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Introduction

The vascular blood–brain barrier (BBB) controls the exchange 
of substances and cells between the central nervous system 
(CNS) and the blood stream. It exerts this control in part 
through modifications of the capillary bed that prevent the 
unregulated leakage of blood-borne substances into the 
interstitial fluids of the brain. When the BBB fails and leak-
age occurs, CNS dysfunction accompanied by neuroinflam-
mation and oxidative stress is often the result. An increasing 
number of diseases are associated with BBB disruption, 
including common diseases such as Alzheimer’s disease, 
diabetes mellitus, and stroke.

However, the BBB is not disrupted in the same way by 
all diseases, or necessarily is it disrupted the same way dur-
ing a disease’s course. Instead, the loss of BBB integrity can 
occur through various mechanisms and pathways. Because 
these pathways differ in their characteristics, the resulting 
neurological insult resulting from BBB disruption poten-
tially differs. The first clue to what these mechanisms and 

pathways are was provided by the early ultrastructural stud-
ies of Reese and Karnovsky.1 They found that in comparison 
to other vascular beds, that of the BBB is neither fenestrated 
nor discontinuous/sinusoidal. Fenestrae, Latin for win-
dows, are regions of the endothelial cell that are extremely 
thin (about 6 nm thick), with no cytoplasm and a fusion of 
the luminal and abluminal cell membranes (Figure 1). Brain 
capillaries also have a greatly reduced number of pinocytes 
and an absence of canalicular structures. In addition, the 
gaps between endothelial cells were closed by tight junc-
tions. Thus, the loss of fenestrae, canaliculi, and pinocytosis 
reduces transcellular leakage and the presence of tight junc-
tions reduces paracellular leakage across the BBB (Table 1).

It has been assumed that reversal of one or more of these 
ultrastructural characteristics is the basis for disruption of 
the BBB (Table 1). Thus, loss of tight junction function would 
allow substances to leak between cells (paracellular leakage), 
the reinstitution of the various routes across an individual 
cell are transcellular leakage, and those transcellular routes 
involving vesicles are transcytotic leakage. More recently, 

Transcellular routes of blood–brain barrier disruption

Michelle A Erickson1,2 and William A Banks1,2

1Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; 
2Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 
98104, USA
Corresponding author: William A Banks. Email: wabanks1@uw.edu

Abstract
Disruption of the blood–brain barrier (BBB) can occur through different mechanisms 
and pathways. As these pathways result in increased permeability to different classes 
of substances, it is likely that the neurological insults that occur will also differ for 
these pathways. The major categories of BBB disruption are paracellular (between 
cells) and transcellular (across cells) with a subcategory of transcellular leakage 
involving vesicles (transcytotic). Older literature, as well as more recent studies, 

highlights the importance of the transcellular pathways in BBB disruption. Of the various transcytotic mechanisms that are thought 
to be active at the BBB, some are linked to receptor-mediated transcytosis, whereas others are likely involved in BBB disruption. 
For most capillary beds, transcytotic mechanisms are less clearly linked to permeability than are membrane spanning canaliculi 
and fenestrations. Disruption pathways share cellular mechanisms to some degree as exemplified by transcytotic caveolar and 
transcellular canaliculi formations. The discovery of some of the cellular components involved in transcellular mechanisms of BBB 
disruption and the ability to measure them are adding greatly to our classic knowledge, which is largely based on ultrastructural 
studies. Future work will likely address the conditions and diseases under which the various pathways of disruption are active, the 
different impacts that they have, and the cellular biology that underlies the different pathways to disruption.

Keywords: Blood–brain barrier, disruption, transcellular, transcytosis, paracellular, clathrin, caveolae, adsorptive transcytosis, 
fenestrations

1080745 EBM Experimental Biology and MedicineErickson and Banks

Minireview

Impact Statement

This is a review of the transcellular pathways by 
which the blood–brain barrier becomes disrupted.

Experimental Biology and Medicine 2022; 247: 788–796. DOI: 10.1177/15353702221080745

mailto:wabanks1@uw.edu


Erickson and Banks  BBB disruption  789

the roles of the basement membrane on the abluminal capil-
lary surface and the glycocalyx on the luminal surface of the 
capillary have been proposed to be important in BBB imper-
meability,2,3 which we have termed in Table 1 as epicellular. 
Interestingly, Palade and co-workers noted the importance 
of the basement membrane in vascular permeability in the 
early 1960s.4 It should be noted that the very leaky sinusoi-
dal capillary beds have an attenuated or absent basement 
membrane and that at least one model of a leaky BBB, that of 
the diabetic BTBR mouse, has an attenuated glycocalyx with 
no obvious attenuation of tight junctions or increased tran-
scytosis.5 Each of these possible ways in which the BBB can 
be disrupted have their own special features with regards 
to mechanisms of disruption and the characteristics of the 
substance that is allowed to leak into the brain.

Here, we will concentrate on the transcellular mecha-
nisms of BBB disruption. Much has been written about BBB 
disruption resulting from loss of tight junctions, whereas 
there are far fewer reviews on transcellular and transcytotic 
disruption.6,7 Yet early studies found that transcellular path-
ways were dominant over paracellular pathways in many 

kinds of brain injury.8–10 More recent work strongly sup-
ports that transcellular routes of leakage play a major role in 
BBB disruption postinjury.7,11,12 As examples, in a rat stroke 
model, there is substantial leakage of fluorescein isothiocy-
anate conjugate (FITC)–albumin tracer into the brain in the 
first 24-h postinjury, but ultrastructural evidence for paracel-
lular leakage routes through dysfunctional tight junctions 
was lacking. Instead, the leakage appeared to be mediated 
through increased vesicles and endothelial degeneration.13 
Shifts of relative permeability over time from smaller sub-
stances to larger substances can be explained by an increased 
role for transcellular pathways.14,15

Endocytosis versus transcytosis

Much of what we assume we know about endocytosis/tran-
scytosis and the BBB is derived from three related fields: the 
general topic of cellular endocytosis, transcytosis in epithe-
lial cells, and transcytosis in other capillary beds. Table 2 
shows a standard classification of endocytotic pathways. 
Phagocytes engulf large particles, including organisms, 
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Figure 1. Fenestral construction. Conceptual illustration of the fusion of cell membranes forming the fenestral pore. Diaphragm is not illustrated, but would be a 
concentric/octagonal opening up to 15 nm in diameter associated with PLVAP. Fenestrae are ringed by cholesterol and cytoskeleton and tend to be clustered into sieve 
plates that in turn are delimited by microtubules. (A color version of this figure is available in the online journal.)

Table 1. Pathways of blood–brain barrier disruption.

Paracellular
Transcellular
 Fenestrations
  Diaphragm
  No diaphragm
 Canaliculi
  Diaphragm
  No diaphragm
 Transcytotic
Epicellular
 Basement membrane
 Glycocalyx

Table 2. Classification of endocytosis.

Phagocytosis
Pinocytosis
 Macropinocytosis
  Induced
  Constitutive
 Micropinocytosis
  Clathrin-dependent endocytosis
   Clathrin-dependent receptor-mediated endocytosis
  Caveolin-mediated endocytosis
   Podocytosis (caveolin-mediated receptor-mediated endocytosis)
  Adsorptive endocytosis
  Other non-clathrin/caveolin-mediated endocytosis
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and are generally 1–2 microns in diameter. Macropinocytes 
are usually stated to be larger than 250 nm in diameter 
and with the role of nutrient internalization. Recent work 
has divided macropinocytes into induced (classic) and 
constitutive, the latter with a role in antigen presentation. 
Clathrin-dependent endocytosis is the most common form 
of receptor-mediated transcytosis and engages in classic 
endocytic–exocytic cycling. The interior diameter of clathrin 
vesicles is estimated at 30–40 nm.16 Clathrin vesicles often 
produce buds that return the receptor to the cell membrane 
with the remainder of the ligand-containing vesicle routing 
to phagosomes.17 Caveolin-dependent endocytes are flask-
shaped invaginations in the cell membrane with diameters 
of 60–80 nm,18 arise in lipid rafts, and may also engage in 
receptor-mediated transcytosis. Adsorptive endocytosis or 
adsorptive-mediated endocytosis is characterized by interac-
tions between highly charged ligands with regions of the cell 
surface.19 A classic example is the lectin wheat germ agglu-
tinin binding to cell membrane glycoproteins, inducing traf-
ficking of cell membrane to lysosomes.20,21 It is generally 
assumed that there are other endocytic systems yet to be 
described.

Tight junctions polarize the brain endothelial cell, dividing  
its cell membrane into luminal and abluminal regions. This 
gives the endocytic vesicle a choice of destinations, with 
transcytosis occurring when an endocyte arising from one 
membrane surface (e.g. the luminal membrane) exocytoses 
at the other membrane surface (e.g. abluminal). However, 
the destination of an endosome is not likely to be randomly 
chosen. Vesicles endocytosed on the apical surface tend to 
exocytose there as well and those arising from the basolateral 
surface to exocytose there.17 This shows that transcytosis is 
not simply a random event that occurs after endocytosis. 
In addition, endocytosis and exocytosis in a non-polarized 
cell are directed at serving the needs of that cell, whereas 
transcytosis is directed at serving the needs of the adjacent 
cells. Therefore, transcytosis is likely to be a cell’s response to 
signals from other cells and not in response to its own needs.

Of the various pinocytes, those related to fluid-phase 
transcytosis are assumed to be more related to BBB disrup-
tion than those related to the transport of specific ligands, 
such as receptor-mediated transcytosis. However, evidence 
suggests that the vesicular systems share to some degree cel-
lular machinery and it is possible that invoking one pathway 
affects the activation of others. As discussed below, caveolae 
and canaliculi have cellular machinery that is particularly 
linked. At the least, all transcellular and paracellular disrup-
tion pathways involve rearrangement of the cytoskeleton.

Vesicles are appealing candidates for explaining transcel-
lular leakage at the BBB. Their diameter of 30–100 nm would 
allow virtually any molecule and many viruses (but not bac-
teria or cells) free passage into brain. The possibility that they 
coalesce to form channels or tubes that span the approxi-
mate 150 nm width of a brain capillary is also appealing.22,23 
However, studies with various sized molecules in non-BBB 
capillary beds show that most leakage can be explained by a 
pore size of 4 nm24,25 with a second class of pores at an esti-
mated size of 11–35 nm,25,26 although this estimate increases 
to about 60 nm in the case of a few tissues.27 Sinusoidal cap-
illary beds, such as that of liver, are characterized by open 

fenestrae, lack of basement membranes and glycocalyx, and 
high levels of phagocytosis and have estimated diameters 
of 180–280 nm.27 A study by Stewart found a poor correla-
tion between the vesicular content of the endothelial beds 
for various tissues and their degree of leakage. For exam-
ple, vesicles in brain capillary endothelial cells occur at a 
frequency of about 14/µm3, whereas in the much leakier 
capillary bed of the testis, the frequency is about 9/µm3.28 
Stewart concluded that most substances crossing capillary 
beds did so by way of selective processes rather than leak-
age. This suggests that only a minority of the vesicles seen 
in a non-disrupted barrier tissue’s capillary bed are involved 
in leakage.

For the BBB, these considerations highlight the need 
for further studies on the role of transcytosis in the vari-
ous diseases that involve disruption. The work of Broadwell 
et al.21,29 with wheat germ agglutinin showed that adsorptive 
endocytosis induced vesicles that tended to be routed to lys-
osomes, but also involved routing to other membrane struc-
tures, including the abluminal membrane (i.e. transcytosis). 
Viruses such as HIV and SARS-CoV-2 likely cross the BBB by 
inducing adsorptive transcytosis, which is consistent with 
their routing to and need to survive the lysosomal compart-
ment.30 It is also likely that many of the Trojan horse deliv-
ery systems, particularly those that bind to off-target sites 
or depend on a greatly altered endogenous ligand, induce 
adsorptive transcytosis rather than receptor-mediated tran-
scytosis. This would explain, in part, the surprisingly disap-
pointing results of the various Trojan horse approaches.

Non-vesicular transcellular leakage

The main two categories of structures involved in non-
vesicular transcellular leakage are canalicular structures 
and fenestrae (Figure 2). Canaliculi or similar structures 
have also been termed vesiculo-canaliculi, vesiculo-tubules, 
transendothelial channels, conduits, and vesiculo-vesicular 
organelles.31,32 As defined by Lossinsky and Shivers,31 cana-
liculi only occur in brain endothelial cells in the presence of 
injury and span the membrane forming transcellular chan-
nels, although others have noted they often dead-end in 
lysosomes. Lossinsky and Shivers note similarities and dif-
ferences of this system with other transcellular channel-like 
networks, such as that involved in the diapedesis of immune 
cell trafficking. However, since diapedesis is a highly regu-
lated and selective process, it is not considered in our review 
except to note that when extremely active, enough fluid-
phase passage can accompany the immune cell trafficking 
as to give the appearance of BBB disruption.33,34

Early studies noted that canaliculi formation was affected 
by cholesterol altering drugs such as nystatin and cyclodex-
trins, and so classic canaliculi were assumed to be related 
to caveolae. Thus, caveolar mechanisms have been related 
to both a specific transcytotic pathway35 and a more non-
specific transcellular leakage.36,37 The major proteins that 
facilitate formation of caveolae are caveolins and cavins. 
Caveolins are integral membrane proteins synthesized from 
CAV1, 2, and 3 genes.38 In endothelial cells, including those 
of the BBB, caveolae are comprised of Cav-1 and 2, whereas 
Cav-3 expression is not detected.39 Cav-3 expression is more 
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limited and is typically observed in smooth and striated mus-
cle.40 In the brain, Cav-3 has been detected in astrocytes.39 
Caveolin proteins bind cholesterol and are essential for the 
formation of caveolae; genetic ablation of Cav-1 causes loss 
of caveolae,41,42 although the mice remain viable. Cavins are 
cytoplasmic proteins that are important for the formation 
of caveolae, and include cavins 1–4.43 Cavins are thought to 
facilitate caveolae formation by stabilizing caveolin oligom-
ers, contributing to the membrane curvature, and inhibiting 
caveolin degradation.43 More recent works have elucidated 
the protein major facilitator super family domain containing 
2a (Mfsd2a) as a BBB-specific suppressor of caveolar vesi-
cles.44,45 Mfsd2a is selectively upregulated during a critical 
window of BBB formation during embryonic development, 
and its expression is dependent on pericyte associations with 
the BBB. Importantly, Mfsd2a controls BBB leakiness inde-
pendently of TJPs.44

Leakier vascular beds have fenestrations, and endothelial 
cell gaps which form larger pores of 60–100 nm or more,46 
and are not comprised of caveolae.47 An area of fused cel-
lular membrane forms the fenestrae and is about 60–80 nm 
in diameter (Figure 1). In some capillary beds, fenestrae 
have diaphragms, which consist of radial protein fibrils 
with tufts of heparan sulfate bound on the luminal side of 
the endothelial cell.48–50 The fenestral diaphragm affects the 
size of molecules that can pass through the pore, with larger 
molecules such as ferritin (11 nm) having very limited pas-
sage across fenestrated vascular beds versus horseradish 
peroxidase (4.5 nm) which can cross freely.48 It has been esti-
mated that the diaphragms reduce the functional perme-
ability (pore size) of a fenestrae from a diameter of 15 nm to 
one of 6–11 nm.27

The plasmalemma vesicle-associated protein (PLVAP) is 
the main constituent comprising fenestral diaphragms, and 
also forms structurally and biochemically distinct stomatal 
diaphragms on caveolae.32,51 PLVAP is expressed by nas-
cent blood vessels in the developing brain and retina, but its 
expression is suppressed by Wnt signaling that occurs with 
BBB maturation.52,53 Fenestrated capillaries are also present 
in circumventricular organs of the brain, which lack a func-
tional BBB.54 Genetic ablation of PLVAP in mice results in 
an absence of diaphragms on fenestrae and caveolae, but 
fenestrae and caveolae remain present and otherwise indis-
tinct from those of wild-type mice.55 Mice lacking PLVAP 
show rapid decreases in plasma proteins <200 kDa and 
plasma protein accumulation into the interstitial space of 
fenestrated vessels, followed by hypertriglyceridemia, non-
inflammatory edema of organs with fenestrated vascular 
beds (intestine, kidney, and pancreas), and eventually died 
in the prenatal or early postnatal periods.55 PLVAP is also a 
positive regulator of leukocyte trafficking,51 highlighting the 
previously noted interconnection among the various para-
cellular and transcellular pathways. Other than PLVAP, little 
is known about the identity and functions of other struc-
tural/regulatory components of endothelial cell fenestrae.

BBB disruption by transcellular routes: 
diseases and molecular machinery

The importance of understanding how the BBB is disrupted 
resides in part because the characteristics of the various 
pathways of disruption vary and this variation likely affects 
the resulting neurological sequelae. For example, disrup-
tion to larger molecules will require pathways other than 

Figure 2. Transcellular processes: caveolae and fenestrae. In fenestrated non-brain endothelial cells (a), fenestrae permit leakage of medium-sized molecules. 
Fenestrae typically express fenestral diaphragms comprised of PLVAP (purple strands) and tufts of heparan sulfate proteoglycan (black), shown in inset. Paracellular 
junctions of most non-brain endothelial cells are leaky, and permit leakage of small solutes between cells (b). Caveolae contribute to leakage either through formation 
of transendothelial channels (c), or transcellular vesicular transport (d and e). Caveolar vesicles and transendothelial cell channels can express stomatal diaphragms 
comprised of PLVAP (purple strands) but that lack heparan tufts (inset, c and d). Caveolae that lack stomatal diaphragms (e) may permit leakage of larger molecules 
into tissues. In brain endothelial cells, tight junction proteins limit paracellular leakage of substances (f). Fenestrae and caveolar formation is suppressed, in part, by 
expression of Mfsd2a (blue, g), which transports DHA to the inner leaflet of the endothelial cell plasma membrane which inhibits association of caveolin-1 with the 
membrane. (A color version of this figure is available in the online journal.)
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paracellular leakage and entry of moderate-large viruses 
will require vesicular pathways (Figure 3). The presence or 
absence of heparan sulfate at the diaphragms of fenestrae 
may affect the permeability of substances on the basis of 
charge or glycosylation; this is clearly the case for adsorptive 
transcytosis. Vesicular mechanisms, required for the entry of 
the largest substances, cannot be detected by transendothelial 
electrical resistance, which depends on transfer of not only 
the smallest entity, electrons, but also on a patent channel.

Classically, much of the knowledge about the transcellu-
lar pathways of BBB disruption comes from ultrastructural 
studies, but increasingly proteins key to the transcellular 
processes are being studied. For example, biochemical data 
support that caveolae are involved in BBB leakage postin-
jury. Caveolins are the major structural components of cave-
olar vesicles and transendothelial channels.56 Caveolin-1 
upregulation has been reported to occur prior to changes 
in tight junction proteins in stroke and cortical cold injury 
models, with tight junction remodeling occurring in later 
phases.57,58 Cav-1 knockout mice were also shown to have 
less BBB leakage in the early phases of postinjury;58 however, 
Cav-1 knockout mice also have larger infarct volumes which 
may be due to impaired angiogenesis and apoptosis.58,59 
Cav-1 knockout does not appear to influence the expres-
sion or architecture of tight junctions,58 although Cav-1 does 
interact with claudins and occludin,60 and has been shown 
to regulate tight junction protein redistribution in cells fol-
lowing inflammatory and ischemic insults.61–63 Caveolin-1 
was also shown to regulate focused-ultrasound-mediated 
BBB disruption to large (500 kDa), but not mid-size (70 kDa) 
tracers,64 further supporting its selective contribution to tran-
scytotic routes of BBB disruption.

Caveolae expression, which is suppressed by Mfsd2a 
by incorporating DHA into the brain endothelial cell mem-
brane,45 has also been implicated in BBB disruption associated 

with brain injury. Mfsd2a is downregulated in intracranial 
hemorrhage, sepsis, and brain tumor models concurrently 
with increased BBB leakage, and overexpression of Mfsd2a 
rescues BBB leakage in these models,65 supporting its involve-
ment in upregulating transcellular leakage pathways in path-
ological conditions. Recent work has implicated phosphatase 
and tensin homolog (PTEN)/AKT signaling through the E3 
ubiquitin ligase NEDD4-2 as an important regulatory path-
way for Mfsd2a expression and caveolae suppression.66 PTEN 
is a phosphatase that inhibits AKT activity, thus reducing the 
phosphorylation and ubiquitin ligase activity of NEDD4-2 
and increasing Mfsd2a stability. Brain endothelial cell-specific 
deletion of PTEN results in decreased Mfsd2a and increased 
formation of caveolar vesicles.66 However, another group has 
shown that brain injury causes the upregulation of PTEN, 
and that pharmacological PTEN inhibition reduces BBB dis-
ruption and improves functional outcomes postinjury.67 It 
is possible that these apparently conflicting results could be 
due to differences in cell-type specific functions, or harmful 
functions of PTEN in an injury context.

The ultrastructural demonstration of fenestrae postinjury, 
to our knowledge, has not been described for brain endothe-
lial cells. However, chemical induction of brain endothelial 
cell fenestrations has been shown before in rats, which was 
done by a 28-day continuous infusion of phorbol 12-myristate 
13-acetate (PMA) into the cerebral cortex.68 Although ultra-
structural insight on fenestrae is lacking, PLVAP has been 
implicated in BBB leakage following pathological insults.53 
In mature vascular beds of the brain or retina, PLVAP expres-
sion is absent, but can be induced with diabetic retinopathy, 
brain ischemia, and in brain tumors.53 In the retina, whose 
endothelial cells form a blood–retinal barrier (BRB), vascu-
lar endothelial growth factor (VEGF)-induced BRB leakage 
was inhibited by knocking down PLVAP expression.69 The 
same study also found that PLVAP knockdown inhibited 
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VEGF-induced caveolae formation, which is interesting 
because PLVAP knockout mice do not have overt changes 
in caveolae of peripheral vascular beds, except for miss-
ing diaphragms.55 Furthermore, the protective effect of 
PLVAP knockdown supports that fenestral structures are 
not involved in VEGF-induced BRB disruption, as it would 
be expected that PLVAP knockdown would exacerbate leak-
age if that were the case.55 Therefore, PLVAP may have a 
broader regulatory role at brain barriers in context of injury. 
The mechanisms by which PLVAP contributes to leakage of 
the BBB and BRB remain unclear, but would be important to 
understand given its role in development and disease.

Although older literature has suggested an absence of BBB 
disruption with healthy aging (reviewed in Banks et al.70), 
newer studies suggest that BBB disruption occurs in aging 
humans with cognitive decline and predicts progression to 
Alzheimer’s disease,71–73 although the leakage is modest and 
highly variable with age.70 Yang et al. have recently showed 
using proteomic methods that plasma protein uptake into 
the brain decreases with age, which is associated with a loss 
of pericyte coverage and a shift from clathrin-dependent 
receptor-mediated transcytosis to caveolae-mediated tran-
scytosis. In parallel, Mfsd2a was downregulated and there 
was decreased incorporation of DHA in the cell membrane 
and increased caveolar vesicles.11 One additional putative 
regulator of transcellular leakage was identified in the same 
study, which is ALPL, an alkaline phosphatase gene that is 
upregulated with aging. Pharmacological inhibition of ALPL 
had an apparently restorative effect on receptor-mediated 
transcytosis; however, it remains unclear how ALPL expres-
sion regulates transcytotic pathways of BBB leakage.

Toward treating the disrupted BBB

With BBB disruption being increasingly recognized as a com-
ponent of so many diseases, the question arises as to whether 
BBB disruption can be treated. It seems likely that the BBB 
has a high degree of repair after injuries such as stroke, 
trauma to the CNS, or multiple sclerosis, although there is 
evidence in the latter two conditions that waves of repair 
and dysfunction occur.74,75 Whereas most of our present 
knowledge focuses on mechanisms that cause BBB disrup-
tion, an improved understanding of endogenous pathways 
of BBB protection and repair may offer insight on mitigating 
the extent and/or duration of BBB disruption in diseases. 
While a comprehensive discussion of the existing literature 
is beyond the scope of this review, we highlight annexin A1 
as one example of an endogenous BBB-protective molecule 
that facilitates BBB repair.76 Recent three-dimensional (3D) 
in vitro modeling of the BBB derived from human iPSCs has 
been used to study BBB disruption and repair mechansims 
at high temporal and spatial resolution, and has identified 
bFGF as another example of BBB-preserving factor.77 In these 
cases, the primary mode of BBB protection/restoration was 
against paracellular leakage mechanisms. Much less infor-
mation is available on the mechanisms that restore suppres-
sion of transcellular leakage pathways after they are induced 
at the BBB.

As for therapeutic interventions, they will likely vary as 
to the nature of injury and, therefore, the type of disruption. 

Preclinical data show that BBB disruption caused by inflam-
mation induced by lipopolysaccharide or by tumor necrosis 
factor (TNF) can be blocked by indomethacin, indicating that 
BBB disruption is mediated in this case by prostaglandins.78 
Traumatic brain injury induced by blast injury can be blocked 
by nitric oxide synthase inhibitors,15 but not by indometha-
cin.15 Deletion of eNOS protects the BBB from disruption in 
thiamine deficient mice.79 Hyperglycemia-associated BBB 
disruption has been blocked by glucagon-like peptide-1 
(GLP-1) agonists, fibroblast growth factor 21 (FGF21) treat-
ment, epoxide hydrolase inhibition, pitavastatin, candesar-
tan, and metabolic carbonic anhydrase inhibitors.80–84 Mfsd2a 
attenuates BBB disruption accompanying intracerebral hem-
orrhage.85 A type IV phosphodiesterase inhibitor or antibod-
ies to interleukin-1 beta protects the BBB after focal cerebral 
ischemia.86,87 BBB disruption accompanying obesity and dia-
betes in the BTBR mouse strain, which has deficient of leptin, 
can be normalized with leptin treatment.5 BBB disruption 
can be induced by bradykinins, histamine, and TNF, and so 
antagonists of these agents should be effective when these 
agents are the underlying cause of BBB disruption.88–91 These 
examples are not exhaustive, but illustrate that treatments are 
diverse, likely being dependent on the cause of injury and the 
characteristics of the BBB disruption.

Conclusions

In conclusion, there is an abundance of literature that 
emphasizes the importance of transcellular pathways of BBB 
disruption in different disease models. Yet, relatively little is 
known about the mechanisms and molecular components 
that regulate transcellular opening of the BBB. Advances in 
molecular tools that allow for cell biological and proteomic 
studies of the BBB have and will continue to improve our 
understanding of these intriguing transcellular routes of BBB 
leakage that emerge following injury and disease.
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