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Introduction

Macrophages contribute to regulating tissue homeosta-
sis, organ development, tissue remodeling, regeneration, 
inflammation, and various pathologies. Being an essential 
component of innate immunity, macrophages differentiate 
toward various phenotypes in response to environmental 
alterations.1 They are sensitive to a wide spectrum of stimuli, 
including viral, microbial, and parasite antigens; immune 
complexes; and various mediators released by apoptotic, 
necrotic, or other cells.

Depending on the growth factors, cytokines, and other 
mediators released into the microenvironment by mac-
rophages, they are divided into two major in vitro subsets 
with different physiological activity:2 the proinflammatory 
M1-polarized macrophages and the anti-inflammatory 
M2-polarized macrophages.3 Macrophage activation and 

differentiation in vivo is not a linear process; each subset has 
different characteristics and functions in homeostasis and 
plays different roles in the outcome of disease development.4 
Currently, macrophage polarization in vivo is considered to 
be a wide continuum of phenotypes between M1 and M2 
states4–6 that get activated differently based on a variety of 
physiological signals. However, such discrete macrophage 
classification is still useful for in vitro studies, including 
a description of their function in modeling pathological 
processes.

Hypoxia is defined as a condition of reduced oxygen 
saturation (pO2, 0–20 mmHg) which arises as a result of a 
damaged or dysfunctional vascular network and dimin-
ished blood and oxygen supply. Hypoxia accompanies many 
pathological conditions, including inflammation, hepatic 
ischemia, organ transplantation, cerebral stroke, myocar-
dial infarction (MI), arthritic joints, atherosclerotic plaques, 
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brain) in vivo. We propose a new concept on how 
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and how interventions in macrophage metabolism 
(e.g. dietary interventions) may affect macrophage 
polarization. The concept of macrophage phenotype 
shifting from M1 to M2, induced by targeting the 
energy metabolism, might be useful for developing 
treatment strategies for ischemic injuries.
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and malignant tumors.7–10 Macrophage polarization can 
be induced by hypoxia and is associated with pathologi-
cal conditions like ischemia and ischemia/reperfusion (IR). 
Here, we discuss how mild alterations of energy metabo-
lism by changing a diet (glucose-free, low-calorie, keto diets) 
can affect macrophage phenotype and hypoxic/ischemic 
damage.

M1/M2 paradigm of macrophage 
polarization

Currently, two major in vitro macrophage subsets are rec-
ognized: proinflammatory M1 macrophages and anti-
inflammatory M2 macrophages.11 They are activated by 
different molecules, have different surface markers, and 
produce different chemokines and cytokines (Figure 1; see 
Supplementary Table).

M1 macrophages are activated by toll-like receptor (TLR) 
ligands, such as lipopolysaccharides (LPS; bacterial cell wall 
components), interferon-γ (IFN-γ), granulocyte-macrophage 
colony-stimulating factor (GM-CSF), and tumor necrosis 
factor-alpha (TNF-α).12–14 M2 macrophages are divided into 
four subsets (M2a, M2b, M2c, and M2d). Their activating 
stimuli (Figure 1) include the following:

M2a: interleukin (IL)-4 or IL-13 (secreted by mast cells, 
basophils, and Th2-lymphocytes), downstream involve-
ment of jumonji domain-containing-3 (Jmjd3), and inter-
feron regulatory factor-4 (IRF-4);15

M2b: immune complexes and IL-1β;15–18

M2c: glucocorticoid hormones, IL-10, or transforming 
growth factor-β (TGF-β);17–19

M2d: TGF-β + adenosine 2A receptor (A2AR), IL-10.

Furthermore, IL-21,20 IL-33,21 and IL-3422 were shown 
to induce M2 polarization. Since the activation status of 

macrophages is regulated by suppressors of cytokine sign-
aling (SOCS) protein isoforms, this protein was suggested 
to be a potential marker for macrophage phenotype: SOCS3 
is associated with M1 macrophages, whereas an increase in 
the SOCS1/SOCS3 ratio could be a potential marker for M2 
macrophages.23–25

M1 macrophages perform proinflammatory, microbicidal, 
and tumoricidal functions acting as the effective killers of 
pathogens due to a high antigen presentation capacity, high 
expression of receptors, and proinflammatory cytokines.26–29 
Apart from proinflammatory chemokines and cytokines 
(see Supplementary Table), they employ inducible nitric 
oxide synthase (iNOS) to produce NO from l-arginine30 and 
express the Th1-attracting chemokines.22,31

M2 macrophages demonstrate high phagocytosis capacity, 
production of extracellular matrix components, angiogenic 
and chemotactic factors, and IL-10.32,33 Activated M2 mac-
rophages eliminate apoptotic cells, mitigate inflammatory 
response, and promote wound healing.1 Moreover, M2 mac-
rophages are thought to be involved in organ morphogen-
esis, tissue remodeling, and endocrine signaling.5,34,35 M2 
macrophages stimulated by IL-4 possess an increased argi-
nase expression resulting in arginine-to-ornithine conver-
sion.36 Ornithine is a precursor of polyamines and collagen 
that promotes tissue regeneration and wound repair. Beyond 
that, arginase competes with iNOS for arginine, which leads 
to decreased NO production. However, prolonged activation 
of M2 macrophage activity may induce tissue damage and 
fibrosis.37 In particular, M2 macrophages can promote exces-
sive production and remodeling of the extracellular matrix, 
which can also cause a pathological outcome. It has been 
shown that fibrosis development in wound healing during 
chronic schistosomiasis is caused by the uncontrolled activa-
tion of M2 macrophages, while inhibiting the IL-4 receptor 
on M2 macrophages or using antibodies against the IL-4 
receptor reduced the degree of fibrosis in the lesion.38

Figure 1. Macrophage polarization in vitro including M2 macrophage subsets (M2a, M2b, M2c, and M2d). The scheme shows activating stimuli for M1/M2 polarization 
and their main functions. (A color version of this figure is available in the online journal.)
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Subsets of M2 macrophages have several specific func-
tional features. M2a macrophages recruit Th1-lymphocytes, 
eosinophils, basophils, and mast cells.22,31 The primary role 
of M2a macrophages is to mediate the allergy response.39–41 
M2b macrophages stimulate migration of eosinophils, Th2-
lymphocytes, and T-regulatory cells. M2c macrophages play 
crucial roles in the phagocytosis of the apoptotic cell pro-
cess.42 M2d macrophages are characterized by the increased 
production of IL-10 and vascular endothelial growth factor 
(VEGF) and low expression of TNF-α and IL-12, which even-
tually promotes angiogenesis.43

There is a huge variety of markers used for the identifi-
cation of macrophage population.44–54 Examples of surface 
marker detection by flow cytometry are shown below:

•• M1 (CD11b+ CD80+) and M2 (CD11b+ CD206+);
•• M1 (CD64+ CD80+) and M2 (CD11b+ CD209+);50

•• M1 (CD80, CD86, TLR2, TLR4) and M2 (CD204, 
CD163, CD206);51

•• M1 (CD45+ F4/80+ CD86+) and M2 (CD45+ F4/80+ 
CD206+);52

•• M1 (CD45+ CD11b+ F4/80+ CD206–) and M2 (CD45+ 
CD11b+ F4/80+ CD206+);46

•• M1 (CD86) and M2 (CD206, CD163);53

•• M1 (CD68+/CD80high/CD206low), M2 (CD68+/
CD80low/CD206high), and M0 phenotype (CD68+/
CD80low/CD206low).54

Of note, CD45+, CD14+, CD11b+, CD163+, CD19, and 
CD68+ are common markers for human whole-population 
macrophages.

However, there are several flaws in the M1/M2 paradigm. 
(1) Dividing macrophages into M1/M2 classes is considered 
too simplistic as macrophage activation and differentiation 
are not linear, and each subset has different characteristics 
and functional roles in homeostasis and affects the outcome 
of disease development.4,11 (2) Nahrendorf and Swirski 
pointed out the significant differences between the in vitro 
and in vivo data.55 After a 7-day in vitro incubation of micro-
glia and peritoneal macrophages, they completely lost their 
tissue-specific gene expression.56 Thus, comparing the data 
obtained from cells in in vivo and in vitro experiments appears 
to be too hasty. (3) Various signals in an organism and cel-
lular environment induce functional diversity of the mac-
rophages.6,57 Smith et al.57 studied the macrophage response 
to a combined M1 and M2 activation triggered either 
simultaneously or sequentially. They showed that simul-
taneous action of LPS, IFN-γ, IL-4, and IL-13 induces both 
M1 marker, CD86, and M2 marker, CD206. Over time, the 
macrophages lost their expression of CD86 simultaneously 
displaying an increased expression of CD206.57 This work 
also demonstrated that macrophage reprogramming to an 
opposite phenotype is dependent on the initial polarization 
state and the strength of the secondary signal.57 Murine bone 
marrow–derived macrophages stimulated with LPS + IFN-γ, 
IL4, or both were analyzed using single-cell RNA sequencing 
and single-cell secretion profiling. Variability in the nega-
tive cross-regulation between certain LPS + IFN-γ-specific 
and IL-4-specific genes results in cell transcriptome hetero-
geneity. The authors suggest that increasing the functional 

diversity within a single population is one of the strategies 
employed by macrophages in response to variable environ-
mental cues.6

To summarize, when interpreting in vivo studies, the M1/
M2 paradigm should be used with caution, since it signifi-
cantly simplifies the way macrophage functional activity is. 
Some investigators even suggest to use “pro-inflammatory” 
and “pro-regenerative” terms instead of M1 and M2.49

Macrophage polarization during 
hypoxia in vitro

Hypoxia is a condition characterized by insufficient oxygen 
supply in tissues. Discussing data on in vitro hypoxia mod-
els (Table 1), we should keep in mind that in human healthy 
tissues, the physiological normoxia corresponds to the oxy-
gen concentration within the range from 4% (muscle) to 9.5%  
(kidney, outer cortex).58,59 However, in cell culture models, 
under normoxia, cells are exposed to atmospheric oxygen 
concentrations (about 20% O2),60 while for hypoxic condi-
tions, cells are exposed to 1% O2.60 O2 saturation in solid 
tumors is known to be within the range of 1–2% O2

59,61 which 
was suggested to induce macrophage migration into the 
tumor core.62,63 Studying the macrophage polarization dur-
ing hypoxia could shed a light on the mechanisms of tumor 
inflammation.

Two human glioblastoma (hGBM) cell lines U87 and 
U251 are known to develop a slightly hypoxic and a severely 
hypoxic solid tumor, respectively.66 Using the cell-derived 
xenografts established by orthotopic inoculation of U87 or 
U251 cells into the right caudate-putamen, Leblond et al.8 
showed that hypoxia facilitated the macrophage migration 
to the tumor with M2 phenotype being more pronounced 
than M1. The same results were obtained from co-culturing 
the pancreatic cancer cells (PCC) and macrophages, which 
promoted M2 polarization.68

Under hypoxic conditions, macrophages were shown to 
express higher levels of growth and angiogenic factors such 
as VEGF and glucose transporter-1.63,69,70 Hypoxia conditions 
in tumors induced the anti-inflammatory polarization.54,71,72 
In tumors, the macrophages tend to acquire M2 polariza-
tion promoting tumor growth due to the production of a 
large number of mitogenic, angiogenic, and prometastatic 
cytokines and enzymes, including growth factors (VEGF, 
fibroblast growth factors-1 and fibroblast growth factors-2, 
platelet-derived growth factor (PDGF), hepatocyte growth 
factor (HGF), placental growth factor (PGF), and angiopoi-
etin-1).71 The proangiogenic factor VEGF-A is produced 
almost exclusively in macrophages in hypoxic areas in 
human breast cancer,73 which is dependent on the increase of 
hypoxia-inducible factors (HIF) especially HIF-1α.73,74 There 
is the HIF-1α-dependent expression of additional proan-
giogenic molecules such as basic fibroblast growth factor 
(bFGF), CXCL8/IL-8, adrenomedullin, and matrix metal-
loproteinase-9 (MMP-9).62 HIF-1 activity was demonstrated 
to increase the expression of chemokine CXCL12 and its 
receptor CXC4 (CXCR4) in macrophages, which enhance 
the adaptation to hypoxia. CXCL12 may contribute to the 
chemoattraction of monocytes and macrophages toward the 
tumor hypoxic sites facilitating angiogenesis and promoting 
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metastasis.74 Based on these data, inhibiting HIF-1 can be 
employed to enhance the efficacy of angiogenesis inhibitors 
during anticancer therapy. 67,75

Meanwhile, human monocytic THP-1 cells and murine 
bone marrow–derived macrophages can switch to the M1 
phenotype under hypoxic conditions.60 Cycling hypoxia (see 
Table 1) induced a proinflammatory phenotype in human and 
murine M0 macrophages and amplified the proinflamma-
tory phenotype (M1) while not affecting M2 macrophages.60 
Moreover, murine brain microglia (BV2 cell line) and murine 
macrophages (RAW 264.7 cell line) were shown to acquire 
M1 polarization upon hypoxia/reperfusion in vitro.76

Despite the uncovered differences in the macrophage 
response to hypoxic conditions in vitro, hypoxia in tumors is 
largely thought to cause M2 phenotype. Such macrophages 
are called protumoural phenotype macrophages. But the 
question arises: what are the reasons behind the inconsist-
ency of the data on hypoxia effects obtained from the experi-
ments on different macrophage cell cultures? The differences 
in the effects of hypoxia might lie in the cell-type-specific 
reactions, and therefore, no unified “hypoxic macrophage 
phenotype” can be defined.

Macrophage polarization upon IR

Ischemia-reperfusion injury (IRI) is organ damage caused by 
a limited supply of oxygen (hypoxia) and nutrients as well 
as the effects of metabolic by-products after the blood flow 
is restored. IR causes the damage of different organs, includ-
ing hepatic ischemia-reperfusion (hIR), MI, kidney injury, 
ischemic stroke (IS), and organ transplantation.

Liver

hIR occurs in many clinical cases, including liver transplan-
tation and vascular control techniques during liver surgery,77 
and is an important factor affecting postoperative mortal-
ity and morbidity.37,78 The liver comprises many types of 
immune cells – resident macrophages (Kupffer cells [KCs]), 
dendritic cells (DCs), natural killer (NK) cells, and natural 
killer T (NKT) cells – which play a significant role in hIR.79 
Upon IR, blood monocytes can infiltrate the liver and dif-
ferentiate into macrophages79 with subsequent M1 and M2 
polarization.37

Hypoxia and concomitant metabolic disorders are 
known to accompany hIR and affect macrophage polariza-
tion. There are two main phases of liver IR: the initial stages 
with predominant M1 type and the late stage of liver IR with 
predominant M2 type.37,78

hIR-induced tissue damage is mediated by many fac-
tors, including high levels of reactive oxygen species 
(ROS), imbalanced intracellular calcium ion concentrations, 
changes in cellular pH, and the release of danger-associated 
molecular patterns (DAMPs).37 DAMPs, such as high-mobil-
ity group box 1 (HMGB1), were shown to be significantly 
elevated in the liver after 1-h IR (Figure 2). HMGB1 bind-
ing to TLR4 resulted in KC polarization to the M1 pheno-
type. Other DAMPs such as histamine, DNA fragments, and 
ATP could also activate KC M1 polarization through TLR-
dependent signalization. M1 macrophages accumulated by  

8 to 72 h after IR80 produced the proinflammatory cytokines, 
TNF-α, and ROS.81

By 48 to 72 h after liver IR injury, an increase in the M2 
macrophage population was observed.80 M2 macrophages 
released anti-inflammatory factors such as IL-10 and TNF-β 
to alleviate injury. IL-10 inhibited the activation of NF-κB 
and the proinflammatory factors such as TNF-α, IL-1β, IFN-
γ, and IL-2.82,83

Kidney

Chronic kidney diseases and kidney transplantation are 
also accompanied by IR injury. As in the liver, M1-type 
macrophages prevail at the early stage of kidney IR for the 
proinflammatory cytokines producing. The peak of IL-6 
production was observed by 4 h after the reperfusion fol-
lowed by the expression of TNF-α, IL-1β, and MCP-1 in the 
injured kidney.83 Ko et al.84 showed that macrophage deple-
tion reduced kidney damage. However, macrophages are 
essential for tubular epithelial cell regeneration at the rep-
erfusion stage.85 During the later stages of kidney IR injury, 
macrophages acquire the M2 phenotype and exert regenera-
tive effects.86–89

These data indicate that M1/M2 shift could be harnessed 
in treating hepatic and kidney pathologies. However, this 
strategy should be used with caution as M2 polarization is 
involved in many abnormal repair processes such as inter-
stitial fibrosis and crescent formation.90 According to Tian 
and Chen,90 this strategy may have the following pitfalls: 
(1) as macrophages are highly heterogeneous, dividing 
them into two groups (M1/M2) is not methodologically cor-
rect;91 (2) it is likely that the in vivo expression of M1 and 
M2 polarization markers is independent of each other;92 (3) 
in vivo, macrophages comprise the cells derived both from 
blood monocytes and resident macrophages – therefore, they 
can possess some additional features;93 and (4) the polari-
zation of M1 and M2 macrophages undergoes dynamic 
alterations, and adoptively transferred macrophages may 
undergo polarization switch in vivo.94,95 Thus, no matter this 

Figure 2. Macrophage polarization during the initial stages of hIR. IR damage 
resulted in cell apoptosis and generating high ROS levels in the liver. Apoptotic 
cells produced DAMPs such as HMGB1 promoting M1 polarization via 
stimulating TLR4 and other receptors on macrophages. M1 macrophages further 
produced ROS and proinflammatory factors which in turn caused liver damage.37 
(A color version of this figure is available in the online journal.)



964  Experimental Biology and Medicine  Volume 247  June 2022

possibility seems to be promising, further research into the 
continuum of macrophages is needed.

Heart

Ischemic heart pathologies, particularly MI, are character-
ized by IR of the cardiac tissue. Using mouse model (1–3 
post-MI days), M1 phenotype of macrophages was shown 
to prevail at the first stage of MI. The function of these mac-
rophages included removing the cell debris and degrading 
the extracellular matrix. After 1 and 3 days post-MI, mac-
rophages upregulate several anti-inflammatory genes: Slfn4, 
Cd9, Tnip1, and Gpr132.96 After 5 to 7 days post-MI, the accu-
mulation of M2 macrophages was observed. It produced 
anti-inflammatory, proangiogenic, and repair factors and 
engulfed the apoptotic cells, thus facilitating neoangiogen-
esis.97 However, the long-lasting impact of M1 macrophages 
in the infarcted heart could cause negative effects such as 
an expansion of the infarct size and scar formation,98 while 
M2 macrophages facilitated neoangiogenesis and scar 
repair.99 Genes involved in extracellular matrix reorganiza-
tion including fibroblast-specific genes like Col1a1 and Postn 
were activated in macrophages after 7 days post-MI suggest-
ing the impact of macrophages on the extracellular matrix 
proteins in forming the infarct scar.96

M1 to M2 shift during MI was shown to induce myo-
cardial repair;100–103 however, researchers still discuss the 
role of macrophage polarization during MI. Of note, the 
macrophage phenotypes in healthy and infarcted hearts are 
much more complex than the phenotypes defined by the 
M1/M2 polarization paradigm.4 For instance, in MI heart, 
both pro-M1 and pro-M2 stimuli are present, so even a panel 
of M1/M2 markers does not reflect the in vivo macrophage 
polarization state.96,104 Ma et al. proposed another classifica-
tion based on post-MI condition explored day by day. They 
classified macrophages into cardiac macrophages at day 1 
cM(MI-D1) post-MI, day 2 cM(MI-D2) post-MI, and so on.46 
In vitro classification of macrophages could be also based 
on the used stimuli: cM(IL-4) can be defined as resident car-
diac macrophages stimulated with IL-4.46 This idea was sup-
ported by the fact that proinflammatory day-1 macrophages 
did not display all typical M1 features, whereas day-7 mac-
rophages did not display typical M2 features.55,96 A sum-
mary of the macrophage polarization during MI is shown in 
Figure 3 (based on the study of Mouton et al.96).

To summarize, the data on macrophage polarization dur-
ing MI are still insufficient and blurred with inconsistencies. 
To achieve some consensus, further and more detailed work 
is needed.

Brain

IS is caused by the blockage of cerebrovascular blood flow. 
Cerebral ischemia activates microglia and resident mac-
rophages in the brain. After IS, the blood–brain barrier is dis-
rupted, and immune cells such as macrophages, neutrophils, 
and leukocytes infiltrate the lesion area via the disrupted 
barrier.105–107 Microglia being the safeguard equivalent of 
macrophages in central nervous system (CNS) possesses 
the M1/M2 dichotomy (M1 classical proinflammatory state 
and M2 alternative anti-inflammatory/neuroprotective 

state).108,109 However, drawing this line of similarity, one 
should bear in mind that microglia and monocytes/mac-
rophages have different cellular origins. Microglia originates 
from yolk sac progenitors in the neuroepithelium, while 
monocytes/macrophages originate from hematopoietic 
stem cells. There are differences in the expression profiles of 
these cells. Monocytes/macrophages express CCR2, CD11b, 
Ly6C, F4/80, and low levels of CX3CR1,65,108 while microglia 
expresses high levels of CX3CR1, CD11b, and F4/80; low 
levels of CD45; and no CCR2.64 However, both microglia 
and monocytes/macrophages share similar functions.110 The 
main markers shared by M1/M2 microglia and macrophages 
were described in previous works.111,112

Murine models of focal transient cerebral ischemia 
showed changes in microglia/macrophage polarization at 1 
to 14 days of reperfusion.113 The data indicated that M2 phe-
notype was dominant at the first stage subsequently shift-
ing to M1.111,113 However, the expression of M1-type genes 
(iNOS, CD11b, CD16, CD32, and CD86) was found to gradu-
ally increase over time after 3 days and remain elevated for 
at least 14 days after brain ischemia. The expression of M2 
marker mRNA (CD206, Arg1, CCL22, Ym1/2, IL-10, TGF-β) 
was induced from 1 to 3 days after ischemia and peaked by 
3 to 5 days postinjury. The expression of most M2-type genes 
began to decrease at day 7 after ischemia and was restored 
to the preinjury levels by day 14.113 Barakat and Redzic111 
reported that cells with both phenotypes were present in 
the affected area, but their relative amount changed in time 
(mostly due to M2 macrophages that could acquire M1 phe-
notype) and was probably dependent on the proximity to the 
ischemic core. Thus, the microglia/macrophage polarization 
stages in brain ischemia cannot be clearly defined as they 
have both M1 and M2 markers (Figure 4).109,114

In the murine model of the middle cerebral artery occlu-
sion, the inoculation of IL-4-polarized BV2 promoted 
angiogenin expression in the brain. Therefore, microglia 
cell transfer performs a protective function during IS via 
promoting angiogenesis.115 The cytokine IL-4 was shown 
to improve the long-term neurological outcomes after the 
stroke through inducing the M2 phenotype in microglia/
macrophages.116 The latter indicates a possible strategy to 
decrease the neuronal damage after IS by switching M1 phe-
notype to M2.109,113,115,117

Although the conversion of macrophage phenotypes in 
vivo during hypoxia/ischemia is very complex, the simpli-
fied model assumes the presence of two extreme phenotypes 
– M1 (proinflammatory) and M2 (anti-inflammatory) – and 
phenotype switching could represent an approach aimed at 
alleviating tissue damage and improve tissue repair.

Energy metabolism of M1/M2 
macrophages during IRI

The ability of various agents to improve the outcome of 
ischemic events by targeting macrophage polarization was 
studied in the works.109,112,118 As M1 and M2 macrophages 
have different energy metabolism, one of the approaches is to 
alter the macrophage metabolism.119–121 In M1 macrophages, 
the glycolysis rate is elevated, while the tricarboxylic acid 
cycle and oxidative phosphorylation are attenuated. In M2 
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Figure 3. The macrophage polarization stages after MI (from the study of Alagesan and Griffin95). (A color version of this figure is available in the online journal.)

Figure 4. Dynamic changes in microglia marker levels after IS.111 The scale indicates the time (days) after ischemia. M1 polarization markers are indicated in red (top 
panel), and the M2 markers are indicated in green (bottom). (A color version of this figure is available in the online journal.)
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macrophages, the main energy source is oxidative phospho-
rylation.119,122–124 LPS-activated macrophages upregulate the 
expression of the glucose transporter Glut1,125 whereas IL-4-
activated macrophages increase the expression of lipoprotein 
lipase and CD36 which mediate the uptake of fatty acids.126 
Therefore, M1 cells preferentially use glucose as an energy 
source while M2 consume fatty acids.

HIF1α is a well-known signaling molecule that induces 
a metabolic shift toward anaerobic glycolysis.127 Elevated 
lactate production and consequent acidification of the extra-
cellular environment127 promote M2 macrophage polari-
zation.128 Consistent with these data, M2 polarization was 
promoted by the lactic acid produced by hypoxic tumor 
cells.127,128

By day 3 post-MI, the genes related to mitochondrial 
oxidative phosphorylation were shown to be upregulated, 
indicating metabolic reprogramming, which can also indi-
cate a wound repair status.96

Chouchani et al. showed that selective accumulation of the 
Krebs cycle intermediate, succinate, is a universal metabolic 
signature of ischemia in a range of tissues, and is responsi-
ble for mitochondrial ROS production during reperfusion. 
Fumarate overflow from purine nucleotide breakdown and 
partial reversal of the malate/aspartate shuttle lead to the 
reversal of succinate dehydrogenase (SDH) and promote 
succinate accumulation during ischemia. After reperfusion, 
the accumulated succinate is rapidly oxidized, driving exten-
sive ROS generation by reverse electron transport at mito-
chondrial complex I.129

Similarly, macrophages after LPS stimulation produce 
itaconate,130 which besides its antibacterial role inhibits 
SDH in a dose-dependent manner, provoking succinate 
accumulation.131,132 Using exogenous itaconate as well as 
Irg1–/– mice model, Lampropoulou et al. revealed itaconate-
dependent modulation of macrophage activation through 
tricarboxylic acid (TCA) cycle regulation.133 It was hypoth-
esized that itaconate transiently inhibits SDH to gradually 
“awaken” mitochondrial function that upon reperfusion 
minimizes ROS production and tissue damage. Thus, ita-
conate acts as a mitochondrial redox regulator to improve 
physiological outcomes after IR.134

There are multiple mechanisms underlying the influence 
of metabolism in macrophage activation, and a number of 
polarizing signals affect the metabolic signaling pathways 
which coordinate biosynthetic and bioenergetic metabolism 
involved in macrophage activation.124 Furthermore, the func-
tions of macrophages could be modulated by targeting their 
metabolism.

Modulation of macrophage 
polarization by targeting energy 
metabolism

Based on the data on the role of succinate in macrophage 
activation, it was shown that attenuation of ischemic suc-
cinate accumulation by pharmacological agents is sufficient 
to ameliorate in vivo IR injury in murine models of heart 
attack and stroke.129 A similar approach was used by Zhang 
et al., who showed that 4-week aerobic preoperative exercise 
significantly attenuates liver injury and inflammation after 

IR in mice. Exercise resulted in the appearance of KCs favor-
ing an anti-inflammatory phenotype via metabolic repro-
gramming. Mechanistically, the exercise-induced release of 
high-mobility group protein B1 increased the level of the 
above-mentioned itaconate, which shifted KCs toward an 
anti-inflammatory phenotype via nuclear factor-2 erythroid-
related factor-2 (NRF2).135

Cytosolic acetyl-CoA production also has a direct effect 
on macrophage polarization, as shown by examining LPS-
induced TLR signaling.136 The first stage of TLR activation led 
to the generation of citrate and its conversion to acetyl-CoA 
in the cytosol. At later stages, itaconate synthesis from citrate 
by the LPS-inducible gene IRG1 serves as an anti-inflamma-
tory feedback mechanism. Itaconate synthesis in response to 
LPS diminishes the expression of several cytokines, includ-
ing IL-12, IL-6, IL-1β, and IL-18.133 Alterations in acetyl-CoA 
content also caused a shift in histone acetylation profile in 
various LPS-responsive genes.136

Pyruvate dehydrogenase (PDH) could be an additional 
target for translational studies to treat chronic inflamma-
tory diseases since it oxidized pyruvate into citrate.137 This 
assumption is based on the finding that LPS-activated mac-
rophages need the stabilization of HIF1α, which induces 
expression of pyruvate dehydrogenase kinase 1 that inhibits 
PDH via phosphorylation.

Calorie restriction is one of the possible ways for mod-
ulating metabolism and reducing inflammation,138 since 
obesity might induce insulin resistance and local low-grade 
inflammation.139,140 In murine insulin resistance model 
established by 60% high-fat diet for 12 weeks, M1 mac-
rophages accumulated in the adipose tissue.141 A decrease 
in insulin resistance was associated with the reduced M1 
and elevated M2 macrophage polarization.141 Under a low-
fat diet, eccentric exercise markedly inhibited M1 polariza-
tion and activated M2 macrophages in the epididymal fat 
tissue.141

Orillion et al. observed an increase in M1-like tumor- 
associated macrophages (TAMs) along with a decrease in 
the M2-like phenotype in the C57BL/6 mice (with subcuta-
neously tumor transplantation) fed a 7% protein diet132 that 
enhanced the antitumor capacity of macrophages provid-
ing the rationale for clinically using this approach during 
immunotherapy.142

The elevated lactate production by tumor cells led to 
inhibiting the host immune response143 and promoted M2 
polarization of macrophages under hypoxia.128 A ketogenic 
diet (KD: low-carbohydrate, average-protein, and high-fat 
diet) was shown to decrease the lactate production by glyco-
lytic tumors and resulted in an improved antitumor immune 
response143 inhibiting tumor growth.144 KD stimulated oxi-
dative stress in transplanted CT26+ tumor cells and induced 
M1 polarization of TAMs reducing the levels of HDAC3/
PKM2/NF-κB 65/p-Stat3 proteins.144

Spinal cord injury induced the expression of TNF-α and 
IL-1β, whereas their levels were reduced in the rats with 
increased ketone levels. Under KD, iNOS expression (the 
marker of M1 macrophages) was inhibited while arginase-1 
expression (the marker of M2 macrophages) was stimu-
lated.145 Increased arginase activity reroutes arginine from 
iNOS and, together with reduced iNOS expression, this 
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could decrease NO production, thus causing M2 polarization. 
Therefore, ketogenic metabolism promoted the macrophage 
polarization toward M2 polarization, inhibiting an inflam-
matory response, reducing the loss of gray matter, and facili-
tating functional recovery after spinal cord injury.145 Note 
that this effect is the opposite of the anti-M2 effect of KD in 
tumors. Although the exact mechanism by which the KD 
provides neuroprotection and M2 macrophage polarization 
is not fully understood, it has been shown that the lactate 
level is increased in the CNS during KD or fasting-induced 
ketosis,146–149 which is the inverse to the KD effect in tumors 
and could explain this controversy.

Thus, macrophage polarization can shift by the influence 
on energy metabolism. Such pathological process like IRI 
depends on macrophage polarization during different times 
after the damage. Considering that calorie restriction and KD 
induce M2 macrophage polarization that inhibits an inflam-
matory response, it would be a good strategy for developing 
a treatment for IRI.

Conclusions

The existing M1/M2 macrophage paradigm has been criti-
cized for its being the oversimplified model of a highly com-
plex phenomenon. However, such rough classification is still 
useful for studying metabolic alterations in macrophages 
and their role in inflammation. Like it was discussed already, 
macrophage polarization changing is observed during IRI at 
different times after the damage. The concept of macrophage 
phenotype shifting from M1 to M2, induced by targeting the 
energy metabolism, might prove useful for developing treat-
ment strategies for IRI.
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