell survival. Neurogenesis is promoted by 
Wnt genes that are activated by β-catenin stabilization in 
Axin complex that is caused by the inhibition of GSK-3 by 
Wnts. It is observed that lithium antagonizes GSK-3 pools 
in both Wnt and Akt signaling and activate the pathway to 
function. Therefore, lithium activates the process of neuro-
genesis through Wnt/β-catenin signaling activation, and 
thus enhances cell survival. In the absence of Wnt ligands, 
GSK-3, APC (adenomatous polyposis coli), which is a key 
tumor suppressor gene, and β-catenin, which is a transcrip-
tional co-activator, bind directly to the Axin protein com-
plex to facilitate the β-catenin phosphorylation by GSK-3 
that causes proteasome-dependent degradation by targeting 
β-catenin. Binding Wnt ligands to frizzled receptors acti-
vates the phosphorylation of LRP5 (low-density lipoprotein 
receptor-related protein-5 and 6) and co-receptors that cause 
inhibition of GSK-3 and stabilization of β-catenin. The stabi-
lized form of β-catenin enters the nucleus and interacts with 
transcription factors like LEF (lymphocyte enhancer factor or 
T-cell factor [TCF]) family to stimulate transcription.55

Not only does GSK-3 regulate the Wnt signaling path-
way, but it also regulates other signaling pathways includ-
ing growth factor, notch, and sonic hedgehog pathway 
through Akt, thereby affecting the cell survival in the 
brain.51 Neutrophils and growth factors, along with insu-
lin, stimulate Akt and PI3K (phosphatidylinositol-3-kinase). 
This causes phosphorylation of GSK-3 at N-terminal of ser-
ine residues (GSK-3β at Ser9 and GSK-3α at Ser21) to form 
pseudosubstrate motif that inhibits GSK-3 and allows down-
stream effector activation such as mTOR (mammalian target 
of rapamycin) and glycogen synthase.56 Significantly, it was 
suggested that GSK-3 in Axin complex of Wnt pathway was 
not regulated by the phosphorylation of serine residues at 
N-terminal, Wnt ligands, which were neither neurotrophin 
nor insulin/Akt, that induced phosphorylation of Ser9 or 21 
of GSK-3 was associated with Axin complex.57 In addition to 
this, the GSK-3 pool associated with Akt and Wnt signaling 
responses was regulated by distinct mechanisms and subcel-
lular pools that were demonstrated in double knock-in mice, 
where the phosphorylation of GSK-3bser9 and GSK-3aser21 sites 
was mutated to alanine.58

During embryonic development, Wnt signaling plays 
a critical role in the development of neural tube. It sup-
presses the anterior and promotes the posterior develop-
ment of the neural tubes. Thus, while the inhibition of Wnt 
signaling pathway causes a reduced posterior development 
and enhanced anterior development, aberrant Wnt path-
way stimulation causes reduced anterior development and 
enhanced posterior.59 In continuation with this process, Wnt 
antagonists such as DKK1 cause anterior localization and is 
important for the anterior development of neural tube.59,60 
In the later stages of development, Wnt signaling causes 
patterning of neural tube by generating signal centers in 
the hindbrain including creating a midbrain–hindbrain 

Table 1. Association of inflammatory cytokines with CP.

Serial 
number

Cytokines Implications References

1 IL-6 A significantly high level in umbilical cord blood predicts the periventricular leukomalacia 
(PVL) lesions and CP.

Massaro et al.35 and 
Falahati et al.36

2 IL-8 A measured level of IL-8 in cervical secretions indicates the presence of chorioamnionitis. 
The elevated level of IL-8 in periventricular white matter was observed.

Yoneda et al.37 and 
Strackx et al.38

3 IL-17A Stimulates oligodendrocyte progenitor cells (OPCs) to mature and contribute to the 
inflammatory response.

Rodgers et al.39

4 NF-κB Parturition-related gene control; regulates the LPS induced pro-inflammatory cytokines 
release from gestational tissues.

Yan et al.40 and 
Lappas et al.41

5 TNF-α Preterm infants with an average gestational age of 27.1 weeks displayed elevated levels of 
TNF-α in cord blood showed an increased risk of developmental and psychomotor disability.
It stimulates the endothelial cells to express adhesion molecules and chemokines and changes 
the permeability of the blood–brain barrier and these processes associated with CP. TNF-α 
in neonatal brain injury might be associated with reduced blood flow in the cerebrum, affects 
coagulation process, causes thrombus formation, and thus induces brain ischemia and hypoxia.

Hansen-Pupp et al.,42 
Moylan et al.,43 and 
Yawno et al.44

6 Other cytokines  
 MMPs (matrix 

metalloproteinase) zinc-
dependent proteinases

Have toxic effects on neurons causing damage to the basal lamina and blood–brain barrier. 
Responsible for hemorrhagic transformation and vasogenic edema of CNS.

Lu et al.45 and  
Silva et al.46

 IFN-γ (interferon gamma) Key role in brain trauma and degenerative diseases. Implicated in the pathogenesis of PVL, 
causes upregulation of the major histocompatibility complexes (I and II) and CD cell surface 
markers.

Hansen-Pupp et al.47 
and Di et al.48

 VEGF Promotes the proliferation of vascular endothelial cells, hastens neovascularization, and 
increases vascular permeability. Induces angiogenesis and has a neuroprotective effect.

Wen et al.49 and  
Di et al.48

IL: interleukin; CP: cerebral palsy; LPS: lipopolysaccharides; TNF: tumor necrosis factor; CNS: central nervous system; VEGF: vascular endothelial growth factor.
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boundary and restricting rhombomere boundaries.59–61 Wnt 
signaling is also important for neural tube patterning in dor-
sal or ventral form. Wnt1 and Wnt3a expressions occur in the 
dorsal neural tube, and if they are deleted, the ventral cell 
will expand at the cost of dorsal fates.62 Overexpression of 
genes Wnt1 or Wnt3a causes extension of dorsal fates.62 Wnt 
signaling is important for neural crest specification since it 
promotes cell fate in dorsal and suppresses ventral cell fates 
in telencephalon during embryonic development.59

The studies showed that Wnt signaling was important for 
the proliferation of precursor cells of a neuron during brain 
development. It was observed in a study that during the 
development of chick neural tube, overexpression of Wnt1 
and Wnt3a, along with β-catenin stabilization, caused an 
increase in proliferation of neural precursor cells, whereas 
negative expression of dominant TCF4 resulted in decreased 
cell proliferation.63 Another study in mice indicated that 
overexpression of Wnt1 induced neuronal cell proliferation 
and size expansion in the caudal midbrain area that resulted 
in substantial midbrain enlargement.64 In addition, the loss of 
β-catenin function in the mesencephalon, diencephalon, and 
hindbrain caused a decrease in the size of the midbrain by 
reducing the progenitor cell domain, while gain of β-catenin 
function caused an increase in brain size by expanding the 
progenitor cell domain.65 The loss of Wnt3 function caused 
a reduced proliferation of hippocampal neural progenitor 
cells and interrupted the development of the hippocampus 
region.66 A similar type of defect was observed in the dor-
sal telencephalon when β-catenin was deleted.67 All these 
studies suggested that the Wnt/β-catenin signaling process 
stimulated progenitor cellular proliferation for the develop-
ment of neural tube, midbrain, and hippocampus during the 
fetal growth development period.

The research deduced that apart from patterning and 
cellular proliferation, Wnt signaling promoted neurite 

development and caused an impact on axonal size, branch-
ing, remodeling, and complexity.68 It was observed that 
Wnt7a expression in cultured granular cells of the cer-
ebellum caused an increase in axon size, neurite growth, 
and growth cone size while earlier studies observed that 
Wnt antagonist secreting frizzled receptor associated pro-
tein caused axonal remodeling and reduced growth cone 
size.69,70 Some of the studies also suggested that GSK-3 
inhibitors were involved in promoting neurite size, out-
growth, and formation of an axon, axon size, and branching 
in several different cell types including granular cells of 
the cerebellum, neurons of dorsal root ganglion, and hip-
pocampus.69–71 It was also observed that the Wnt in spinal 
cord development maintained the direction of commissural 
axon after it passed through the midline. This activity relied 
upon the aPKC (atypical protein kinase) and PI3K, but not 
on LTP6, which indicated non-involvement of canonical 
Wnt/β-catenin pathway.72 Moreover, it was deduced from 
the study that Wnt and β-catenin facilitated the growth of 
dendrites and their branching, synaptic formation, and 
plasticity in the cerebellum.53,73 These studies suggested the 
critical role of the Wnt signaling pathway in mammalian 
brain development including neurogenesis. Hence, it was 
deduced that any dysregulation of these pathways could 
cause several neuro-impairment disorders like CP, autism, 
and others. Therefore, for developing any novel therapeutic 
interventions for the treatment of these disorders, further 
research was required in this area.

Nutritional status and food pattern of 
children with CP

Association of CP with comorbidities like malnutrition, gas-
trointestinal (GI) symptoms, impaired growth and devel-
opment, epilepsy, intellectual disability was observed in 

Figure 3. GSK-3 regulations of Wnt and Akt signaling pathways. (A color version of this figure is available in the online journal.)
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many case studies.74,75 Motor dysfunction in CP causes oro-
pharyngeal dysphagia. This may reduce food intake and 
consequently causes malnutrition, lung infection and pul-
monary aspiration.76 One study reported that many children 
with CP considered “taste” to be very important in their 
meals, other hemiplegic group suggested “nutrition” to be 
the most important. Paraplegic children and children with 
severe brain injury usually preferred “sweet taste” while 
quadriplegic children preferred greasy taste. Children with 
CP engaged in very few outdoor activities; therefore, they 
have poor synthesis of vitamin D, and intake of calcium and 
vitamin D is important.77 Decreased food intake along with 
anticonvulsant medications causes decline in the level of 
bone mineral density. This results in functional impairment, 
muscular weaknesses, and pathological bone fractures. 
Inadequate food intake causes macro- and micro-nutrient 
deficiencies, especially anemia, vitamin A, and vitamin B 
complex deficiencies. The “Quality of Life” of the children 
with CP and their caregivers were suboptimum; correction 
of nutritional deficiencies especially vitamins A, D and B 
complex, anemia, and mental and physical support is sug-
gested for the well-being of children suffering from CP.78

Future perspectives and conclusion

Genetic etiologies are found to be an important contributor to 
the development of CP, particularly through impaired brain 
development and dysregulation of several signaling path-
ways in response to associated risk factors. The number of 
recurrent genes provides us strong evidence in understand-
ing the pathophysiology of CP. Limited studies are available 
that determine the genetic etiologies related to motor type CP 
because of phenotypic and genotypic heterogeneity. Limited 
availability of animal model functional studies impedes the 
understanding of CP pathophysiology. Understanding the 
association of pro-inflammatory cytokines such as IL-6, 
IL-1β, and TNF-6 will help in developing important pre-
dictive biomarkers for detecting neurodevelopmental dis-
orders. Regulation of Wnt signaling, β-catenin, and GSK-3 
pathways suggests that the Wnt/β-catenin signaling process 
stimulates progenitor cellular proliferation in the develop-
ment of neural tube, midbrain, and hippocampus during 
the fetal growth development period. Any impairment of 
these pathways leads to several neurodevelopmental dis-
eases including CP and autism. A better understanding of all 
these mechanisms will enable us to identify the risk factors 
that contribute to CP. Together with the discovery of genetic 
factors, such as epigenetic and copy number variants, and 
cytokines regulation, Wnt signaling pathways can provide 
new opportunities for further detailed analysis and study-
driven interventions to improve the lives of children living 
with CP.
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